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ABSTRACT

This paper theoretically links the stock characteristics size and value to risks. The size

premium arises – and spans the value premium – exclusively for portfolios formed in high

market price of risk states. This is when the cross-sectional differences in risk premiums

dominate the differences in expected cash flows connecting size and risk. Otherwise, value

links better to the same risks, as it scales size by a proxy for expected cash flows. The

hypothesis that value and size are (constant) risk proxies is formally rejected in the data,

challenging the use of size-related portfolios as risk factors along with several strands of

the literature based on this hypothesis.
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I. Introduction

The size premium exists, is larger than, spans (without being spanned by), and shares

a strong factor structure with the value premium, but only for portfolios formed in high

market price of risk states. I explain why this happens and how the link between risk

and these (portfolio level) characteristics varies over time. I formally test and reject the

hypothesis of an otherwise constant link in favor of the framework that I present. This

challenges the risk adjustment proposed by Fama and French (1996) because it reveals

that the SMB and HML portfolios are not unconditional and stationary risk factors.1 This

also contradicts several strands of the literature in which any of these characteristics are

(constant) risk proxies, such as the one starting with Zhang (2005).2

The explanation builds on the seminal ideas of Berk (1995), which I briefly reca-

pitulate from a risk perspective:3 Let ζ = (ζt) be the unique stochastic discount factor

following the Brownian motion in Eq. (1), where dz1t is a one-dimensional standard Brow-

nian motion, rf is the risk-free rate, and λt is the market price of risk (both constant

until time T ). Let Di,T be an uncertain cash flow paid at time T , such that its time t

expectation, xi,t = Et[Di,T ], follows the process in Eq. (2), implying the price in Eq. (3):

dζt = −ζt[rf dt+ λt dzt], (1)

dxi,t = xi,t [0 dt+ σi,t dz1t] , (2)

=⇒ Pi,t = Et[Di,T ]e−(rf+σi,tλt)(T−t). (3)

Eq. (3) summarizes the framework in Berk (1995): If the stocks had the same expected

1According to Fama and French (1997), one of the issues with using industry portfolios for risk
adjustment purposes is precisely their non-stationary risk exposures.

2A short list with other examples includes Favilukis and Lin (2016), Piotroski and So (2012), Kapadia
(2011), Chava and Purnanandam (2010), Campbell, Hilscher, and Szilagyi (2008), Yogo (2006), Griffin
and Lemmon (2002), Gompers and Metrick (2001), or Lee, Shleifer, and Thaler (1991).

3Appendix I contains the theoretical framework in more details.
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cash flows, there would be a perfect one-to-one mapping between high risk, σi,t, and low

price, Pi,t. So the risk and the expected returns on the SMB portfolio, respectively,

σsmb,t = σsmall,t − σbig,t, (4)

µsmb,t = σsmb,tλt, (5)

would both be very large because σsmall,t >> σbig,t. But in reality the firms have different

expected cash flows, and the size ranking does not seem to separate risky and safe stocks

very well: The typical SMB portfolio has a low, often insignificant, risk premium.

The main new insight of the paper is the following: Extending the analysis in Berk

(1995) reveals that a larger market price of risk, λt, increases the risk of the SMB portfolio

(and the size premium) by strengthening the link between risk and size. For example,

with λt = 0 in Eq. (3), the cash flows of all firms are discounted at the same risk-free

rate, rf . This induces a perfect one-to-one mapping between size and expected cash flows

(instead of risks). Without a size-risk link in place, the small and the big stocks tend

to be similarly risky, σsmall,t ≈ σbig,t in Eq. (4), the SMB portfolio formed in this state

has no risk, and the expected size premium is zero. On the other hand, a large enough λt

in Eq. (3) guarantees that the prices of the risky stocks, with larger σi,t, are smaller than

the prices of the safer stocks. This creates a perfect link between risk and size. Hence,

the SMB portfolios formed in these states have the maximum risks and premiums.4

The same logic applies to the value premium: The price-to-book (PB) characteristic

of firm i is given by

Pi,t
BEi,t

=
Et[Di,T ]

BEi,t
e−(rf+σi,tλt)(T−t), (6)

where BEi,t is the firm’s book equity (BE). As in Berk (1995), assume that the BE is a

4Appendix I.A contains a more detailed explanation of this result.
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proxy for expected cash flows, Et[Di,T ] ≈ BEi,t, so that

Pi,t
BEi,t

≈ e−(rf+σi,tλt)(T−t), (7)

where the approximation depends on how well the BE proxies for expected cash flows.

If the approximation is valid, the riskier stocks (with high σi,t) should have smaller PBs

from Eq. (7), even when the market price of risk, λt, is small. This generates a risk-PB

link even if the risk premiums, σi,tλt, are not as large as the ones needed to overcome

differences in expected cash flows and establish the size-risk link in Eq. (3).5 For some

low market price of risk values, λt, the risk-PB link exists, but the risk-size link does

not. So the HML portfolio captures risks that the SMB portfolio does not, and the value

premium is larger than the size premium in these states. When the market price of risk

is high, the link between size and risk is already established. Therefore, dividing size by

BE, which is an imperfect proxy for cash flows, re-shuffles the ranking and reduces the

risk of the HML portfolio compared to the SMB portfolio. The size premium is larger

than the value premium in these states.

Finally, the value and the size premiums arise due to the same risks, as they are not

intrinsically related to different risk dimensions.6 In particular, there is no risk associated

with the BE or with the PB characteristic itself. Hence, the two premiums should be

highly correlated (and share a strong factor structure) when the market price of risk is

high. However, when the market price of risk is low, the size ranking captures no risks

and the correlation should be very low (with no factor structure).

The predictions above are exactly in line with the data. First, I show that both the

value and especially the size premiums increase with the market price of risk proxy. Next,

I confirm the remaining predictions by partitioning history into high and low market price

5See the explanation leading to Eq. (61) in the appendix for more details.
6Even in a multi-dimensional risk setting, in which σi,t is a vector of exposures to orthogonal risk

dimensions, we obtain conditions similar to Eq. (3) and Eq. (6), as detailed in Appendix I.C.
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of risk states, using a backward-looking state classification (as explained in Section II.C)

based on the significance of the size premium in each subsample.

A strict classification assigns around 10% of the sample to the high market price

of risk bin. The monthly size premium in the high and low market price of risk bins

are, respectively, 1.3% (2.73 t statistics) and 0.1% (1.07). The HML coefficients in the

spanning regressions in high and low market price of risk states are, respectively, 0.3

(4.14) and 0.03 (0.81). The unspanned returns on the SMB portfolio, after the additional

inclusion of the market premium in the regression, are 1.1% (2.55) and −0.02% (−0.21),

in the high and low market price of risk bins. The adjusted R2 values of the spanning

regressions are also substantially larger for the portfolios formed in high market price of

risk states, indicating a much stronger factor structure in these periods: 0.131 and 0.000

for the portfolios formed in high and low market price of risk states, respectively, when

I regress the SMB on the HML returns.

