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Welfare egalitarianism in surplus-sharing problems and
convex games∗

Pedro Calleja†, Francesc Llerena‡, and Peter Sudhölter§

Abstract

We show that the constrained egalitarian surplus-sharing rule, which divides the
surplus so that the poorer players’ resulting payoffs become equal but not larger
than any remaining player’s status quo payoff, is characterized by Pareto optimality,
path independence, both well-known, and less first (LF), requiring that a player does
not gain if her status quo payoff exceeds that of another player by the surplus. This
result is used to show that, on the domain of convex games, Dutta-Ray’s egalitarian
solution is characterized by aggregate monotonicity (AM), bounded pairwise fair-
ness, resembling LF, and the bilateral reduced game property (2-RGP) à la Davis
and Maschler. We show that 2-RGP can be replaced by individual rationality and
bilateral consistency à la Hart and Mas-Colell. We prove that the egalitarian solu-
tion is the unique core selection that satisfies AM and bounded richness, requiring
that the poorest players cannot be made richer within the core. Replacing “poorest”
by “poorer” allows to eliminate AM.

Keywords: Surplus-sharing, egalitarianism, convex TU game
JEL Classification: C71

1 Introduction

The notion of equity has a significant position in distributional problems, where a quan-
tity of a divisible resource (e.g., money) is divided among a set of agents that believe in
egalitarianism as a social value.
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In the context of cooperative transferable utility games (games, for short), Dutta and
Ray (1989) introduce their egalitarian solution which combines coalitional agreements
with the Lorenz criterion to promote equality. In rationing models, the constrained equal
awards rule and the constrained equal losses rule implement the idea of egalitarianism
in different directions, namely by equalizing awards or losses, respectively. Describing
rationing problems as suitable games, the constrained equal awards rule may be regarded
as the egalitarian solution. Here, we show that the egalitarian solution is supported by a
suitable new rule in the framework of surplus-sharing problems. In this setting, authors
have paid attention to resource egalitarianism instead of welfare egalitarianism, that is,
in distributing equally among players the total resource to be divided, without taking
into consideration to equalize the welfare of the agents ex-post, i.e., after the alloca-
tion process.1 To recognize this latter aspect, we introduce the constrained egalitarian
surplus-sharing rule. Imagine a situation where there is a resource to be divided among
a set of agents that are ranked with respect to (w.r.t.) a reference point, representing
some objective (and measurable) feature. First, agents with the lowest ranking receive
everything until they become equal to the second lowest ranked agents, and so forth
until the resource is exhausted. The constrained egalitarian rule has some resemblance
with the constrained outcome-egalitarian rule, introduced by Moreno-Ternero and Roe-
mer (2012) in a more complex model, where agents possess the capability to transform
wealth into non-transferable outcomes.

In this paper, we show that the constrained egalitarian rule is characterized by three
properties: Pareto optimality, path independence (Moulin, 1987) requiring that the as-
signed payoffs remain unchanged when applying the rule consecutively to any partition
of the resource, and less first, a new property requiring that a player does not gain if
her status quo payoff exceeds that of another player by the surplus. We observe that
the egalitarian solution distributes any growth in the value of the grand coalition fol-
lowing the path recommended by the constrained egalitarian rule. This fact drives our
investigation to search for axiomatizations of the egalitarian solution on the domain of
convex games2 using aggregate monotonicity (Megiddo, 1974), a very natural property
requiring that no player suffers if only the grand coalition becomes richer. Together
with aggregate monotonicity, we use bounded pairwise fairness, a new property that is
reminiscent of less first in the surplus-sharing setting, and the standard requirement of

1See Moreno-Ternero and Roemer (2012) for a concise exposition of these two conceptions of distribu-
tive justice.

2Outside the class of convex games, the existence of the egalitarian solution is not guaranteed. Re-
cently, Dietzenbacher et al. (2017) introduce the procedural egalitarian solution, a (single-valued) solution
defined for arbitrary games that coincides with the egalitarian solution on the class of convex games.
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consistency (à la Davis and Maschler, 1965, and à la Hart and Mas-Colell, 1989). Finally,
we provide two additional characterizations without consistency. To do so, we introduce
bounded richness, requiring that the poorest players cannot be made richer unless the
remaining players receive less than what they can guarantee by cooperation. Strength-
ening bounded richness, replacing “poorest” by “poorer”, allows to eliminate aggregate
monotonicity. Up to our knowledge, aggregate monotonicity has not been employed be-
fore in any of the existing characterizations of the egalitarian solution and the unique
characterization till now that does not employ any consistency property was provided
by Arin et al. (2003).3

The remainder of the paper is organized as follows. Section 2 contains preliminaries
on games and surplus-sharing problems. In Section 3 we study some logical implica-
tions among properties and provide a characterization of the constrained egalitarian
rule. Section 4 is devoted to the characterization results of the egalitarian solution with
consistency (in Subsection 4.1) and without consistency (in Subsection 4.2). The logical
independence of each property is extensively discussed in Section 5. Finally, Section 6
concludes with some final remarks.

2 Preliminaries

Let U be a set (the universe of potential players) and N be the set of coalitions in U (a
coalition is a nonempty finite subset of U). Given S, T ∈ N , we use S ⊂ T to indicate
strict inclusion, that is, S ⊆ T and S 6= T . By |S| we denote the cardinality of the
coalition S ∈ N . We assume that |U | ≥ 3. Given N ∈ N , let RN stand for the set
of all real functions on N . An element x ∈ RN , x = (xi)i∈N , is a payoff vector for N .
For all S ⊆ N , x(S) =

∑
i∈S xi, with the convention x(∅) = 0. For each x ∈ RN and

T ⊆ N , xT denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . Given N ∈ N , for
all x, y ∈ RN , x ≥ y if xi ≥ yi for all i ∈ N . For all α ∈ R, α+ = max{0, α}. For any
two vectors y, x ∈ RN with y(N) = x(N), we say that y weakly Lorenz dominates x,
denoted by y �L x, if min{y(S) | S ⊆ N, |S| = k} ≥ min{x(S) | S ⊆ N, |S| = k},
for all k = 1, 2, . . . , n − 1. We say that y Lorenz dominates x, denoted by y �L x, if at
least one of the above inequalities is strict. Given x ∈ RN , let P(x) = (N1, N2, . . . , Nk)
denote the ordered partition of N that is determined by N1 = {i ∈ N | xi ≤ xj ∀j ∈ N}
and Nm = {i ∈ N \

⋃m−1
j=1 Nj | xi ≤ xj ∀j ∈ N \

⋃m−1
j=1 Nj} for all m = 2, . . . , k.

A transferable utility game (a game) is a pair (N, v) where N ∈ N is the set of players
3The first axiomatic characterization was provided by Dutta (1999). Other characterizations can be

found in Klijn et al. (2000), Hougaard et al. (2001), and Llerena and Mauri (2017).
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and v : 2N −→ R is the characteristic function that assigns to each S ⊆ N a real
number v(S), with v(∅) = 0. Given a game (N, v) and ∅ 6= N ′ ⊂ N , the subgame
associated to N ′ is denoted by (N ′, v). A game (N, v) is convex if, for every S, T ⊆ N ,
v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). Throughout the paper, we only consider the set
of convex games denoted by Γ. For t ∈ R and any game (N, v), denote by (N, vt) the
game that differs from (N, v) at most inasmuch as vt(N) = v(N) + t. Note that (N, vt)
remains convex if (N, v) is convex and t > 0. Any x ∈ RN defines the inessential game
(N, x) ∈ Γ by x(S) =

∑
i∈S xi. For (N, v) ∈ Γ, define

X∗(N, v) = {x ∈ RN |x(N) ≤ v(N)} − the set of feasible payoff vectors,
X(N, v) = {x ∈ RN |x(N) = v(N)} − the set of pre-imputation,
I(N, v) = {x ∈ X(N, v) |xi ≥ v({i}) ∀ i ∈ N} − the set of imputations,
C(N, v) = {x ∈ X(N, v) |x(S) ≥ v(S) ∀ S ⊆ N} − the core.

