Selective Production of C_2 Chemicals from CO_2 by Morphology Controlled Cu Mesh Electrodes

Min Hyung Lee

Department of Applied Chemistry, Kyung Hee University, South Korea

In recently, a lot of efforts have been devoted to developing electrocatalysts capable to convert CO_2 into chemical fuels. Especially, CO_2 conversion into multiple carbons ($\geq C_2$) are desired due to higher volumetric energy density and lower volatility than C_1 chemicals. Among transition metals, Cu is the only one that can produce C_2 products; however, selectivity of the C_2 chemical is very low. In this presentation, the selectivity control of C_2 chemicals depending on morphology of Cu nanomeshes will be introduced. Faradaic efficiencies of 38 % and 46 % for ethylene and ethane, respectively, have been achieved thanks to local pH and flow field controls in small nanopores. Our approach provide a new strategy for systematic tunability of the product selectivity and reaction kinetics of CO_2 reduction.