Relaxing the classification criteria to obtain a significant value premium in the high

market price of risk bin results in around 22% of the sample in this bin. The value

premiums are, respectively, 0.7% (2.11) and 0.3% (3.11) for the portfolios generated in

the high and low market price of risk states. Even in this extended subsample, the

value premium left unspanned by the size premium is an insignificant 0.3% (0.97) for the

portfolios formed in the high market price of risk states. Including the market premium

in the regression reduces this even further to 0.1% (0.52). Again, the factor structure is

concentrated in the high market price of risk states.7

More conclusively, the hypotheses of size and value as (constant) risk proxies are re-

jected in formal empirical tests: One hypothesis is that there are orthogonal underlying

risks constantly associated with size and value. Under this hypothesis, the slope coeffi-

7Lowering the threshold also induces a negative correlation between the size and the value premiums
in the low market price of risk subsample that is otherwise absent, but it does not create a significant
factor structure between the returns on the SMB and HML portfolios.
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cients in the spanning regressions should be zero. The slope estimates are even biased

towards zero due to measurement error. Nevertheless, the slopes are significantly positive

for the portfolios formed in high market price of risk states as explained earlier, which

clearly rejects the null hypothesis of orthogonal underlying risks.

A second hypothesis is simply that there are underlying risks constantly associated

with size and value. Under this hypothesis, the return spread between the HML and SMB

portfolios must increase with the market price of risk.8 However, the positive spread for

low market price of risk states, 0.29% (2.20 t statistics), turns negative for the portfolios

formed in high market price of risk states, −0.88% (1.39). The difference of 1.18% (1.81)

is significant against the one-sided alternative hypothesis that the spread must decrease.

As a consequence, the hypothesis of constant underlying risks is rejected in favor of the

framework that I present.

Related literature: This paper provides an explanation for the risks associated with

the size-related characteristics in general and with the SMB and HML portfolios in par-

ticular. This discussion relates primarily to Fama and French (1996) and to the large

group of theories in different strands of the literature that tentatively explain the size

and the value premiums mentioned in the first paragraph.

The paper also relates to the literature on the cross-sectional risk information con-

tained in stock characteristics. For example, Chordia, Goyal, and Shanken (2015), Davis,

Fama, and French (2000), and Daniel and Titman (1997) try to disentangle risk exposures

from characteristics at the stock level (but not at the portfolio level). Other empirical pa-

pers document characteristic-related premiums, especially the independent contribution

of each characteristic in explaining the premiums and whether the characteristic is really

8In summary, the test is based on the fact that it is always possible to represent expected returns in
terms of a single risk factor (Roll, 1977) and that the HML portfolio earns significantly higher returns
than the SMB portfolio in low market price of risk states, which implies that the SMB portfolio cannot
be always riskier than the HML portfolio.
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associated with a given risk dimension. A short list of recent contributions includes Ko-

gan and Papanikolaou (2013), Dittmar and Lundblad (2017), Ball, Gerakos, Linnainmaa,

and Nikolaev (2017), Green, Hand, and Zhang (2017), and Souza (2017).

Finally, the framework in the paper is very close to the ideas in Berk (1995), but

within a time-varying risk framework. There is a myriad of models based on different

assumptions that generate time variation in the market price of risk. Examples of these

models include Rietz (1988), Epstein and Zin (1989), Constantinides and Duffie (1996),

Campbell and Cochrane (1999), Hansen and Sargent (2001), Bansal and Yaron (2004),

Barro (2006), Piazzesi, Schneider, and Tuzel (2007), Brunnermeier (2009), Bansal, Kiku,

and Yaron (2012), Shiller (2014), and Garleanu and Panageas (2015).

II. Data description and variables

II.A. The stock returns

The return data on U.S. stocks, described in detail in Fama and French (1993), are

from Kenneth French’s data library. The monthly returns from July of 1926 to December

of 2016 correspond to the size premium (as the return on the SMB portfolio, Rsmb), the

value premium (as the return on the HML portfolio, Rhml), and the market premium (as

the difference between the return on the market portfolio and the risk free rate, Rmp).

II.B. The market price of risk proxy

The market price of risk proxy data are from Amit Goyal’s website. I use both the

Dow Jones’ book-to-market (BM) of Pontiff and Schall (1998) (DJBM, starting in 1921)

and the net equity expansion of Boudoukh, Michaely, Richardson, and Roberts (2007)

(NTIS, starting in 1927). The NTIS forecasts negative returns, so I change its sign to

give it a market price of risk interpretation, too. These variables are the only ones that
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significantly predict the one-month, one-year (and also the five-year) equity premium

in-sample during the full 1927–2013 period according to the updated results from Welch

and Goyal (2008) (Tables 1, 2, and 3).9

I decompose the two variables according to their principal components to check

whether it is possible to obtain a single market price of risk proxy, which makes the

analysis easier to digest. Table I displays the results of the principal component analysis

for the DJBM and NTIS, showing that each component is responsible for approximately

half of the total variance. Both the DJBM and the NTIS load positively on the first

component and have opposite loadings on the second component. Figure 1 plots the

time series of the DJBM, NTIS, and their components, both with a monthly and with an

annual frequency (which keeps their values fixed in each July, when the SMB and HML

portfolios are formed).

Next, I show that only the first of the two components, PC1, is a valid market price

of risk proxy that significantly forecasts the market premium in regressions of the form

Rmp(h),t+1 = βh,1PC1t + βh,2PC2t + εh,t+1, (8)

where Rmp(h),t+1 is the market premium either with a one-month, mp(h = m), or with a

one-year horizon, mp(h = y), starting from month t+ 1. Table II reports each estimated

coefficient, βh,i, corresponding to the first and second principal components in month t,

PC1t or PC2t.

Table III presents the descriptive statistics for the DJBM, NTIS, and PC1. Panel

A displays these results under the assumption that the series follow a first order AR

process. The three variables are very persistent, but the NTIS and the DJBM are mostly

uncorrelated in levels and also in innovations. Panel B shows that the three series are

stationary, which reflects the fact that they are mostly ratios that cannot increase or

9Similar results are available for a larger selection of variables upon request.
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decrease forever.

II.B.1. The market price of risk proxy on each (portfolio formation) date

Based on the results above, I consider the value of PC1 as the (single) market price

of risk proxy for each month in the rest of the analysis,

Λt = PC1t. (9)

Given that the SMB and HML portfolios are formed every July, based on the information

available at the end of June, the market price of risk proxy on the portfolio formation

date is simply the value of PC1 in the latest (beginning of) July,

Λf(t) = PC1f(t), (10)

where f(t) is the latest July before time t.

II.C. The backward-looking percentile

The conditional tests require the identification of the years in which the market price

of risk is high or low, and this is only possible in relative terms. One (forward-looking)

solution is to simply rank the years in the full sample based on the market price of risk

proxy. This ranking is time consistent, but it includes a look-ahead bias because the

changes in the variable can be unexpected.