A single-valued solution is a function σ that associates with each (N, v) ∈ Γ a unique
element σ(N, v) of X∗(N, v). A single-valued solution σ satisfies Pareto optimality (PO)
if for all (N, v) ∈ Γ,

∑
i∈N σi(N, v) = v(N). PO simply says that the worth of the grand

coalition should be exhausted.

A surplus-sharing problem is a pair (x, t), where N ∈ N , x ∈ RN , and t ≥ 0.4

A surplus-sharing rule is a mapping that associates a unique non-negative allocation to
each surplus-sharing problem (x, t). Formally, it is a function

f :
⋃
N∈N

RN × R+ →
⋃
N∈N

RN+

that satisfies, for all N ∈ N , all x ∈ RN , and all t ≥ 0,

(i) f(x, t) ∈ RN ,

(ii) fi(x, t) ≥ 0 for all i ∈ N (non negativity), and

(iii)
∑
i∈N fi(x, t) ≤ t (feasibility).5

Let F denote the set of surplus-sharing rules.

Note that fi(x, 0) = 0 for all N ∈ N , all x ∈ RN , and all i ∈ N . A surplus-sharing rule
f ∈ F satisfies Pareto optimality (PO) if for all N ∈ N , all x ∈ RN , and all t ∈ R+,∑
i∈N fi(x, t) = t. PO requires that the resource t should be exhausted. Examples of
4Usually, in the definition of a surplus-sharing problem the condition x ∈ RN+ is imposed. Here, we

consider a more general class of problems in which no restriction on x is required.
5Other models incorporate additional requirements in defining a surplus-sharing rule (see, for instance,

Moulin, 1987).
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Pareto optimal surplus-sharing methods are the equal sharing rule fEQ and the pro-
portional sharing rule fPR. Formally, for all N ∈ N , all x ∈ RN , and all t ≥ 0,
fEQ is defined by setting fEQi (x, t) = t

|N | for all i ∈ N , and fPR is defined by setting
fPRi (x, t) = xi∑

j∈N xj
· t for all i ∈ N , whenever

∑
j∈N xj 6= 0.

3 The constrained egalitarian rule

A surplus-sharing rule just distributes an amount t of a divisible resource (e.g., money)
among a set of players N that are differentiated by the reference point (or status quo)
x ∈ RN which, depending on the situation, can denote the opportunity cost of the
players, but also their individual endowment or other objective references. In this setting,
several rules6 have been established and characterized but none of them cares about
diminishing inequalities concerning the ex-post allocation process. Obviously, if we ignore
the initial status quo, fEQ weakly Lorenz dominates every other Pareto optimal rule f ,
i.e., fEQ(x, t) �L f(x, t) for all N ∈ N , all x ∈ RN , and all t ≥ 0. However, it is
not difficult to find instances of surplus-sharing problems (x, t) ∈ RN × R+ and Pareto
optimal rules f ∈ F where x + fEQ(x, t) is Lorenz dominated by x + f(x, t). In this
section, we introduce the constrained egalitarian surplus-sharing rule, denoted by fCE ,
and show that the final outcome x+fCE(x, t) weakly Lorenz dominates any other Pareto
optimal distribution x+ f(x, t). We also provide an axiomatic justification of fCE .

Definition 1. The constrained egalitarian surplus-sharing rule, fCE, is defined by

fCEi (x, t) = (λ− xi)+ for all N ∈ N , x ∈ RN , t ∈ R+, and i ∈ N, (1)

where λ ∈ R is determined by
∑
k∈N (λ− xk)+ = t.

Thus, fCE treats equals (w.r.t. the status quo) equally, and makes unequal agents equal
as far as this is possible. That is, it distributes the surplus to the poorer agents so that
their payoffs become equal but not larger than the remaining agents’ status quo payoffs.

The following remark explains how to calculate λ for any x ∈ RN and t > 0, and it will
be useful in our proofs.

Remark 1. Let N ∈ N , x ∈ RN , t > 0, and λ be such that fCEi (x, t) = (λ−xi)+ for all
i ∈ N . Choose i1, . . . , in, where n = |N |, such that {i1, . . . , in} = N and xi1 ≤ · · · ≤ xin .
For k ∈ {1, . . . , n} define αk(t) = αk = x({i1, . . . , ik}) − kxik + t and observe that

6See, for instance, Moulin, 1987; Chun, 1989; Pfingsten, 1991; Pfingsten, 1998; Young, 1988.
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α1 = t > 0 and, for k < n, αk − αk+1 = k(xik+1 − xik), hence α1 ≥ · · · ≥ αn. Now, with
k0 = max{k ∈ {1, . . . , n} | αk > 0}, we get

λ = αk0

k0
+ xik0

= x({i1, . . . , ik0}) + t

k0
.

Hence, λ = xik + fCEik (x, t) < xik′ = xik′ + fCEik′ (x, t), for all k = 1, . . . , k0 and all
k′ = k0 + 1, . . . , n.

Making use of Remark 1, we show that fCE weakly Lorenz equalizes the initial differences
among players in the status quo.

Lemma 1. For all N ∈ N , all x ∈ RN , and all t ∈ R+,

x+ fCE(x, t) �L x+ z, (2)

where z ∈ RN+ , z(N) = t, and z 6= fCE(x, t).

Proof. Let i1, . . . , in, k0, and λ be defined as in Remark 1, y = x + fCE(x, t), and
y′ = x + z. Let {j1, . . . , jk0} = {i1, . . . , ik0} such that y′j1 ≤ · · · ≤ y′jk0

. Moreover,
let jk = ik for k = {k0 + 1, . . . , n}. Then, for each k ∈ {1, . . . , n}, min{y′(S) | S ⊆
N, |S| = k} ≤ y′({j1, . . . , jk}). Moreover, as yij = xij for all j ∈ {k0 + 1, . . . , n}, we
have y′ij ≥ yij so that, by y′(N) = y(N) and yj1 = · · · = yjk0

= λ we conclude that
y′({j1, . . . , jk}) 6 y({i1, . . . , ik}) for all k ∈ {1, . . . , n}. Finally, as z 6= fCE(x, t), there
is k ∈ {1, . . . , n} such that yik 6= y′jk so that y′({j1, . . . , jk1}) < y({i1, . . . , ik1}) where k1

is minimal in {1, . . . , n} such that yik1
6= y′jk1

. Hence, y �L y′.

Lemma 1 has the following immediate consequence.

Corollary 1. For all N ∈ N , all x ∈ RN , all t ∈ R+, and all f ∈ F that satisfies PO,

x+ fCE(x, t) �L x+ f(x, t). (3)

In order to characterize fCE , let us first recall some acceptable and well-known proper-
ties. A surplus-sharing rule f ∈ F satisfies

• Path independence (PI) if for all N ∈ N , all x ∈ RN , and all t, t′ ∈ R+, f(x, t+t′) =
f(x, t) + f(x+ f(x, t), t′);

• Resource monotonicity (RM) if for all N ∈ N , all x ∈ RN , and all t, t′ ∈ R+ with
t′ > t, f(x, t′) ≥ f(x, t);
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• Equal treatment of equals (ET) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all
i, j ∈ N , if xi = xj then fi(x, t) = fj(x, t).

