Skip to main content
DA / EN

Ageing of muscle stem cells.

 

Why do stem cells age and lose their ability to maintain and regenerate tissues?

People worldwide are living longer. A longer life brings new opportunities, yet the extent of these depends heavily on one component - health. Stem cells replace worn or damaged cells and maintain healthy tissues. As stem cells age, their function deteriorates, which contributes to age-related disorders. 

Deeper understanding of the mechanisms involved in stem cells ageing is crucial not only for appreciation of the pathophysiology of aging, but also in future development of stem cell-based therapies to treat aging-associated disorders. My research focuses on uncovering molecular pathways and mechanisms underlying ageing of skeletal muscle stem cells and their impact on muscle tissue regeneration.

I use state-of-art phosphoproteomics and redox-proteomics technologies that have reached unprecedented sensitivity levels allowing us, for the first time, to work with very small amounts of isolated stem cells.

Related Publications

  1. Le Boulch, M.; Ahmed, E. K.; Rogowska-Wrzesinska, A.; Baraibar, M. A.; Friguet, B. (2018): Proteome oxidative carbonylation during oxidative stress-induced premature senescence of WI-38 human fibroblasts. Mech Ageing Dev 170, 59-71. http://dx.doi.org/10.1016/j.mad.2017.07.005.
  2. Tvardovskiy, A.; Schwämmle, V.; Kempf, S. J.; Rogowska-Wrzesinska, A.; Jensen, O. N. (2017): Accumulation of histone variant H3.3 with age is associated with profound changes in the histone methylation landscape. Nucleic Acids Res 45, 16, 9272-9289. http://dx.doi.org/10.1093/nar/gkx696.
  3. Baraibar, M. A.; Hyzewicz, J.; Rogowska-Wrzesinska, A.; Bulteau, A. L.; Prip-Buus, C.; Butler-Browne, G.; Friguet, B. (2016): Impaired energy metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Aging (Albany NY) 8, 12, 3375-3389. http://dx.doi.org/10.18632/aging.101126.
  4. Baraibar, M.; Hyzewicz, J.; Rogowska-Wrzesinska, A.; Bulteau, A. L.; Prip-Buus, C.; Butler-Browne, G.; Friguet, B. (2014): Impaired metabolism of senescent muscle satellite cells is associated with oxidative modifications of glycolytic enzymes. Free Radic Biol Med 75 Suppl 1, S23. http://dx.doi.org/10.1016/j.freeradbiomed.2014.10.738.
  5. Zintel, S.; Bernhardt, D.; Rogowska-Wrzesinska, A.; Osiewacz, H. D. (2011): PaCATB, a secreted catalase protecting Podospora anserina against exogenous oxidative stress. Aging (Albany NY) 3, 8, 768-781. http://dx.doi.org/10.18632/aging.100360.
  6. Micutkova, L.; Diener, T.; Li, C.; Rogowska-Wrzesinska, A.; Mueck, C.; Huetter, E.; Weinberger, B.; Grubeck-Loebenstein, B.; Roepstorff, P.; Zeng, R.; Jansen-Duerr, P. (2011): Insulin-like growth factor binding protein-6 delays replicative senescence of human fibroblasts. Mech Ageing Dev 132, 10, 468-479. http://dx.doi.org/10.1016/j.mad.2011.07.005.
  7. Baraibar, M. A.; Hyzewicz, J.; Rogowska-Wrzesinska, A.; Ladouce, R.; Roepstorff, P.; Mouly, V.; Friguet, B. (2011): Oxidative stress-induced proteome alterations target different cellular pathways in human myoblasts. Free Radic Biol Med 51, 8, 1522-1532. http://dx.doi.org/10.1016/j.freeradbiomed.2011.06.032.
  8. Ahmed, E. K.; Rogowska-Wrzesinska, A.; Roepstorff, P.; Bulteau, A. L.; Friguet, B. (2010): Protein modification and replicative senescence of WI-38 human embryonic fibroblasts. Aging Cell 9, 2, 252-272. http://dx.doi.org/10.1111/j.1474-9726.2010.00555.x.
  9. Seguin, A.; Bayot, A.; Dancis, A.; Rogowska-Wrzesinska, A.; Auchère, F.; Camadro, J. M.; Bulteau, A. L.; Lesuisse, E. (2009): Overexpression of the yeast frataxin homolog (Yfh1): contrasting effects on iron-sulfur cluster assembly, heme synthesis and resistance to oxidative stress. Mitochondrion 9, 2, 130-138. http://dx.doi.org/10.1016/j.mito.2009.01.007.

Department of Biochemistry and Molecular Biology University of Southern Denmark

  • Campusvej 55
  • Odense M - DK-5230
  • Phone: +45 6550 2412

Last Updated 22.08.2023