Instead, I calculate the percentiles recursively, given the historical values of the proxies

up until each point in time. Essentially, this assumes that the changes in the variables

are unexpected. The main advantage of this process is exactly to remove any look-ahead

bias, and this is how I assign each year to a “high” or “low” market price of risk bin in
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the next sections.10

The process has three steps. The first step is to recursively find the historical mean

of each variable in year t, zt. For a series that starts in year t0,

zt =
t∑

i=t0

zi
t− t0 + 1

, (11)

where zi is the value of the variable in year i.

The second step is to calculate the difference between the value of zt and its historical

mean estimated until the previous year,

Devz,t = zt − zt−1. (12)

The final step is to calculate a percentile rank, Γz,t, based on how the time t deviation,

Devz,t, compares with all previous deviations until time t,

Γz,t =

∑t
i=t0

(
I{Devz,i<Devz,t} + 0.5I{Devz,i=Devz,t}

)
t− t0 + 1

, (13)

where I{.} is the indicator function. Intuitively, the ranking Γz,t is high when the market

price of risk proxy is large with respect to its historical (moving) average.

Fig. 2 and Fig. 3 show that the means of both the size and the value premiums

increase for portfolios formed at higher percentiles of the DJBM, NTIS (both included

for comparison), and PC1. Fig. 4 shows that the significance of the size premium for

the portfolios formed in states in which the market price of risk proxy is above certain

thresholds also tends to increase (until a certain point) with the thresholds, but Fig. 5

shows that the significance of the value premium actually tends to decrease with the

thresholds. One explanation is that the significance of the value premium decreases

10A forward-looking classification gives similar results.
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because the sample size reduces as the thresholds increase. Given that controlling for the

market price of risk is not as crucial for creating a risk-value link as it is for creating a risk-

size link, the significance of the value premium tends to simply decrease monotonically

with the reduction in the sample size even if the mean of the premium increases, as we

see in Fig. 3.

III. The empirical evidence

III.A. Size, value, and the market price of risk

The starting point of the model is that both the expected size and value premiums

vary with the market price of risk, λt, in particular on the portfolio formation date, λf(t),

in line with Eq. (5). This section shows that, empirically, the expected premiums indeed

increase with the market price of risk proxies, and this is especially true for the size

premium. The evidence relies on running predictive regressions of the form

Ri,t+1 = αi + βi,XXt + εi,t+1, (14)

where Ri,t+1 is the time t + 1 monthly return on the HML or the SMB portfolio, αi is

a constant intercept, βi,X is the constant slope on the time t value of the forecasting

variable, Xt, and εi,t+1 is the error term.

The forecasting variable is the market price of risk proxy, the first principal component

of DJBM and NTIS, PC1. It can be either its value in the latest month t, which gives

Xt = Λt, or its value on the latest portfolio formation date for the SMB/HML portfolios

in July, Xt = Λf(t). Both are explained in Section II.B.1.

The left-hand portion of Table IV shows that, in the full sample, the proxy (strongly)

predicts both the size and the value premium. Indeed, using the values on portfolio
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formation dates, Λf(t), yields even better predictions than using the most recent month,

Λt, in the full sample. This is in line with the hypothesis that the market price of risk

on the portfolio formation date is fundamental to determine the risks (and therefore the

premiums) associated with the SMB and HML portfolios. However, it is surprising to

find this evidence in the data because the PC1 is a highly persistent variable, as we see

in Table III, and does not change much within portfolio formation periods. Indeed, this

specific result is not particularly robust, as we see on the right-hand side of Table IV:

Removing the portfolio formed in 1932 from the sample also removes the evidence of

superior performance for Λf(t). Nevertheless, the market price of risk strongly forecasts

the return on the SMB portfolio in this subsample, too. This is again in line with the

hypothesis that the size premium is more sensitive to changes in the market price of risk

than the value premium.

III.B. Partitioning history into high and low market prices of risk

In summary, Table IV confirms that there is a robust positive relation between the

market price of risk and the returns on the SMB portfolio: The size premium should be

large in the subsample in which the market price of risk is high, and vice versa. Hence, it

is possible to split the data into high and low market prices of risk based on the magnitude

and significance of the size premium.

III.B.1. The size premium threshold for the market price of risk, Λ∗MSE

For the purpose of splitting the sample into two groups, assume that the size premium

is constant when the market price of risk is above or below a certain threshold, instead

of modeling it as function of the market price of risk, as in Eq. (5). This simplifies the

estimation and reflects the fact that the size premium is in fact zero when the market

price of risk is low, and positive otherwise.
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Let the (observable) threshold for the market price of risk proxy, Λ∗, be a proxy for

the actual threshold, λ∗, above which there is a link between size and risk, as explained

in the introduction. The time t expectation of the size premium one period ahead is now

Et[Rsmb,t+1] =


0 Λf(t) < Λ∗

Rsmb,h Λf(t) ≥ Λ∗
, (15)

where Λf(t) is the time t market price of risk proxy (on the portfolio formation date), Λ∗

is the threshold for this proxy, and Rsmb,h is the mean return on the SMB portfolios that

are formed in periods in which the market price of risk is above this threshold (high),

Rsmb,h =

∑T
t=1

(
Rsmb,t IΛf(t)≥Λ∗

)
∑T

t=1 IΛf(t)≥Λ∗
, (16)

where I{} is the indicator function and T is the sample size.

The mean squared error of this forecast (MSE), which is a function of the threshold,

Λ∗, is

MSE(Λ∗) =
1

T

T∑
t=1

(Et−1[Rsmb,t]−Rsmb,t)
2 , (17)

where Et−1[Rsmb,t] is given by Eq. (15). The natural choice for Λ∗ is the one that minimizes

the MSE in Eq. (17), with the additional restriction that the size premium must be

significant in the high market price of risk subsample, denoted by

Λ∗MSE ≡ arg min
Λ∗

MSE(Λ∗)

r.t. t(Rsmb,h) ≥ 2,

(18)

where t(Rsmb,h) is the t statistics of the estimated mean in Eq. (16).

Figure 6 shows the MSE associated with different percentile thresholds, Λ∗, for the

variables DJBM, NTIS (included again for comparison), and their principal component,
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PC1. The vertical dashed black lines appearing at very high percentiles for the DJBM

and for the PC1 (but not for the NTIS) indicate the MSE thresholds for each variable.

The first two columns of Panel A in Table V present the size premium estimates

conditioned on this threshold (with PC1 as the state variable). The results are in line

with the theoretical predictions: The size premium is only significant for the portfolios

formed in high market price of risk states, 1.3% per month (2.73 t statistics). The

premium is small and insignificant for the portfolios formed in low market price of risk

states, 0.1% (1.07).