• Consistency (CO) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all ∅ 6= S ⊂ N ,
fS(x, t) = f

(
xS , t−

∑
i∈N\S fi(x, t)

)
.

Moulin (1987) introduces PI, which requires that, regardless of the partition of the total
surplus, its distribution may be dynamically obtained by applying the surplus-sharing
rule consecutively to the given elements of the partition. RM is a sort of solidarity
condition requiring that nobody is worse off when there is more to be divided, and ET
imposes that equal players (w.r.t. the status quo) should receive the same amount of
the resource. CO forces the solution to coincide in both the original and the reduced
problem that results when some players leave. Except for PI, the remaining properties
are not employed in our characterization result but they will be useful in our findings.

We now introduce a new property that captures how differently non-identical agents
(w.r.t. the status quo) should be treated. A surplus-sharing rule f ∈ F satisfies

• Less first (LF) if for all N ∈ N , all x ∈ RN , all t ∈ R+, and all i, j ∈ N with
xi − xj ≥ t, fi(x, t) = 0.

LF demands that if the relative welfare difference at the status quo between two agents
i, j ∈ N is large enough to exceed the total amount to be divided, i.e., xi − xj ≥ t, then
the agent with higher welfare gets nothing. Similar priority requirements can be found
in Moulin (2000) or Timoner and Izquierdo (2016) in the context of rationing problems
with asymmetries or ex-ante conditions, respectively.

In what follows we highlight some logical implications among the aforementioned prop-
erties.

Remark 2. It is immediate to check that PI implies RM. Moreover, if f ∈ F satisfies
RM and PO, then, for all N ∈ N and all x ∈ RN , f(x, ·) : R+ → RN+ is a continuous
mapping.

Remark 2 enables us to prove the following result.

Proposition 1. The properties PO, PI, and LF together imply ET.

Proof. Let N ∈ N , x ∈ RN , t ∈ R+, and i, j ∈ N such that xi = xj . Let f ∈ F satisfy
PO, PI and LF.

If t = 0, then by PO (and non negativity of f), fi(x, t) = fj(x, t) = 0.
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If t > 0 suppose, w.l.o.g., fi(x, t) < fj(x, t). Note that by definition, fj(x, t) > 0.
Moreover, since PI implies RM, for all 0 ≤ t′ ≤ t we have that f(x, t′) ≤ f(x, t). By
continuity and RM of f (see Remark 2), t∗ = min{τ ∈ R+ | fj(x, τ) = fj(x, t)} exists
and there exists 0 < t̂ < t∗ with fj(x, t̂) − fi(x, t̂) > t∗ − t̂. As xi = xj , we obtain
t∗− t̂ < xj + fj(x, t̂)− (xi + fi(x, t̂)). Hence, by LF, fj(x+ f(x, t̂), t∗− t̂) = 0. But then,
by PI, fj(x, t∗) = fj(x, t̂) which means that fj(x, t) = fj(x, t̂), and a contradiction is
obtained.

Remark 3. Let us stress that PO, RM, and LF together are not enough to guarantee
ET. Indeed, select i ∈ U and define f ∈ F as follows. Let N ∈ N , x ∈ RN , and t ≥ 0. If
i /∈ N or i ∈ N and xi > xj for some j ∈ N \ {i}, define f(x, t) = fCE(x, t).7 If i ∈ N
and xi ≤ xj for all j ∈ N , define fi(x, t) = t and fj(x, t) = 0 for all j ∈ N \ {i}. Then,
f satisfies PO, RM, and LF but not ET.

Making use of both Remark 2 and Proposition 1, we show that CO is also a consequence
of PO, PI, and LF.

Proposition 2. The properties PO, PI, and LF together imply CO.

Proof. Let f be a surplus-sharing rule satisfying PO, PI, and LF. Let N ∈ N with
|N | ≥ 3, x ∈ RN , t > 0, and ∅ 6= S ⊂ N . Suppose that fS(x, t) 6= f(xS , t′), where
t′ =

∑
i∈S fi(x, t). Then, by PO, there exist i, j ∈ S such that

xi + fi(x, t) > xi + fi(xS , t′) (4)

and
xj + fj(x, t) < xj + fj(xS , t′). (5)

Claim: If N ∈ N , t > 0, and i, j ∈ N such that fi(x, t) − fj(x, t) > xj − xi, then
fi(x, t) = 0.

To prove the claim assume, on the contrary, that fi(x, t) > 0. By Proposition 1, f satisfies
ET. Hence, xi 6= xj . If xi < xj , then, by continuity of f (see Remark 2), there exists
0 < t′ < t such that fi(x, t′)−fj(x, t′) = xj−xi because fi(x, 0)−fj(x, 0) = 0 < xj−xi.
With x′ = x+ f(x, t′), PI yields x+ f(x, t) = x′ + f(x′, t− t′). However, as x′i = x′j , by
ET, xi + fi(x, t) = xj + fj(x, t), a contradiction. Hence, we may assume that xi > xj .
By RM and continuity, t0 = max{t̃ ≥ 0 | fi(x, t̃) = 0} is well-defined and t0 < t. If
xi > xj + fj(x, t0), then, by LF, fi(x + f(x, t0), ε) = 0 for ε > 0 small enough which
contradicts, in view of PI, the definition of t0. On the other hand, if xi ≤ xj + fj(x, t0),

7Proposition 3 shows that fCE satisfies PI and LF.
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then by continuity there exists t0 ≤ t1 < t such that xi + fi(x, t1) = xi = xj + fj(x, t1).
By PI and ET, we get xi+fi(x, t) = xj +fj(x, t), a contradiction. This finishes the proof
of the claim.

Now, we may distinguish two cases: (a) xi + fi(xS , t′) ≥ xj + fj(xS , t′) and (b) xi +
fi(xS , t′) < xj + fj(xS , t′). In case (a), inequalities (4) and (5) imply xi + fi(x, t) >
xj + fj(x, t), and by the claim we receive fi(x, t) = 0. Thus, from (4) we obtain 0 >

fi(xS , t′), contradicting the non-negativity of f . In case (b), again by the claim, we
receive fj(xS , t′) = 0. Thus, from (5) we obtain fj(x, t) < 0, contradicting the non-
negativity of f .

Now, we have the necessary intermediate results to characterize fCE by means of PO,
PI, and LF. Clearly, fCE satisfies PO. Next, we check that it also meets PI and LF.

Proposition 3. The surplus-sharing rule fCE satisfies PI and LF.

Proof. Let N ∈ N , x ∈ RN , and t > 0. We first show PI. Let i1, . . . , in be defined as in
Remark 1, t = t1 + t2, t1, t2 > 0,

k1
0 = max{k ∈ {1, . . . , n} | x({i1, . . . , ik}) + t1 > kxik}

and
k0 = max{k ∈ {1, . . . , n} | x({i1, . . . , ik}) + t > kxik}.

