Skip to main content

Forskningsprojekter

Access & Acceleration

Network for innovation and health
The Danish-German border region has a wealth of skills and resources to develop new innovative ideas, technologies and products in the health sector. Nowadays, traditional innovation processes do no longer automatically lead to success. The project Access & Acceleration strikes a new path and utilises the key success factor of innovations: a strong integration of technology users, companies and universities throughout all development stages.
Project duration:  04/2019 - 03/2022
Read more about the Access & Acceleration project here

AmiNIC

Every year, tons of meat products are thrown away since food safety concerns lead to a substantial waste of safe-to-eat food, causing a large waste of resources. Currently, the expiration date for meat/fish is determined by poorly performed subjective sensory. In this project, we found a high sensitive and selective method for detection of cadaverine (marker for meat freashness) by using a cadaverine-specific binder, and the method is applied into integrated sensors in close collaboration with AmiNIC ApS
AutomationsBoost (Væksthus Syddanmark og RoboCluster)
Project duration: 03/2017 - 09/2021
Read more about the AmiNIC project here

 

ArtPlast Artificial Chloroplasts: Nature-inspired electronic molecular nanoparticle platform for energy applications

In these projects the focus in on synthesizing an artificial chloroplast using conjugated donor:non-fullerene acceptor:antioxidant nanoparticles, which facilitates photosynthetic processes in the same way that nature has so delicately perfected, thus providing an efficient and stable material system for green energy technologies - H2 evolution and solar electricity generation.
Independent Research Fund Denmark - Grøn omstilling (Research project 1) and Carlsberg Foundation (Young Researcher Fellowship)
Project duration: 1 Jan 2021 -  31 May 2024



Baltic TRAM

Baltic TRAM aims to enhance innovation capacity and strengthen cooperation between analytical research institutes and companies, by providing industry with new ways of access to expertise, research facilities and open science and innovation concepts
Interreg Deutschland-Danmark
Project duration: 03/2016 - 05/2019
Read more about the Baltic TRAM project here

 

Celltom

The visual representation of microscopic changes in human cells, which are connected to cancer, is crucial to their diagnosis and treatment. Modern microscopy techniques available at the university hospitals and at important research and development laboratories in the region on the Danish and German side make it possible to examine these changes quickly and reliably. In the CellTom project, new and complementary microscopy techniques will be developed and combined in order to improve diagnostics as validated by the hospital partners. Moreover, a virtual service center ‘VISION’ will be established where interested institutions and companies can access the new microscopy techniques.

Project duration: 04/2017 - 03/2020
Read more about the Celltom project here

 

 CheckNano

Nanoparticles make their way into a broad range of products and help to optimize everyday life, but the tiny particles can also end up taking their toll on our health. Within the project consortium CheckNano, supported by Interreg5a, we will test products for possible harmful particles and develop a rapid test for the identification of toxic nanoparticles for later application in industrial production processes.
Project duration: 08/2018 - 07/2021
Read more about the CheckNano project here

 

Development of Smart Materials: From research to production

Bitten & Mads Clausen Foundation
In this project, the focus in on up-scaling of energy technologies from lab scale to industrial compatible scale using roll-to-roll (R2R) technology. The work focuses in particular on organic solar cells, which has been a main strategic research area at SDU NanoSYD for several years, but also includes smart materials for new energy technologies.
Project duration: 1 May 2019 - 31 Dec 2021

Energy harvesting in cities with transparent and highly efficient window-integrated multifunction solar cells (Citysolar)

H2020 RIA
In this H2020 Research and Innovation action project, new semi-transparent solar modules are made from organic and perovskite tandem solar cell devices, that are tuned to harvest infrared and ultraviolet parts of the sunlight, but at the same time be transparent for visible light. Combined with new light-management and module integration routes, this will pave the way for new high-efficiency photovoltaics windows. The project consortium includes several renowned academic and industrial partners, and is coordinated by CNR-ISM. 
Project partners: CNR-ISM (lead), FAU Erlangen-Nürnberg,  Uni Tor Vergata, CNRS, H.GLASS, ENI, Brilliant Matters, KAUST
Project duration: 1 Dec 2020 – 30 Nov 2023

 

Compliant PV

Mechanical and photochemical stabilization of flexible organic solar cells
VillumFonden 
Project duration: 01/2017 - 09/2020

 

Green PE

New materials for advanced power electronics. Boosting efficiency in conversion, transmission and consumption of green energy
Interreg Deutschland-Danmark
Project duration : 03/2016 - 02/2019
Read more about the Green PE project here

Hybrid electrolyte supercapacitor for highly efficient energy storage

Industrial Electronic Innovation CLEAN
In this project, new supercapacitor technology is upscaled to full industrial scale using roll-to-roll (R2R) technology. 
The project is led by InnoCell, who developed the supercapacitor system in focus, and the R2R upscaling and device testing is carried out at SDU NanoSYD and SDU CIE, respectively.
Project partners: Innocell and SDU CIE
Project duration: 1 Jan 2020 – 30 Jun 2021

IMPULSE-OPV - Integrated Molecular Plasmon Upconverter for Low-cost, Scalable, and Efficient Organic Photovoltaics