III.B.2. The value premium threshold for the market price of risk, Λ∗HML

The previous threshold, Λ∗MSE, is restrictive: Only around 10% of the sample is

assigned to the high market price of risk bin. On the positive side, this offers a precise

identification of the years in which the size premium arises. The problem is that this

subsample is too small to obtain a significant value premium. Panel B in Table V shows

that the point estimates of the value premium are the same for the portfolios formed in

high or low market price of risk states in this case: 0.4%. But the t statistics are 0.59

and 4.16, respectively.

For the conditional tests comparing the joint properties of the size and the value

premiums it is possible to relax the threshold Λ∗MSE, so that the value premium is also

significant when the market price of risk is high under this new classification, Λt ≥ Λ∗HML.

The only drawback is that some years of low market price of risk are misclassified.

Let us define the equivalent to Eq. (16) for the value premium,

Rhml,h =

∑T
t=1

(
Rhml,t IΛf(t)≥Λ∗

)
∑T

t=1 IΛf(t)≥Λ∗
, (19)

where Rhml,t is the time t return on the HML portfolio and Rhml,h is the mean return on
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the HML portfolios that are formed in periods in which the market price of risk is above

this threshold. This second threshold is the highest value for the market price of risk

proxy that generates mean value and size premiums two standard errors above zero,

Λ∗HML ≡ arg max
Λ∗

= Λ∗

r.t. t(Rsmb,h) ≥ 2

t(Rhml,h) ≥ 2,

(20)

where t(Ri,h) is the t statistics of the estimated means in Eq. (16) and Eq. (19). In Figure

6, these are the vertical dashed light gray lines that appear at lower percentiles for the

DJBM and for the PC1 compared to Λ∗MSE (for the NTIS the two thresholds are the

same).

The first two columns of Panel C in Table V display a significant value premium in

both subsamples based on this threshold (for the variable PC1). The mean returns are,

respectively, 0.3% (3.11) and 0.7% (2.11) for the portfolios formed in low or high market

price of risk states according to this threshold. The lower Λ∗HML threshold increases the

proportion of years in the high market price of risk group to a little over 22%. This

corresponds to an increase of more than 125% compared to the previous classification.

III.C. Conditional spanning tests: Value is redundant when size links to

risk

Grouping high and low market price of risk periods based on Λ∗ = Λ∗HML or Λ∗ =

Λ∗MSE, allows us to test whether the premium linked to the value characteristic can be

spanned by the premium linked to the size characteristic conditioned on the states in

which the portfolios are formed. I test this by separately running, for the portfolios

formed in high market price of risk states, Λf(t) > Λ∗, or, for the portfolios formed in low
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market price of risk states, Λf(t) < Λ∗, the spanning regression:

Rhml,t = αhml + shmlRsmb,t + εhml,t, (21)

where Rhml,t is the time t return on the HML portfolio, αhml is the constant intercept,

shml is the constant coefficient on Rsmb,t, which is the time t return on the SMB portfolio,

and εhml,t is the error term. According to the model, the coefficients for these regressions

are

αhml


> 0 Λf(t) < Λ∗

= 0 Λf(t) ≥ Λ∗
and shml


= 0 Λf(t) < Λ∗

> 0 Λf(t) ≥ Λ∗
. (22)

For portfolios formed in high market price of risk states, Λf(t) ≥ Λ∗, there is no

premium associated with the value characteristic that is not also associated with the size

characteristic because there is already a size-risk link in place. This explains why αhml is

zero. In addition, the premiums related to both characteristics arise in response to the

same risks, implying a positive shml. Otherwise, for the portfolios formed in low market

price of risk states, Λf(t) < Λ∗, the size ranking captures no priced risks, so the value

premium should be completely unspanned by and uncorrelated with the size premium.

The exposure to market risk can also affect the correlation between the returns on

the size and value portfolios. Including the market premium in Eq. (21) gives

Rhml,t = αhml + βhmlRmp,t + shmlRsmb,t + εhml,t, (23)

where βhml is the constant coefficient on the market premium, Rmp,t. The predicted

coefficients are the same as those presented in Eq. (22).
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III.C.1. Results for the size premium threshold, Λ∗MSE

The estimates in Panel B in Table V, based on Λ∗MSE, strongly support the theoret-

ical predictions regarding every coefficient in Eq. (22). However, the results involving

the constant intercept, αhml, are less informative because the value premium is already

statistically insignificant in the (small) subsample in which the market price of risk is

high: 0.4%, (0.59 t statistics).

For the portfolios formed in high market price of risk states (columns ≥ Λ∗MSE), there

is a strong factor structure between the returns on the SMB and HML portfolios: The

adjusted R2 values are 0.131 and 0.335 for the formulations in Eq. (21) and Eq. (23),

respectively. On the other hand, the size premium explains almost none of the variation

in the value premium for the portfolios formed in low market price of risk states, with

adjusted R2 values of 0.000 and 0.003, respectively (columns < Λ∗MSE). The shml coeffi-

cients also reveal how the market price of risk on the portfolio formation dates influences

the risk profiles of the two portfolios: The coefficients reflecting the correlation between

the two premiums are significantly large and positive in the former case, 0.5 (4.14) and

0.3 (2.35), respectively, considering Eq. (21) and Eq. (23), compared to essentially zero

in the latter: 0.03 (0.81) and 0.004 (0.13).

III.C.2. Results for the value premium threshold, Λ∗HML

Relaxing the market price of risk threshold by using Λ∗HML < Λ∗MSE from Eq. (20)

results in a significant value premium in both high and low market price of risk subsam-

ples, as explained in Section III.B.2 and shown in the first two columns of Panel C in

Table V. The drawback is that the restrictions in Eq. (22) are less likely to hold in this

extended sample because the separation between the portfolios formed in high and low

market price of risk states is less sharp.

Nevertheless, the results in Panel C in Table V are largely in line with the theoretical
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predictions in Eq. (22). Most importantly, the size premium, alone or in conjunction

with the market premium, spans the value premium for the portfolios formed in the

high market price of risk states: The intercepts in columns 4 and 6 are, respectively,

0.3% (0.97) and 0.1% (0.52) for the spanning tests excluding or including the market

premium. Otherwise, the intercepts are significantly positive for the portfolios that are

formed in low market price of risk states.

Again, there is a strong factor structure exclusively among the returns on the SMB

and HML portfolios that are formed in high market price of risk states. The adjusted

R2 values are much lower for the portfolios formed in the low market price of risk states:

0.010 compared to 0.169 (based on Eq. (21)), and 0.009 compared to 0.310 (based on

Eq. (23)).

The only minor difference with respect to the predicted coefficients in Eq. (22) is the

negative correlation between the size and the value premiums in low market price of risk

states, given by the coefficient shml in columns 3 and 5 of Panel C, Table V. As mentioned,

these correlations translate to an almost non-existent factor structure, and they are zero

conditioned on Λ∗MSE. For the portfolios formed in high market price of risk states, the

correlation between the returns on the SMB and HML portfolios is even stronger in Panel

C (based on Λ∗HML) than in Panel B (based on Λ∗MSE): The shml coefficients in columns 4

and 6 are 0.5% (7.13) and 0.4% (4.71), not including and including the market premium

in the spanning regression, respectively.