That is, with

λ1 =
x({i1, . . . , ik1

0
}) + t1

k1
0

and λ = x({i1, . . . , ik0}) + t

k0
,

we have fCEi (x, t1) = (λ1 − xi)+ and fCEi (x, t) = (λ − xi)+, for all i ∈ N . Let y =
x + fCE(x, t1). By Remark 1, yi1 = · · · = yi

k1
0
< yi

k1
0+1
≤ · · · ≤ yin and k1

0 ≤ k0. As
k0λ− x({i1, . . . , ik0}) = t and k1

0λ1 − x({i1, . . . , ik1
0
}) = t1, we conclude that

k0λ− y({i1, . . . , ik0}) = k0(λ− λ1)− x({ik1
0+1, . . . , ik0})

= k0λ− x({i1, . . . , ik0}) + x({i1, . . . , ik1
0
})− k1

0λ1
= t− t1 = t2

so that PI is shown.

To show LF, suppose there are i, j ∈ N with xi − xj ≥ t and fCEi (x, t) > 0. Since
xi ≥ xj , fCEi (x, t) ≤ fCEj (x, t) and thus fCEj (x, t) > 0. This means that xi+fCEi (x, t) =
xj + fCEj (x, t) (see Remark 1), which implies xi − xj = fCEj (x, t) − fCEi (x, t) ≥ t. But
then fCEj (x, t) > t, contradicting PO. Hence, fCEi (x, t) = 0.
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The above three propositions lead to the following characterization.

Theorem 1. The unique surplus-sharing rule that satisfies PO, PI, and LF is fCE.

Proof. By Proposition 3, fCE satisfies PI and LF. PO is obvious. Conversely, let f ∈ F
denote a rule satisfying these properties. By Proposition 1 and Proposition 2 it also
satisfies ET and CO. Let N ∈ N , x ∈ RN , and t > 0.

• If |N | = 1, by PO, f = fCE .

• If N = {i, j} and x = (xi, xj) ∈ RN suppose, w.l.o.g., xi ≥ xj . We distinguish two
cases:

(i) xi − xj ≥ t. By PO and LF, fi(x, t) = 0 and fj(x, t) = t. Thus, f = fCE .

(ii) 0 ≤ xi − xj < t. By PI,

f(x, t) = f(x, xi − xj) + f(x+ f(x, xi − xj), t− (xi − xj)).

By LF and PO, fi(x, xi − xj) = 0 and fj(x, xi − xj) = xi − xj .

Since x+ f(x, xi − xj) = (xi, xi), by ET and PO we receive,

f(x+ f(x, xi − xj), t− (xi − xj)) =
(
t− (xi − xj)

2 ,
t− (xi − xj)

2

)
.

Hence, f(x, t) =
(
t−(xi−xj)

2 ,
t+(xi−xj)

2

)
= fCE(x, t).

• If |N | ≥ 3 and f(x, t) 6= fCE(x, t), then, by PO, there exist i, j ∈ N such that
fi(x, t) > fCEGi (x, t) and fj(x, t) < fCEGj (x, t). Let S = {i, j}. Suppose that
fi(x, t) + fj(x, t) ≥ fCEi (x, t) + fCEj (x, t). Taking into account that f = fCE for
the two agent case, f(xS , fi(x, t) + fj(x, t)) = fCE(xS , fi(x, t) + fj(x, t)). By CO
and RM we obtain

fj(x, t) = fj(xS , fi(x, t) + fj(x, t))
= fCEj (xS , fi(x, t) + fj(x, t))
≥ fCEj (xS , fCEi (x, t) + fCEj (x, t))
= fCEj (x, t),

which contradicts the assumption fj(x, t) < fCEGj (x, t). If, on the contrary,
fi(x, t)+fj(x, t) < fCEi (x, t)+fCEj (x, t), then we get the contradiction fCEi (x, t) >
fi(x, t). Hence, we conclude that f = fCE .
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4 Game theoretical support: the Dutta-Ray solution

Translating LF into a new property for games and combining it with aggregate mono-
tonicity, we provide a number of characterizations of the egalitarian solution of Dutta
and Ray (1989) on the class of convex games. We use the central observation (Lemma
3) that the egalitarian solution obeys fCE when dividing an increase in the value of the
grand coalition.

In order to recall the definition of the egalitarian solution, the following lemma is useful.

Lemma 2. Let (N, v) ∈ Γ and denote µ = max∅6=S⊆N
v(S)
|S| . If ∅ 6= S, T ⊆ N are such

that v(S) = µ|S| and v(T ) = µ|T |, then v(S ∪ T ) = µ|S ∪ T |.

Proof. Note that, by convexity of (N, v), v(S∪T )+v(S∩T ) ≥ v(S)+v(T ) = µ(|S|+ |T |)
and, by definition of µ, v(S∩T ) ≤ µ(|S∩T |). Therefore, v(S∪T )+µ(|S∩T |) ≥ µ(|S|+
|T |) = µ(|S∪T |+ |S∩T |) and, hence, v(S∪T ) ≥ µ(|S∪T |) so that v(S∪T ) = µ(|S∪T |)
by the definition of µ.

Let (N, v) ∈ Γ and denote

µ(v) = max
∅6=S⊆N

v(S)
|S|

and S(v) =
⋃
{S ∈ 2N \ {∅} | v(S) = µ(v)|S|}.

By Lemma 2, µ(v)|S(v)| = v(S(v)). Now, we are able to introduce the definition of
the egalitarian solution of (N, v), denoted by L(N, v). Namely, let (S1, . . . , Sm) be the
ordered partition ofN that is recursively determined by the requirement that Sk = S(vk),
where S0 = ∅ and for all k = 1, . . . ,m, Nk = N \

⋃k−1
j=0 Sj and (Nk, vk) is defined by

vk(T ) = v(T ∪ (N \Nk))− v(N \Nk) for all T ⊆ Nk. Note that v1 = v and (Nk, vk) ∈ Γ
so that Sk is well defined. The egalitarian solution L(N, v) = {x∗(N, v)} is given by

x∗i (N, v) = µ(vk) = vk(Sk)
|Sk|

for all i ∈ Nk and all k = 1, . . . ,m. (6)

Remark 4. Let (N, v) ∈ Γ. The unique element x∗ of L(N, v) satisfies the following
properties: ∑k

t=1 x
∗(St) = v

(⋃k
t=1 St

)
for all k = 1, . . .m;

x∗i = x∗j for all i, j ∈ Sk and all k = 1, . . . ,m;
x∗i > x∗j for all i ∈ St, j ∈ Sk and all 1 ≤ t < k ≤ m.

Moreover, according to Theorem 3 of Dutta and Ray (1989) the egalitarian solution L
selects the unique core element that Lorenz dominates every other core element. That
is, x∗ ∈ C(N, v) and x∗ �L y for all y ∈ C(N, v) \ {x∗}.
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Aggregate monotonicity (Megiddo, 1974) will play a distinguished role in our character-
izations. A single-valued solution σ satisfies

• Aggregate monotonicity (AM) if for all (N, v) ∈ Γ and all t > 0, σ(N, vt) ≥ σ(N, v).

We now show that the egalitarian solution L distributes any variation in the worth of
the grand coalition monotonically among players according to fCE , which also provides
a game theoretical support for the constrained egalitarian rule.

Lemma 3. Let (N, v) ∈ Γ, t > 0, and L(N, v) = x∗. Then, L(N, vt) = x∗ + fCE(x∗, t).