This VILLUM Experiment addresses the fundamental limitation on the solar cell efficiency by exploring a method for exploiting a great fraction of low-energy sunlight photons that are transmitted and lost in traditional solar cell designs. The possibility of conducting plasmon-enhanced molecular up-conversion of sunlight inside an organic solar cell will be investigated. We aim at redefining the theoretical maximum efficiency of organic photovoltaics (OPV) by frequency up-conversion and subsequent absorption of photons with energies below the absorption threshold of OPV. The method applies the quantum properties of the light absorbing molecules in converting two low-energy photons into a single high-energy photon. This novel approach could significantly increase the efficiency of OPV, making this low-cost lightweight technology an important contributor in the transition to renewable power sources.
Project duration: 00/2018 - 00/2020

Methodologies for Hyperspectral Thermal Imaging

Industrial PhD project in collaboration with Newtec Engineering A/S
Innovationsfonden
Project duration : 08/2018 - 07/2021

 

MMT

Technishe Hochschule Lübeck, University of Lübeck and the University of Southern Denmark in Sønderborg have initiated the Interreg project “MikroMedTech” (MMT) that aims to develop and establish a Danish-German master's study program in the field of medical technology in the Danish-German Interreg program region. The planned international study course “Medical Microtechnology” further develops the strong positions and core competencies in the Danish-German program region in the areas of health and life sciences and strengthens the collaboration between business, industry and clinics within the health technologies.

Project duration: 04/2020 - 03/2023


Powering Internet of Things with Ambient Solutions – PIloT

Independent Research Fund Denmark - Grøn omstilling (Research project 3)
In this collaborative project between DTU Energy and University of Southern Denmark, the focus is on developing a new family of miniaturized devices that can harvest energy from the environment, store it in the next-generation batteries and use it to power IoT devices. These hybrid energy devices include batteries, thermoelectric devices, electro-chemo-mechanical and photovoltaic devices.
Project partners: Technical University of Denmark (lead)
Project duration: 1 Jan 2021 – 31 Dec 2024

 

ReactPV

In this project, novel reactively sputtered metal oxide films will be developed and integrated as contact layers in organic, hybrid and silicon photovoltaics for the first time. By utilizing composition- and microstructure-tuned metal oxides, high work function layers that are robust to standard PV production and operation treatments will be developed, resulting in PV modules with so far unseen performance and stability. The project partners are besides SDU (lead): UC Berkeley, LBNL Berkeley, IMEC, Aarhus University and Sorbonne University of Paris. DFF FTP research project 2.
Project duration: 10/2018 - 03/2022


RollFlex

An Innovation Project Center for Roll-to-Roll processed flexible devices
Interreg Deutschland-Danmark
Project duration: 04/2016 - 09/2020
Read more about the RollFlex project here

 

SMART – Structures of Materials in Real Time

Ministry of Higher Education and Science
Project duration: 00/2019 - 00/2023
Read more about the SMART projekt here 

 

SOLID ESS lighthouse: Hard materials in 3D 

The Danish lighthouse SOLID has the vision to carry out cutting-edge research in neutron and synchrotron-based 3D imaging of hard materials. The combination of the separately superior sources, ESS and MAX IV, allows mapping the internal structure of a material, its formation and its change at all relevant length and time scales. At NanoSYD we will study cooling systems for power electronic devices. In particular we aim at understanding fundamental issues of flow of two-phase liquids and nanofluids in microporous materials and microfluidics devices. Neutron imaging is ideal for visualising such a flow due to its high penetration and good contrast with liquids. Complementary measurements with high-resolution Helium ion microscopy at SDU will clarify the role of structure between pores and surfaces in relation to nucleation and phase separation.
Danish roadmap for research infrastructures (lead: DTU) 
Project duration: 11/2019 - 10/2024

 

SunTune

High-efficiency solar cells by spectral transformation using nano-optical enhancement
InnovationsFonden
Project duration: 05/2015 - 04/2019
Read more about the SunTune project here

 

Tuning the Photostability of Organic Photovoltaics Components

In this collaboration between Copenhagen University, Aarhus University and University of Southern Denmark, the stability of organic solar cells are addressed via synthesis and integration of new organic molecules that are designed to be inherently stable, i.e. they degrade less when exposed to typical stress conditions such as light, heat and the ambient environment
Project partners: University of Copenhagen (lead), Aarhus University
Project duration: 1 Jan 2021 – 31 Dec 2024

Udvikling af smarte materialer: fra grundforskning til production

Development of Smart Materials and their integration into organic solar cells, and other flexible devices for energy conversion and storage solutions developed from roll-to-roll (R2R) technology at the R2R facility at the Mads Clausen Institute, SDU NanoSYD. The project specifically targets how to mature these materials, thin films and devices for future industrial production of new energy technologies.
Project duration: 00/2019 - 00/2022

 

Villum Experiment - NanoTrain: programable colloidal nanomachine

For years scientists have dreamt of nanomachines and nanorobots, which allows precise interactions with nanoscale objects. Various types of nanomachines has been invented and tested, however many of key bottlenecks remain. In the NanoTrain project we aim to develop a fully programmable nanomachine, with own efficient and directional propulsion system, which could take on board arbitrary cargoes and be easily controlled e.g. by external magnetic fields. Our concept based on sequential capillarity-assisted particle assembly approach (sCAPA) can open-up new possibilities for building nano-scale devices e.g. fully controlled shuttles devices for targeted delivery.
Project duration:  01/2021 - 12/2022