III.D. Conditional spanning tests: Size is never redundant when it is

linked to risk

It is possible that the premium related to the size characteristic is also spanned by

the one related to the value characteristic. This can be tested with a spanning regression
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equivalent to Eq. (21)

Rsmb,t = αsmb + hsmbRhml,t + εsmb,t. (24)

Or, controlling for market risk, with coefficients equivalent to Eq. (23),

Rsmb,t = αsmb + βsmbRmp,t + hsmbRhml,t + εsmb,t. (25)

Within the same framework, the predicted coefficients are

αsmb


= 0 Λf(t) < λ∗

≥ 0 Λf(t) ≥ λ∗
and hsmb


= 0 Λf(t) < λ∗

> 0 Λf(t) ≥ λ∗
. (26)

The difference with respect to Eq. (22) is that the size premium can be unspanned

by the value premium as long as (i) the portfolios are formed in periods in which the

market price of risk is high and (ii) the BE is not a perfect proxy for expected cash flows.

The intercept, αsmb, should be strictly positive in this case. Otherwise, for the portfolios

formed in low market price of risk states, the intercept should be zero because the mean

size premium is zero.

The results in Panel A in Table V, based on Λ∗MSE, confirm the predictions in Eq. (26).

Apart from the previous analysis about the factor structure and slope coefficients, the

size premium is not spanned by the value premium when the market price of risk is high:

The intercept, αsmb, is a significant 1.2% (2.69) based on the HML return alone, and

1.1% (2.55) with the market premium included in the spanning regression. When the

market price of risk is low, the excess return on the SMB portfolio is zero. In summary,

this is consistent with the hypothesis that it is the size portion of the value characteristic

(market equity) that carries all risk information, and the BE is simply an imperfect proxy
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for expected cash flows. Hence, size is never redundant for the portfolios formed in high

market price of risk states.

III.E. Formally rejecting the (constant) risk proxy hypotheses

Although the evidence in the previous sections supports the time-varying risk frame-

work in the paper, it does not formally reject the alternative hypotheses of characteristics

as risk proxies. I construct such formal empirical tests in this section.

Assume that there are constant underlying risks related to the SMB and HML port-

folios. Let SMB∗ and HML∗, respectively, be the portfolios that perfectly mimic these

risks. In terms of the parameters in Eq. (1) and Eq. (2), the discrete time version of the

returns on these portfolios is given by, respectively,

Rsmb∗,t = σsmb∗λsmb∗ + σsmb∗εsmb∗,t, (27)

Rhml∗,t = σhml∗λhml∗ + σhml∗εhml∗,t, (28)

where λi is the average market price of risks i, σi is the exposure of portfolio i to these

risks, and εi,t is a (priced) shock on the premiums associated with these risks.

A linear regression of Rsmb∗ on Rhml∗ ,

Rsmb∗,t = α + βRhml∗,t + εt, (29)

where εt is an error term, would have slope

β =
σsmb∗

σhml∗

cov(εsmb∗,t, εhml∗,t)

Var(εhml∗,t)
, (30)
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and intercept

α = E[Rsmb∗,t]− β E[Rhml∗,t] = σsmb∗λsmb∗ − β(σhml∗λhml∗). (31)

The problem is that the portfolios SMB∗ and HML∗ are not observable, so the

coefficients in Eq. (30) and Eq. (31) cannot be directly estimated.

III.E.1. The question within a measurement error framework

Let size and value be proxies for the true underlying and unobservable risks in the

mimicking portfolios, SMB∗ and HML∗, such that the returns on the SMB and HML

portfolios contain the error terms ut and vt:

Rsmb,t = Rsmb∗,t + ut, (32)

Rhml,t = Rhml∗,t + vt. (33)

Substituting Eq. (32) and Eq. (33) in Eq. (29), gives

Rsmb,t = α + β(Rhml,t) + wt, (34)

where the error term wt = −βvt + εt + ut is correlated with Rhml,t, rendering the least

squares estimates of the coefficients inconsistent. In particular, the estimate of β (β̂) is

biased towards zero, and the estimate of α (α̂) is biased in the opposite direction.

III.E.2. Rejecting the orthogonal risk proxy hypothesis

Under the hypothesis that value and size proxy for orthogonal risks, Eq. (30) implies

that β is zero because

cov(εsmb∗,t, εhml∗,t) = 0. (35)
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The estimated β̂ from Eq. (34) is in fact biased towards zero, which adds an extra hurdle

to obtaining a significant value but implies that the null hypothesis of orthogonal risks,

H0 : β = 0, (36)

is still rejectable if the evidence is strong enough.

The alternative hypothesis is that the risk of the portfolios varies according to the

framework that I present. Within this framework, detailed in Section III.C, the SMB

portfolios formed in low market price of risk states capture no risks, and the model also

predicts that β in Eq. (34) is zero. However, the SMB and the HML portfolios formed in

high market price of risk states capture the same risks under the alternative: Conditioned

on portfolios formed in high market price of risk states, the alternative hypothesis is that

beta is larger than zero:

Ha : β ≥ 0 | λf(t) ≥ λ∗. (37)

The evidence presented in Section III.C shows that the null hypothesis in Eq. (36) is

inconsistent with the data. More specifically, the fourth column of Panel A in Table V

shows a positive β̂ (0.3, 4.14 t statistics), rejecting the null hypothesis of orthogonal

risks in favor of the alternative of positively correlated risks exclusively for the portfolios

formed in high market price of risk states.

III.E.3. Rejecting the constant risk proxy hypothesis in general

The returns on the mimicking portfolios in Eq. (27) and Eq. (28) can also be expressed

in terms of exposures to the single risk factor on the mean variance frontier that prices
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every asset in the economy (Roll, 1977), such that

λmv ≡ λsmb∗ = λhml∗ , (38)

εmv,t ≡ εsmb∗,t = εhml∗,t. (39)

Under the hypothesis that these mimicking portfolios have constant risk exposures,

Eq. (30) and Eq. (31) imply

β =
σsmb∗

σhml∗
, (40)

α = 0. (41)

The two portfolios should span each other perfectly, which is rejected by the significant

intercept in the fourth column of Panel A in Table V, for example. The problem is that

the biases in estimates β̂ and α̂ from Eq. (34) imply that this test cannot provide clean

evidence against the null hypothesis because α̂ is overestimated.

