PhD projects at NanoSYD

Ingeniøruddannelserne på SDU. Fotograf Mette Krull
Mechanical stability of organic solar cells
by Michela Prete
Organic solar cells (OPVs) are considered, nowadays, a promising alternative to the inorganic PVs thanks to their low fabrication cost, the easy processability and tunability to different applications. In respect to the latest, organic materials allowed, in fact, the fabrication of flexible and stretchable devices opening the door to the possibility of mass production. These advantages are still limited by the ongoing improvement on the stability and efficiency of the organic devices. Although the efficiency has reached 12%, the final commercialization of the OPVs is still dependent on their stability. If different have been, in the past years, the photochemical stability studies, still few are the reported analysis on the mechanical properties of the organic devices. It is very important to understand the mechanical properties of the materials utilized, as much as understanding the results of the mechanical stress on flexible cells that is affecting the performances of the device over time. The main goal of the research project is to gain insight into the mechanical properties of flexible organic solar cells and to explore the possibilities of increasing the mechanical durability and stability of the cells while maintaining scalability and high electrical device performance. The project therefore encompasses work and specific objectives on determining the influences from both photochemical and mechanical stressing of flexible organic solar cells, and on applying specific additives that stabilize the cells against these degradation factors, both individually and combined. The work builds upon initial work on photochemical stabilization of organic solar cells, from where the initially tested photochemically stabilizing additives are chosen.
Supervisors: Morten Madsen and Vida Engmann

 

Hyperspectral thermal camera
By Anders Christian Løchte Jørgensen
This industrial PhD project is conducted in a collaboration between Newtec Engineering A/S and SDU. It focuses on the development of a hyperspectral thermal camera that can be used for thermography of buildings. Thermography of buildings is used to determine energy classification and find areas of poor thermal isolation. Present day thermal cameras only allow acquisition of greyscale images showing the intensity of infrared light in each pixel. This approach neglects the varying emissivity of materials which causes incorrect temperature measurements. In contrast, a hyperspectral camera measures the infrared light intensity at several wavelengths generating a full spectrum in each pixel in the ideal case. With this information, it will be possible to recognize a material through its emissivity, and thereby get a more accurate temperature determination. The project includes experimental work to develop and characterize the essential components for the camera. This includes the development of a graphene-based infrared sensor and of a multi-layered thin film mirror for a Fabry-Pérot interferometer used for spectral filtering. The sensitivity of the graphene sensor will be optimized by using quantum dots and plasmonics active in the infrared regime.
Supervisor: Jakob Kjelstrup-Hansen


Advanced imaging of biological samples using Ion beam microscopy and related techniques
By Irina Iachina
A newly introduced high resolution method is Helium Ion microscopy (HIM). This technique is similar to scanning electron microscopy (SEM) but instead of electrons incident on a sample He ions are used. In HIM secondary electrons are usually imaged as in SEM. There are several advantages with HIM compared to SEM. Firstly, He ions have a smaller de Broglie wavelength than electrons which makes it possible to achieve a higher resolution than with SEM. The wavelength of Helium ions does not depend as strongly of the acceleration voltage making it possible to image high-resolution samples with lower voltages than the corresponding SEM. The decreased voltage reduces sample damage making it easier to achieve high resolution images of biological samples. However, the sample must still be dehydrated as the ion beam must be kept in vacuum. Not only is it possible to achieve higher resolution images of biological samples with lower voltages, it is also possible to image cross-sections of samples by the use of surface sputtering. Surface sputtering occurs when the kinetic energy from the incident Helium ions is transferred to the surface atoms. This energy transfer results in the surface atom being ejected (sputtered) from the lattice which makes it possible to etch away surface atoms from the sample and therefore image the different layers of a given sample.
The first part of the project is optimization of sample preparation and imaging of biological samples, such as human kidneys and human skin, with HIM. As HIM has the advantage of being able to image cross-sections by milling using surface sputtering, part of the project will include development of procedures for milling in human kidney samples, firstly by simulations of ion milling in biological samples and then by using HIM. Chemical contrast mechanism in HIM will also be investigated in order to distinguish between different chemical components in the biological samples. For this appropriate image analysis must be developed. The second part of the project will be the development of a method for correlative microscopy, firstly for HIM and confocal microscopy and then expanded to Optical Coherence Tomography (OCT), TiCo Raman, Scanning Electron Microscopy (SEM), confocal microscopy, Stimulated Emission Depletion (STED) microscopy and Coherent Anti-Stokes Raman Scattering (CARS) microscopy. The acquired methods can then be utilized to examine the same area with different microscopes. The last part of the project will include the development of an appropriate image analysis to enable the understanding and combination of the images acquired by correlative microscopy.
Supervisor: Jakob Kjelstrup-Hansen

 

Quantum Transport in Nanostructures
By Reza Abolhassani
Confronted with the desires of further technological developments, traditional devices based on silicon are reaching their upper limits, and new materials and nanotechnology are called to open a new era. Diamond is increasingly being recognized as a piece of jewelry for science and technology, due to a broad spectrum of its properties and wide-ranging applications. The extraordinarily high breakdown voltage and thermal conductivity, remarkable inertness to chemicals and contamination, and tunable electronic properties upon doping make diamond a promising material for unveiling new quantum physics and developing the next-generation electronics.The aim of this PhD project is to build the foundation for diamond-based nanoelectronics. The state-of-the-art nanofabrication techniques will be used to pattern lab-grown diamond thin films into certain nanostructures and devices. Then, the quantum electronic properties will be characterized by performing ultralow-noise electrical transport measurements under extreme conditions (at low temperatures and in high magnetic fields), alongside a range of standard thin film characterization techniques.
Supervisor: Horst-Günter Rubahn

 


 

 


To give you the best possible experience, this site uses cookies Read more about cookies

Accept cookies