Proof. Suppose that L(N, vt) 6= x∗ + fCE(x∗, t). Then, since x∗ + fCE(x∗, t) ∈ C(N, v),
we have that L(N, vt) �L x∗ + fCE(x∗, t). By AM and PO, L(N, vt) = x∗ + z, where
z ∈ RN+ with z(N) = t. Thus, we receive x∗+z �L x∗+fCE(x∗, t), contradicting Lemma
1. Hence, L(N, vt) = x∗ + fCE(x∗, t).

The above result shows that, on a sequence of convex games with increasing worth of the
grand coalition, the egalitarian solution L evolves dynamically in the sense that it assigns
an allocation in each subsequent period that is uniquely determined by the allocation of
the previous period.

In the following items, we introduce a number of well-established properties on the
domain of convex games, some of which will be used in our characterization results. A
single-valued solution σ satisfies

• Constrained egalitarianism (CE) if for all (N, v) ∈ Γ with N = {i, j}, i 6= j, and
v({i}) ≤ v({j}), σj(N, v) = max

{
v(N)

2 , v({j})
}
and σi(N, v) = v(N)− σj(N, v);

• Weak continuity (WC) if for all (N, v) ∈ Γ and all sequences (αk)k∈N with limit
v(N) such that (a) the games (N, vk) that differ from (N, v) at most inasmuch
as vk(N) = αk are convex and (b) (σ(N, vk))k∈N converges to some x ∈ RN ,
x = σ(N, v);

• Individual rationality (IR) if for all (N, v) ∈ Γ and all i ∈ N , σi(N, v) ≥ v({i});

• Core selection (CS) if for all (N, v) ∈ Γ, σ(N, v) ∈ C(N, v).

Note that CE determines the solution for two-player games. IR requires that no single
player can improve the payoff proposed by the solution without cooperation, while CS is
a sort of secession-proofness property since CS requires that all coalitions receive at least
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what they can get by themselves. Moreover, WC is a continuity condition that applies
for sequences of convex games that only differ in the worth of the grand coalition. It is
not difficult to check that PO and AM together imply WC. The egalitarian solution L
satisfies all the above properties.

Now we introduce consistency properties that refer to suitable notions of reduced games.
A single-valued solution σ satisfies

• the Reduced game property (RGP) if for all (N, v) ∈ Γ and all ∅ 6= S ⊂ N ,
(S, vS,x) ∈ Γ and σ(S, vS,x) = xS where x = σ(N, v) and (S, vS,x) is the game
defined by vS,x(S) = v(N) − x(N \ S) and v(T ) = maxQ⊆N\S{v(T ∪ Q) − x(Q)}
for all ∅ 6= T ⊂ S;8

• Consistency (CON) if for all (N, v) ∈ Γ and all ∅ 6= S ⊂ N , (S, vS,σ) ∈ Γ and
σ(S, vS,σ) = xS for all ∅ 6= S ⊂ N and all i ∈ S where x = σ(N, v) and (S, vS,σ) is
the game defined by

vS,σ(T ) = v(T ∪ (N \ S))−
∑

i∈N\S
σi(T ∪ (N \ S), v) for all ∅ 6= T ⊆ S.9

The bilateral reduced game property (2-RGP) and bilateral consistency (2-CON)
only require RGP and CON for |S| = 2, respectively.

Roughly speaking, consistency requires that in the corresponding reduced game the
original agreement should be confirmed. The above definitions are due to Sobolev (1975)
and Hart and Mas-Colell (1989), respectively. The egalitarian solution L satisfies RGP
on Γ. Moreover, as was shown by Hokari (2002), it satisfies 2-CON but violates CON
on Γ.10 Following the proofs of Theorem 5.3 and Theorem 5.4 in Dutta (1990), it can
be checked that CE together with 2-RGP and 2-CON, respectively, characterize the
egalitarian solution L on Γ.

4.1 Characterizations with consistency

To characterize the egalitarian solution L, together with consistency and AM we will
impose a new property, that is reminiscent of LF in the surplus-sharing setting. A
single-valued solution σ satisfies

8The game (S, vS,x) is called reduced game of (N, v) w.r.t. S at x and was introduced by Davis and
Maschler (1965).

9The game (S, vS,σ) is called the σ-reduced game of (N, v) w.r.t. S at σ and was introduced by Hart
and Mas-Colell (1989). Note that the set of convex games Γ is closed under taking subgames.

10See Example 1 in Hokari (2002).
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• Bounded pairwise fairness (BPF) if for all (N, v) ∈ Γ, all t > 0, and all i, j ∈ N
such that σi(N, v)− σj(N, v) ≥ t, σi(N, vt) ≤ σi(N, v).

The property of BPF is a priority requirement imposing that, if the difference in payoffs
between two players in the initial game (N, v) exceeds the total additional amount t to
be divided, then in the game (N, vt) the richer player can not gain.

Proposition 4. The egalitarian solution satisfies BPF.

Proof. Let (N, v) ∈ Γ, t > 0, and i, j ∈ N such that Li(N, v)−Lj(N, v) ≥ t. By Lemma
3, L(N, vt) = L(N, v) + fCE(L(N, v), t). Since fCE obeys LF, fCEGi (L(N, v), t) = 0 and
thus Li(N, vt) = Li(N, v).

The next result has the flavor of Proposition 1. While in the framework of surplus-
sharing problems PO, RM, and LF together do not imply ET (see Remark 3), here PO,
AM, and BPF are enough to ensure a kind of equal treatment property that only applies
when the worth of the grand coalition increases.

Lemma 4. Let σ be a single-valued solution that satisfies PO, AM, and BPF. For all
(N, v) ∈ Γ, all i, j ∈ N , and all t ∈ R+, if σi(N, v) = σj(N, v), then σi(N, vt) =
σj(N, vt).

Proof. Let σ be a single-valued solution satisfying PO, AM and BPF. Suppose, on the
contrary, there exist i, j ∈ N such that σi(N, v) = σj(N, v) but σj(N, vt) > σi(N, vt).
By PO and AM, σ meets WC. Therefore, there exists a minimal t∗ ∈ (0, t] such that
σj(N, vt

∗) = σj(N, vt). Hence,

σj(N, vt
′′) < σj(N, vt

∗) = σj(N, vt) for all t′′ ∈ [0, t∗). (7)

Note that σj(N, v) < σj(N, vt) since, otherwise, σi(N, v) = σj(N, v) = σj(N, vt) >

σi(N, vt), contradicting AM. Let t̂ ∈ (0, t∗) such that 2 ·
(
vt
∗(N)− vt̂(N)

)
≤ σj(N, vt)−

σi(N, vt). By PO and AM, we obtain

2 · (vt∗(N)− vt̂(N)) ≤ σj(N, vt)− σi(N, vt)
≤ σj(N, vt

∗)− σi(N, vt
∗)

= σj(N, vt̂)− σi(N, vt̂) + σj(N, vt
∗)− σj(N, vt̂)

−(σi(N, vt
∗)− σi(N, vt̂))

≤ σj(N, vt̂)− σi(N, vt̂) +
∑
j∈N

(
σj(N, vt

∗)− σj(N, vt̂)
)

−(σi(N, vt
∗)− σi(N, vt̂))

≤ σj(N, vt̂)− σi(N, vt̂) + vt
∗(N)− vt̂(N).

(8)
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Hence, vt∗(N) − vt̂(N) ≤ σj(N, vt̂) − σi(N, vt̂). Now, by AM and BPF, σj(N, vt
∗) =

σj(N, vt̂), contradicting (7).

Next, we generalize Lemma 3 to show that not only the egalitarian solution L but all
single-valued solutions satisfying PO, AM, and BPF distribute any growth in the value
of the grand coalition according to fCE .