Alternatively, consider the expected return spread between the HML and SMB port-

folios, obtained from Eq. (27), Eq. (28), Eq. (32), and Eq. (33), conditioned on the market

price of risk,

E[SPt+1 | λmv,t] ≡ E[Rhml,t+1 −Rsmb,t+1 | λmv,t] = (σhml∗ − σsmb∗)λmv,t. (42)

The spread is significantly positive for the portfolios formed in low market price of risk

states if and only if σhml∗ > σsmb∗ . In this case, the spread must increase with the market

price of risk under the null hypothesis of constant risk exposures:

H0 : E[SPt+1 | λmv,t < λ∗] > 0 =⇒ E[SPt+1 | λmv,t ≥ λ∗] > E[SPt+1 | λmv,t < λ∗]. (43)

23



On the other hand, the link between size and risk arises exclusively for the portfolios

formed in high market price of risk states within the framework that I present. Under

this alternative hypothesis, the spread must be positive for the portfolios formed in low

market price of risk states, but it must decrease with the market price of risk:

Ha : E[SPt+1 | λmv,t ≥ λ∗] < E[SPt+1 | λmv,t < λ∗]. (44)

Based on the market price of risk proxy threshold, Λ∗MSE, Table VI shows that the

hypothesis of a negative spread for the low market price of risk states is strongly rejected

in the data: The mean spread for the portfolios formed in these states is 0.29% per

month (2.20 t statistics), as predicted by the model that I present. This is also consistent

with the null hypothesis in case σhml∗ > σsmb∗ and in case the spread increases with the

market price of risk. However, this second part of the null hypothesis is rejected in favor

of the alternative hypothesis of a decreasing spread: The mean spread for the portfolios

formed in high market price of risk states is −0.88% per month (1.39 t statistics), and the

difference of 1.18% (1.81 one-sided t statistics) implies rejection of the null hypothesis of

constant risk exposures.

IV. Summary

This paper changes our understanding of the value and the size premiums in several

ways. First, we learn about the existence of a very explicit, “first principles”, connection

between size and risk. This adds to Berk (1995) by showing that the size-related regu-

larities appear in the data because of our (wrong) models of risk, not because investors

do not care about risk. Second, it shows that the hypothesis of a direct link between

risk and the BE or BM characteristics of the firms, which is predicted by long strands of

the literature, such as the one following Zhang (2005), for example, is inconsistent with
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the data. Finally, the paper reveals several issues with the risk adjustment in Fama and

French (1996): A smaller problem is multicollinearity, given that the HML is redundant

in the periods in which there are risks associated with the SMB factor. A bigger problem

is that the SMB and HML factors are not constant and stationary risk proxies: The

unconditional “loadings” on these factors and their respective intercepts are not accu-

rate indicatives of risk exposures and excess returns. The time-varying risk profiles of

the SMB and HML portfolios resemble exactly those of the industry portfolios criticized

by Fama and French (1997) as being inappropriate for risk adjustments. This is also a

problem for the 25 portfolios double-sorted by size and value as test assets.
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Figure 1. The market price of risk proxies in time series from 1927 to 2016.
The panels plot the time series of the BM of the Dow Jones stocks (DJBM), (the negative
of) the net equity expansion (NTIS), and the two factors corresponding to their two
principal components, PC1 and PC2 at a monthly frequency. The values on the formation
date are for the end of June in each year (fixed for 12 months).
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Figure 2. Mean size premium for the portfolios formed in states in which
the market price of risk proxy is above certain thresholds in 1926–2016. The
panels plot 1) the unconditional mean size premium, given by the return on the SMB
portfolio, as the dashed pink horizontal line and 2) the mean size premium above different
backward-looking thresholds for the market price of risk proxies, Λ∗. The market price of
risk proxies are the BM of the Dow Jones stocks, DJBM, (the negative of) the net equity
expansion, (NTIS), and the factor corresponding to their first principal component, PC1.
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Figure 3. Mean value premium for the portfolios formed in states in which
the market price of risk proxy is above certain thresholds in 1926–2016. The
panels plot 1) the unconditional mean value premium, given by the return on the HML
portfolio, as the dashed pink horizontal line and 2) the mean size premium above different
backward-looking thresholds for the market price of risk proxies, Λ∗. The market price of
risk proxies are the BM of the Dow Jones stocks, DJBM, (the negative of) the net equity
expansion, (NTIS), and the factor corresponding to their first principal component, PC1.
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Figure 4. Significance of the size premium for the portfolios formed in states
in which the market price of risk proxy is above certain thresholds in 1926–
2016. The panels plot the t statistics of the mean size premium in Eq. (16) for 1) the
values above different backward-looking percentiles; or 2) the unconditional estimation
(horizontal dashed pink line). The market price of risk proxies are the BM of the Dow
Jones stocks, DJBM, (the negative of) the net equity expansion, (NTIS), and the factor
corresponding to their first principal component, PC1.
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Figure 5. Significance of the value premium for the portfolios formed in
states in which the market price of risk proxy is above certain thresholds
1926–2016. The panels plot the t statistics of the mean value premium in Eq. (19)
for 1) the values above different backward-looking percentiles; or 2) the unconditional
estimation (horizontal dashed pink line). The market price of risk proxies are the BM of
the Dow Jones stocks, DJBM, (the negative of) the net equity expansion, (NTIS), and
the factor corresponding to their first principal component, PC1.
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Figure 6. Conditional and unconditional mean squared errors from the pre-
diction of the size premium in 1926–2016. The panels plot the MSE in Eq. (17)
related to either 1) the forecast conditioned on different backward-looking thresholds for
the market price or risk proxies, Λ∗; or 2) the unconditional forecast (horizontal dashed
pink line). The vertical dashed black line indicates the percentile at which the MSE is
minimum given that the size premium in the high market price of risk states is signifi-
cant. The vertical dashed gray line indicates the maximum percentile at which both the
size and the value premiums are significant in the high market price of risk states (if
different from the previous point). The market price of risk proxies are the BM of the
Dow Jones stocks, DJBM, (the negative of) the net equity expansion, (NTIS), and the
factor corresponding to their first principal component, PC1.
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Table I Results of Principal Component Analysis for monthly values of the DJBM
and the NTIS from December 1926 to December 2016. The variables are the BM of
the Dow Jones stocks, DJBM, and the negative of the net equity expansion, NTIS. The analysis
uses the sample correlation matrix.

PCA – Eigenvectors

Variable Comp. 1 Comp. 2

NTIS 0.71 0.71
DJBM 0.71 -0.71

PCA – Eigenvalues

Component Eigenvalue Difference Proportion

Comp. 1 1.03 0.07 0.52
Comp. 2 0.97 0.48
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Table II Monthly predictive regressions of the market premium based on the two
principal components of the DJBM and the NTIS, PC1 and PC2, between July 1926
and December 2016. The regressions are of the form RMP (h),t+1 = βh,1PC1t + βh,2PC2t +
εh,t+1, where RMP (h),t+1 is the market premium either with a one-month, MP (h = m), or with
a one-year horizon, MP (h = y), starting from month t + 1. The table reports each estimated
coefficient βh,i corresponding to the first and second principal components in month t, PC1t or
PC2t.

MP(m) MP(y)

PC1 0.6∗∗∗ 7.9∗∗∗

(3.72) (4.23)

PC2 0.04 0.2
(0.23) (0.11)

Constant 0.6∗∗∗ 7.7∗∗∗

(3.98) (4.69)

Observations 1080 1069
Adjusted R2 0.011

t statistics in parentheses

Newey-West t-stat. (12 lags) for MP(y)
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table III Descriptive statistics and unit root tests for the market price of risk
proxies in 1926–2016. Panel A displays the mean, standard error, first order autocorrelation,
and correlations at a monthly frequency of the variables. The lower diagonal corresponds to the
levels of the variables and the upper diagonal corresponds to the respective AR(1) innovations.
Panel B shows the Dickey-Fuller test for unit roots, with no lags. The variables are the BM
of the Dow Jones stocks, DJBM, (the negative of) the net equity expansion, (NTIS), and the
factor corresponding to their first principal component, PC1.

Panel A: AR(1)

Mean SE AC(1) (NTIS) DJBM PC1

(NTIS) -0.02 0.01 0.98 . 0.03 0.77
DJBM 0.56 0.14 0.98 0.08 . 0.66
PC1 -0.05 0.34 0.98 0.73 0.74 .

Panel B: Dickey-Fuller tests for unit root

Interpolated Dickey-Fuller

Test statistic 1% critical 5% critical 10% critical Obs.

PC1 Z(t) -3.13 -3.43 -2.86 -2.57 1080

MacKinnon approximate p-value for Z(t) = 0.025

DJBM Z(t) -2.73 -3.43 -2.86 -2.57 1085

MacKinnon approximate p-value for Z(t) = 0.069

NTIS Z(t) -3.15 -3.43 -2.86 -2.57 1080

MacKinnon approximate p-value for Z(t) = 0.023

34



Table IV Monthly bivariate predictive regressions of the size and value premiums
based on the value of the first principal component of the DJBM and NTIS either
in the previous month or on the portfolio formation date. The sample is from July 1926
until December 2016. The “Full sample” in the left panel includes the period between July/1932
and June/1933, the 1932 portfolio formation period. The “Ex-1932 formation” subsample, on
the right-hand panel, excludes this period. The panels display the estimated βi,X , the slope of
the predictive regressions of the Ri,t+1 = αi + βi,XXt + εi,t+1,, where Ri,t+1 is the time t + 1
monthly return on the HML or the SMB portfolios. For Xt = Λt, the slope corresponds to the
value of the proxy in month t. For Xt = Λf(t), the slope corresponds to the value of the proxy
on the portfolio formation date to which month t belongs. The number of observations is the
number of months in each subsample.

Full sample Ex-1932 formation

SMB SMB HML HML SMB SMB HML HML

Λt 0.37∗∗∗ 0.39∗∗∗ 0.31∗∗ 0.090
(3.86) (3.77) (3.25) (0.93)

Λf(t) 0.42∗∗∗ 0.38∗∗∗ 0.30∗∗ 0.096
(4.69) (3.87) (3.02) (0.94)

Constant 0.22∗ 0.21∗ 0.40∗∗∗ 0.38∗∗∗ 0.18∗ 0.18∗ 0.34∗∗∗ 0.33∗∗∗

(2.24) (2.13) (3.78) (3.61) (2.03) (2.03) (3.63) (3.55)

Observations 1080 1074 1080 1074 1068 1062 1068 1062
Adjusted R2 0.013 0.019 0.012 0.013 0.009 0.008 -0.000 -0.000

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table V The size related premiums and spanning tests in 1926-2016, conditioned on the market price of
risk. In each panel, the first two columns display the mean of the premiums as the constant, αi, in regressions of the form
Ri,t = αi+εi,t, where Ri,t is either the return on the SMB or HML portfolios depending on the panel. The next two columns
display the coefficients from the spanning regressions of premium i on premium j, as in Ri,t = αi +βjRj,t +εi,t, where Rj,t

is the return on the HML portfolio when Ri,t is the return on the SMB portfolio, and vice versa. The final two columns add
the market premium as an explanatory variable in the spanning regressions above, as in Ri,t = αi+βjRj,t+βMPRmp,t+εi,t.
The estimates are conditioned on the market price of risk on the portfolio formation date being low (Λf(t) < Λ∗) or high
(Λf(t) ≥ Λ∗) according to the first principal component between the DJBM and the NTIS, PC1. In panels A and B, the
threshold is the one that minimizes the MSE of the prediction of the size premium, Λ∗ = Λ∗

MSE . In Panel C, the threshold
is relaxed just enough to obtain a significant value premium in the high market price of risk subsample, Λ∗ = Λ∗

HML.
“Observations” is the number of months in each subsample.

Panel A: The size premium and span tests conditioned on Λ∗MSE

SMB SMB SMB SMB SMB SMB
< Λ∗MSE ≥ Λ∗MSE < Λ∗MSE ≥ Λ∗MSE < Λ∗MSE ≥ Λ∗MSE

HML 0.03 0.3∗∗∗ 0.004 0.2∗

(0.81) (4.14) (0.13) (2.35)

MP 0.2∗∗∗ 0.1∗

(10.08) (2.01)

Constant 0.1 1.3∗∗ 0.09 1.2∗∗ -0.02 1.1∗

(1.07) (2.73) (0.95) (2.69) (-0.21) (2.55)

Observations 966 108 966 108 966 108
Adjusted R2 0.000 0.000 -0.000 0.131 0.094 0.155

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel B: The value premium and span tests conditioned on Λ∗MSE

HML HML HML HML HML HML
< Λ∗MSE ≥ Λ∗MSE < Λ∗MSE ≥ Λ∗MSE < Λ∗MSE ≥ Λ∗MSE

SMB 0.03 0.5∗∗∗ 0.004 0.3∗

(0.81) (4.14) (0.13) (2.35)

MP 0.04∗ 0.3∗∗∗

(2.07) (5.79)

Constant 0.4∗∗∗ 0.4 0.4∗∗∗ -0.3 0.4∗∗∗ -0.3
(4.16) (0.59) (4.13) (-0.45) (3.85) (-0.55)

Observations 966 108 966 108 966 108
Adjusted R2 0.000 0.000 -0.000 0.131 0.003 0.335

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Panel C: The value premium and span tests conditioned on Λ∗HML

HML HML HML HML HML HML
< Λ∗HML ≥ Λ∗HML < Λ∗HML ≥ Λ∗HML < Λ∗HML ≥ Λ∗HML

SMB -0.10∗∗ 0.5∗∗∗ -0.1∗∗ 0.4∗∗∗

(-2.99) (7.13) (-3.11) (4.71)

MP 0.02 0.3∗∗∗

(0.86) (7.13)

Constant 0.3∗∗ 0.7∗ 0.3∗∗ 0.3 0.3∗∗ 0.1
(3.11) (2.11) (3.18) (0.97) (3.07) (0.52)

Observations 828 246 828 246 828 246
Adjusted R2 0.000 0.000 0.010 0.169 0.009 0.310

t statistics in parentheses
∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table VI Spreads between the value and the size premiums in 1926–2016
conditioned on the market price of risk. The first two rows display the mean spreads
and t statistics between the value and the size premiums, based on SPt = Rhml,t−Rsmb,t,
calculated exclusively for portfolios formed in low, Λf(t) < Λ∗MSE, or high market price of
risk states, Λf(t) ≥ Λ∗MSE. The third row displays the (combined) unconditional estimates,
and the last row shows the difference in the mean spreads for portfolios formed in low
and high market price of risk states, ∆SP = Mean(SP<Λ∗

MSE
) −Mean(SP≥Λ∗

MSE
). The

t test with unequal variances – in brackets – based on H0 : ∆SP ≤ 0 and Ha : ∆SP > 0
gives the significance of the estimation (equal variances in parentheses). “Obs.” is the
number of months in each subsample and ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001.