Lemma 5. Let σ be a single-valued solution satisfying PO, AM, and BPF. For all
(N, v) ∈ Γ and all t ∈ R+, σ(N, vt) = σ(N, v) + fCE(σ(N, v), t).

Proof. Let us denote σ(N, v) = x and σ(N, vt) = xt. Let P(x) = (N1, N2, . . . , Nk) be
the ordered partition of N as defined in Section 2. We proceed by induction on |P(x)|.

If k = 1, by PO, xi = v(N)
n for all i ∈ N , where |N | = n. Hence, by Lemma 4, xti = xtj

for all i, j ∈ N , and by PO, for all i ∈ N ,

xti = vt(N)
n

= v(N)
n

+ t

n
= xi + fCEi (x, t),

where the last equality comes from ET of fCE .

Induction hypothesis: xt = x+ fCE(x, t) whenever k < ` for some ` ∈ N, ` > 1.

We now assume k = `. Take i1 ∈ N1, with n1 = |N1| and i2 ∈ N2. We distinguish two
cases:

(i) xi2−xi1 ≥ t
n1
. By Lemma 4, for all i, j ∈ N1, xti = xtj , and AM together with BPF

lead to xti = xi for all i ∈ N \N1. Now, taking into account that fCE satisfies LF
and ET, we have that xt = x+ fCE(x, t).

(ii) xi2 − xi1 < t
n1
. Let t′ = n1(xi2 − xi1) and σ(N, vt′) = xt

′ . Note that t− t′ > 0. By
BPF, xt′i = xi for all i ∈ N\N1. By Lemma 4 and PO, xt′i = xi+(xi2−xi1) = xi2 for
all i ∈ N1. Since |P(xt′)| = `−1, by induction hypothesis xt = xt

′+fCE(xt′ , t−t′).
Moreover, from LF and ET of fCE we receive xt′ = x + fCE(x, t′). Finally, from
PI of fCE we obtain

xt = xt
′ + fCE(xt′ , t− t′)

= x+ fCE(x, t′) + fCE(x+ fCE(x, t′), t− t′)
= x+ fCE(x, t).

If we additionally impose IR we get CE, which allows us to use, together with consistency,
Dutta’s (1990) results. With this aim, we first characterize the family of single-valued
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solutions that satisfies PO, IR, AM, and BPF. To do so, let us first introduce the notion
of convex root game.

Given (N, v) ∈ Γ, the convex root game of (N, v), denoted by (N, vr), is the convex game
with the smallest worth of the grand coalition such that vr(S) = v(S) for all S ⊂ N .
That is, (N, vr) = (N, vτ ) where τ is such that (N, vt) 6∈ Γ for all t < τ . Note that (N, vr)
is well defined since vr(N) = max{v(S) + v(T ) − v(S ∩ T ) | S, T ⊆ N, S ∪ T = N}.
Moreover, both games (N, v), (N, vt) ∈ Γ, t ∈ R, have the same convex root game (N, vr).
By Γroot we denote the set of convex root games.

Definition 2. An imputation-selection for convex root games is a function γ : Γroot →⋃
N∈N RN such that γ(N, v) ∈ I(N, v) for all (N, v) ∈ Γroot.

An imputation-selection for convex root games (cp. Calleja at al., 2012) chooses, for any
convex root game, a unique element of its imputation set.

Theorem 2. A single-valued solution satisfies PO, IR, AM, and BPF if and only if
there exists an imputation-selection for convex root games γ such that

σ(N, v) = γ(N, vr) + fCE(γ(N, vr), v(N)− vr(N)), (9)

for all (N, v) ∈ Γ.

Proof. Let σ be a single-valued solution satisfying PO, IR, AM, and BPF. For all (N, v) ∈
Γ, define the imputation-selection for convex root games γ as γ(N, vr) = σ(N, vr). Now,
by Lemma 5, we receive σ(N, v) = γ(N, vr) + fCE(γ(N, vr), v(N)− vr(N)).

To prove the reverse implication, let σ be a single-valued solution and let γ be an
imputation-selection for convex root games such that

σ(N, v) = γ(N, vr) + fCE(γ(N, vr), v(N)− vr(N)),

for all (N, v) ∈ Γ. Clearly, σ satisfies PO, IR, and AM. To check BPF, for all t > 0, by
PI of fCE we have

σ(N, vt) = γ(N, (vt)r) + fCE(γ(N, (vt)r), vt(N)− (vt)r(N))
= γ(N, vr) + fCE(γ(N, vr), v(N) + t− vr(N))
= γ(N, vr) + fCE(γ(N, vr), v(N)− vr(N))

+fCE(γ(N, vr) + fCE(γ(N, vr), v(N)− vr(N), t))
= σ(N, v) + fCE(σ(N, v), t).

(10)

Let i, j ∈ N with σi(N, v) − σj(N, v) ≥ t. Then, by LF of fCE , fCEi (σ(N, v), t) = 0.
Now, from (10) we receive σi(N, vt) = σi(N, v), which proves BPF.
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As a direct consequence of Theorem 2 we receive CE.

Corollary 2. Let σ be a single-valued solution satisfying PO, IR, AM, and BPF. Then,
σ also satisfies CE.

Proof. If (N, v) ∈ Γ is a 2-person game, then the convex root game of (N, v) is inessential
so that its unique imputation is the unique element of the core. Hence, σ(N, v) = L(N, v)
by Theorem 2.

As mentioned, the egalitarian solution L satisfies PO, IR, BPF, and AM. Corollary 2
and Dutta’s (1990) results imply that these properties, together with either 2-RGP or
2-CON, characterize L. Remarkably, it turns out that when imposing consistency some
of the aforementioned properties become redundant.

Occasionally we consider single-valued solutions on a domain of games Γ′ that is a subset
of Γ, the domain of all convex games. In this case, in the definitions of the various prop-
erties, the requirement that the games belong to Γ must be replaced by the requirement
that the games belong to Γ′.

Proposition 5. On the domain of convex games with at least two players, if the single-
valued solution σ satisfies 2-RGP, then σ satisfies CS as well.

Proof. Let (N, v) be a convex game. We consider two cases:

(i) |N | = 2. By the assumption |U | ≥ 3 there exists k ∈ U \N . Let M = N ∪{k} and
(M,w) be the game that arises from (N, v) by adding the null player k, i.e., w is
given by w(S) = v(S ∩N) for al S ⊆M . Note that (M,w) is still convex.

Claim: If (N, v) is inessential, then σ(N, v) is the unique element of C(N, v).
In order to show the claim, note that (M,w) is inessential. Let y ∈ RM be defined
by yi = w({i}) for all i ∈ M , hence y(S) = w(S) for all S ⊆ M . Moreover, let
x = σ(M,w). For any i ∈ M , by the definition of the Davis-Maschler reduced
game, wM\{i},x({j}) ≥ w({i, j}) − xi = y({i, j}) − xi for both j ∈ M \ {i} and
wM\{i},x(M \ {i}) = w(M) − xi = y(M) − xi. By 2-RGP, (M \ {i}, wM\{i},x) is
convex so that

∑
j∈M\{i}wM\{i},x({j}) ≤ wM\{i},x(M \ {i}). We conclude that∑

j∈M\{i}
y({i, j})− xi = y(M) + yi − 2xi ≤ y(M)− xi,

hence xi ≥ yi for all i ∈ M . Now, as x(M) 6 w(M) = y(M), we have x = y.
Finally, since (N,wN,y) = (N, v), the claim follows from 2-RGP.
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Now let x = σ(M,w), i ∈ N , and N = {i, j}. By 2-RGP, (M \ {i}, wM\{i},x)
is convex and xM\{i} = σ(M \ {i}, wM\{i},x). By definition of the Davis-Maschler
reduced game,

wM\{i},x({j}) = max{w({i, j})− xi, w({j})} = max{v(N)− xi, v({j})},

wM\{i},x({k}) = max{w({i, k})− xi, w({k})} = max{v({i})− xi, 0},

and
wM\{i},x(M \ {i}) = w(M)− xi = v(N)− xi

so that 2-RGP implies xi ≥ v({i}) and v(N) − xi ≥ v({j}). We conclude that
(M \{i}, wN\{i},x) is inessential and thus, by 2-RGP and our claim, xj = v(N)−xi
and xk = 0. Therefore, xN ∈ C(N, v) and the proof is finished by 2-RGP.

(ii) |N | ≥ 3. Let x = σ(N, v) and assume that x /∈ C(N, v). If x(N) < v(N) select
any S ⊆ N with |S| = 2. By 2-RGP, (S, vS,x) ∈ Γ and xS = σ(S, vS,x). Now
vS,x(S) = v(N) − x(N \ S) > x(S) so that xS /∈ C(S, vS,x) which contradicts
case (i). Therefore, we may assume that x(N) = v(N) and x(T ) < v(T ) for some
∅ 6= T $ N so that there exist i ∈ T and j ∈ N \T . Let S = {i, j} and observe that
vS,x({i}) ≥ v(T )−x(T \{i}) > xi by definition of the Davis-Maschler reduced game.
Therefore xS is not individually rational for (S, vS,x) and the desired contradiction
is obtained by 2-RGP and case (i).

Since CS implies both PO and IR, combining Corollary 2, Proposition 5, and Dutta’s
(1990) Theorem 5.3, we obtain the following characterization.

Theorem 3. On the domain of convex games with at least two players, the egalitarian
solution L is the unique single-valued solution that satisfies AM, BPF, and 2-RGP.

Remark 5. If we consider the set of all games, including all 1-person games, Theorem
3 does not hold. Indeed, let (N, v) ∈ Γ and ε > 0. Define the single-valued solution ρ
as follows: ρ(N, v) = L(N, v) if |N | ≥ 2, and ρ(N, v) = v(N) − ε otherwise. Then, ρ
satisfies AM, BPF, and 2-RGP, but ρ(N, v) 6= L(N, v).

Unfortunately, we do not know if 2-CON implies CS. However, if we additionally impose
IR, then we can show that at least PO is also satisfied.

Proposition 6. On the domain of convex games with at least two players, if the single-
valued solution σ satisfies IR and 2-CON, then σ satisfies PO as well.
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Proof. Let (N, v) ∈ Γ. If |N | = 1, the proof is finished by IR (and feasibility).

If |N | = 2, by the assumption |U | ≥ 3 there exists k ∈ U \ N . Let M = N ∪ {k}
and (M,w) be the game that arises from (N, v) by adding the null player k, i.e., w is
given by w(S) = v(S ∩ N) for al S ⊆ M . Note that (M,w) is still convex. Recall
that, if (N, v) is inessential, then σ(N, v) is the unique element of C(N, v) by IR. Let
x = σ(M,w), i ∈ N , and N = {i, j}. Then wM\{i},σ({j}) = v(N) − σi(N, v) and
wM\{i},σ({k}) = v({i}) − σi({i, k}, w) = 0, where the last equation follows because
({i, k}, w) is inessential. By IR and 2-CON, xj ≥ v(N) − σi(N, v) and xk ≥ 0. Let
y = σ(N, v). As y(N) ≤ v(N) and xj ≥ v(N)− yi and, analogously, xi ≥ v(N)− yj , we
have v(N) ≥ x(M) ≥ 2v(N) − y(N) + xk ≥ v(N) + xk ≥ v(N) so that all inequalities
must be equations, i.e., xi + xj = v(N) and xk = 0. Hence, x is Pareto optimal.

If |N | ≥ 3, assume that x = σ(N, v) satisfies x(N) < v(N), then, for any S ⊆ N with
|S| = 2, x(S) < vS,σ(S) = v(N)− x(N \ S), a contradiction.

Now, combining Corollary 2, Proposition 6, and Dutta’s (1990) Theorem 5.4, we get the
following characterization.

Theorem 4. The egalitarian solution L is the unique single-valued solution that satisfies
IR, AM, BPF, and 2-CON.

4.2 Characterizations without consistency

Finally, we provide two additional characterizations of the egalitarian solution L without
employing any reduced game property. In the first one, BPF and consistency are replaced
by the following property. A single valued solution σ satisfies

• Bounded richness (BR) if for all (N, v) ∈ Γ,
∑
i∈N\S σi(N, v) ≤ v(N \ S), where

S = {i ∈ N |σi(N, v) ≤ σj(N, v)∀ j ∈ N}.

Thus, BR requires that the poorest players cannot be made richer by payoff transfers
from the rest of the players unless the coalition of these richer players keeps less than
what it can guarantee by cooperation.

Theorem 5. The egalitarian solution L is the unique single-valued solution that satisfies
CS, AM, and BR.

Proof. It is well known that the egalitarian solution L satisfies CS and AM. Note that
CS implies PO. By Remark 4 it also satisfies BR. To show uniqueness, let σ be a single-
valued solution satisfying these properties. Let (N, v) ∈ Γ. Denote x = σ(N, v). By
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CS, x ∈ C(N, v). Let x∗ = L(N, v), m,S0, Sk, Nk and (N, vk) for k = 1, . . . ,m be
defined in (6) and the preceding paragraph. It remains to show that x = x∗. Let
α = min{xi | i ∈ N} and S = {i ∈ N |xi = α}. We proceed by induction on m.

If m = 1 then, by PO of x and x∗, α ≤ v(N)
|N | = x∗j for all j ∈ N . Hence, by BR and CS,

v(N \ S) = x(N \ S) = v(N) − x(S) ≥ v(N) − x∗(S) = x∗(N \ S). We conclude that
x(S) = x∗(S), S = N and x = x∗.

Induction hypothesis: σ(N, v) = L(N, v) whenever m < l for some l ∈ N, l > 1.

We now assume that m = l. Put

t = |Sm|
(
vm−1(Sm−1)
|Sm−1|

− vm(Sm)
|Sm|

)
> 0

and observe that y∗ ∈ RN defined by y∗i = max{x∗i , vm−1(Sm−1)/|Sm−1|} for all i ∈ N
is the egalitarian solution of (N, vt). Hence, by induction hypothesis, σ(N, vt) = y∗. By
AM, x ≤ y∗. By CS, Remark 4 implies xi = x∗i for all i ∈ N \Sm. By PO, α ≤ x∗i for all
i ∈ N . Hence, by BR and CS, v(N \ S) = x(N \ S) = v(N) − x(S) ≥ v(N) − x∗(S) =
x∗(N \ S) = v(N \ S). We conclude that α = min{x∗i | i ∈ N} and, hence, S = Sm and
x = x∗.

If we employ a property that is slightly stronger than BR, then even AM becomes
redundant. Indeed, a single-valued solution σ satisfies

• Strong bounded richness (SBR) if for all (N, v) ∈ Γ,
∑
i∈N\S σi(N, v) ≤ v(N \ S)

for all α ∈ R, where S = {i ∈ N |σi(N, v) < α}.

Similarly to BR, SBR requires that players who are poorer than any wealth level α each
cannot be made richer by payoff transfers from the rest of the players unless the coalition
of these richer players keeps less than what it can guarantee by cooperation.

Theorem 6. The egalitarian solution L is the unique single-valued solution that satisfies
CS and SBR.

Proof. Indeed, L satisfies CS and SBR by Remark 4. To show uniqueness, let σ be
a single-valued solution satisfying CS and SBR. Let (N, v) ∈ Γ. Denote x = σ(N, v)
and let x∗ = L(N, v), m,S0, Sk, Nk, (N, vk) for k = 1, . . . ,m be defined in (6) and
the preceding paragraph. It remains to show that x = x∗. Assume, on the contrary,
x 6= x∗. Let m be minimal such that there exists i ∈ Sm with xi < x∗i =: α. Let
S = {j ∈ N |xj < α} and T = N \ S. Hence T ⊇

⋃m−1
k=1 Sk and xj ≥ x∗j for all j ∈ T .

By SBR and CS, x(T ) = v(T ) = x∗(T ), hence xj = x∗j ≥ α for all j ∈ T . As i ∈ Sm \ T ,
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T ⊂
⋃m
k=1 Sk, hence x (

⋃m
k=1 Sk) < x∗ (

⋃m
k=1 Sk) = v (

⋃m
k=1 Sk), and a contradiction to

CS is obtained.

5 Logical independence of the properties

In this section we show that, except AM in Theorem 3 and Theorem 4, all other properties
employed in the characterization results of Section 3, Subsection 4.1, and Subsection 4.2
are logically independent of the remaining properties.

Remark 6. The following examples show that each of the properties in Theorem 1 is
logically independent of the remaining properties:

(i) The surplus-sharing rule fEQ satisfies PO, PI but not LF.

(ii) Let N ∈ N , x ∈ RN , and t ≥ 0. Denote N1 = {i ∈ N | xi ≤ xj ∀j ∈ N}. Define
f≤k (x, t) = t

|N1| if k ∈ N1 and f≤k (x, t) = 0 if k ∈ N \ N1. Then, f≤ satisfies PO
and LF but not PI.

(iii) For all N ∈ N , all x ∈ RN , and all t ≥ 0, the surplus-sharing rule f0 defined by
f0(x, t) = (0, 0, . . . , 0) satisfies PI and LF but not PO.

Remark 7. Each of the properties in Theorem 2 is logically independent of the remaining
properties, even for two-person games.

(i) For all (N, v) ∈ Γ, and all i ∈ N , the equal split solution, ED, is defined by
EDi(N, v) = v(N)/|N |. Then, ED satisfies PO, AM, and BPF but not IR.

(ii) Let ≺ be a strict total order on U and � its reflexive cover. For all (N, v) ∈ Γ and
all i ∈ N define the marginal contribution solution relative to ≺ as follows:

mc≺i (N, v) = v({j ∈ N | j � i})− v({j ∈ N | j ≺ i}).

Then, mc≺ satisfies PO, IR, and AM but not BPF.

(iii) Let i ∈ U , j ∈ U \ {i}, and ({i, j}, u) be the flat game, i.e., u(S) = 0 for all
S ⊆ {i, j}. Define σ1

i ({i, j}, ut) = 6 and σ1
j ({i, j}, ut) = t − 6 for all 10 ≤ t < 12,

and σ1(N, v) = L(N, v) for all other convex games. Then σ1 satisfies CS (hence
PO and IR) and BPF but not AM.

(iv) For all (N, v) ∈ Γ, define the single-valued solution σ2 by σ2
i (N, v) = v({i}) for all

i ∈ N . Then, σ2 satisfies IR, AM, and BPF but not PO.
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Remark 8. We do not know whether AM is logically independent of the remaining
properties in Theorem 3. Each of the two other properties is logically independent of
the remaining properties as is shown by the following examples:

(i) Let (N, v) ∈ Γ. Schmeidler’s (1969) nucleolus11 ν(N, v) is a core-selection that is
covariant under translations, hence, does not coincide with the egalitarian solu-
tion L even on convex root games. Now define the solution σ3(N, v) = ν(N, vr) +
fCE(ν(N, vr), v(N)− vr(N)). Clearly, σ3 satisfies AM. By Theorem 2, it also sat-
isfies BPF. Since σ3 6= L, it does not satisfy 2-RGP.

(ii) The marginal contribution solution defined in Remark 7 (ii) satisfies AM and 2-
RGP but not BPF.

Remark 9. We do not know whether AM is logically independent of the remaining
properties in Theorem 4. Each of the three other properties is logically independent of
the remaining properties as is shown by the following examples:

(i) The single-valued solution σ3 defined in Remark 8 (i) satisfies IR, AM, and BPF
but not 2-CON.

(ii) The single-valued solution ρ defined in Remark 5 (Subsection 4.1) satisfies AM,
BPF, and 2-RGP but not IR.

(iii) The marginal contribution solution defined in Remark 7 (ii) satisfies IR, AM, and
2-CON but not BPF.

Remark 10. The following examples show that each of the properties employed in
Theorem 5 are logically independent:

(i) The solution ED defined in Remark 7 (i) satisfies AM and BR but not CS.

(ii) Let i, j, k be pairwise distinct elements of U and define the game (N ′, u) by
N ′ = {i, j, k}, u({i}) = u({j}) = u({k}) = u({i, k}) = u({j, k}) = 0, u({i, j}) =
u({i, j, k}) = 1. Now define the single-valued solution σ4 as follows: σ4(N, v) =
L(N, v) for all (N, v) ∈ Γ with (N, v) 6= (N ′, u), and σ4

i (N ′, u) = 2/3, σ4
j (N ′, u) =

1/3, σ4
k(N ′, u) = 0. Then, σ4 satisfies CS and BR, but not AM.

(iii) The marginal contribution solution defined in Remark 7 (ii) satisfies CS and AM
but not BR.

11That is, the unique imputation that lexicographically minimizes the non-increasingly ordered vector
of excesses (v(S)− x(S))S⊆N over the set of imputations.
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Remark 11. The following examples show that each of the properties employed in
Theorem 6 are logically independent:

(i) The solution ED defined in Remark 7 (i) satisfies SBR but not CS.

(ii) The marginal contribution solution defined in Remark 7 (ii) satisfies CS but not
SBR.

6 Final remarks

The properties employed in Theorem 1 may be formulated for surplus-sharing problems
of the form (x, t), x ∈ RN , t ≥ 0, for a fixed society N of agents. Theorem 1 remains
valid on such a restricted domain of surplus-sharing problems. Similarly, the other
characterizations that do not employ consistency properties, i.e., Theorem 2, Theorem
5, and Theorem 6, may be formulated and remain valid for a fixed player set N . Only
in Theorem 3 and Theorem 4 that employ 2-RGP or 2-CON, respectively, we need to
vary the set N of players.

We have introduced fCE , the surplus-sharing rule that equalizes the agents’ welfare
should this be possible when dividing the surplus. Under welfare egalitarianism, our
analysis shows that fCE(x, t) weakly Lorenz dominates f(x, t) for any other Pareto
optimal proposal f ∈ F . In future research, it could be interesting to connect resource
and welfare egalitarianism within this context, in the line of Moreno-Ternero and Roemer
(2012). That is, to define a set of appealing properties that uniquely determine both
fEQ and fCE .
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