Mean Obs.

SP<Λ∗
MSE

0.29∗ 966
(2.20)

SP≥Λ∗
MSE

-0.88 108
(-1.39)

Combined 0.18 1074
(1.29)

∆SP 1.18∗

(2.60)
[1.81]
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Appendix I. Extended theoretical framework

I start by constructing a theoretical framework in which the most restrictive assump-

tion is the one of a time-varying market price of risk.11 Let ζ = (ζt) be the unique

stochastic discount factor (SDF) that follows the continuous-time stochastic process

dζt = −ζt[rft dt+ λt dz1t], (45)

where dz1t is a one-dimensional standard Brownian motion and the stochastic processes,

rft and λt, are the risk free rate and the market price of risk, respectively.

Let Pi = (Pit) be the price process of portfolio i, such that

dPit = Pit[µit dt+ σit dz1t + σ̃>it dzt], (46)

where µit and σit are one-dimensional stochastic processes, dzt is a multi-dimensional

standard Brownian motion independent of dz1t, σ̃it is a multi-dimensional stochastic

process, and > is the transposition sign. µit and σit represent, respectively, the expected

returns and the sensitivity of the returns on the portfolio to the exogenous (priced) shocks

to the economy. So σit gives the effective risk of the portfolio. σ̃it represents the unpriced

return volatility of the portfolio (the sensitivity of the returns on the portfolio to the

exogenous unpriced shocks). Without intermediate dividends, the expected excess rate

of return on the portfolio is

µit − rft = σitλt. (47)

So the overall market price of risk, λt, and the risk of the portfolio, σit, combined

11There is a myriad of models based on different assumptions that generate time variation in the market
price of risk. Examples of these models include Rietz (1988), Epstein and Zin (1989), Constantinides and
Duffie (1996), Campbell and Cochrane (1999), Hansen and Sargent (2001), Bansal and Yaron (2004),
Barro (2006), Piazzesi et al. (2007), Brunnermeier (2009), Bansal et al. (2012), Shiller (2014), and
Garleanu and Panageas (2015).
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determine the time t expected return on the portfolio.

Pricing a future uncertain cash flow: For tractability, assume that the risk-free

rate and the market price of risk are constant between time t and time T . So the SDF

follows a one-dimensional geometric Brownian motion process,

dζt = −ζt[rf dt+ λt dzt], (48)

where (the now constants) λt and rf are, respectively, the market price of risk and the

risk free rate prevailing from time t to time T .

As in Eq. (46), let Pi = (Pit) be the price process of the equity in the firm i. The

firm makes only a final uncertain lump sum dividend payment, Di,T , at time T , which is

modeled through xi,t = Et[Di,T ] following the process

dxi,t = xi,t
[
0 dt+ σit dz1t + σ̃>

it
dzt]

]
, (49)

where σit is a (one-dimensional) constant and σ̃it is a vector of constants. Under these

conditions, the time t value of the payoff, Di,T , is

Pit = Et

[
Di,T

ζT
ζt

]
= Et[Di,T ]e−(rf+σitλt)(T−t), (50)

which depends positively on the expected payoff, Et[Di,T ], and negatively on the risk of

the payoff, σit, and on the market price of risk, λt, (apart from the risk free rate, rf , and

the time interval, T − t).

The SMB portfolio’s risk: Eq. (47) and Eq. (50) taken together summarize the

static framework in Berk (1995): Given two firms with the same expected cash flows, the

riskiest one (with the largest σit) has the lowest market value, Pit, given by Eq. (50) and
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the highest market premium, given by Eq. (47). This connects the price ranking, based

on Pit, to the risk ranking, based on σit. However, the price ranking does not reflect the

risk ranking perfectly because the prices also depend on the expected cash flows, Et[Di,T ]

in Eq. (50).

The role of the market price of risk: The SMB portfolio is long on the stocks with

ME below its median and short on the others. In terms of Eq. (47), we have that

σsmb,t = σsmall,t − σbig,t, (51)

µsmb,t = σsmb,tλt, (52)

where σsmall,t and σbig,t are, respectively, the risks of the portfolios of small stocks and big

stocks, corresponding to σit in Eq. (46), and µsmb,t is the time t expected return on the

SMB portfolio. Given a positive market price of risk, the expected size premium can only

be positive when the small stocks are riskier than the big stocks, so that σsmall,t−σbig,t > 0.

For example, if the market price of risk is zero then the expected cash flows of all

firms are discounted at the risk free rate in Eq. (50). The ME ranking is exactly the

same as the expected cash flows’ ranking. Under the assumption that there is no relation

between the expected cash flow amount and its risk (as suggested by Berk, 1996),

σit ⊥⊥ E[CFiT ], (53)

the distribution of risks among the two portfolios formed by size in this market price of

risk state is equal. So the size premium is zero.

As the market price of risk increases, the expected cash flows of all firms are discounted

at a higher rate, and all prices fall. However, the prices of the riskier stocks fall relatively

more, and they become over-represented in the small stocks group. This generates the
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size premium in these states only. Hence, the first rejectable prediction of the model

is:

Hypothesis 1 (H1): The size premium is positive if and only if the market price of risk is

above a certain threshold, λt ≥ λ∗, being zero otherwise.

In terms of Eq. (51) and Eq. (52), we can express this hypothesis as

σsmb,t =


0 λt < λ∗

f(λt) > 0 λt ≥ λ∗
=⇒ µsmb,t =


0 λt < λ∗

f(λt)λt > 0 λt ≥ λ∗
(54)

where f(λt) is a non decreasing function of the market price of risk, λt.

Appendix I.A. The determinants of the market price of risk threshold, λ∗

Consider a pair of stocks in which the cash flows of firm r are riskier, with volatility

term σrt, and the cash flows of firm s are less risky, with volatility term σst, such that

σrt > σst. (55)

The price and the risk rankings align for these stocks if and only if the price of the

riskier stock is smaller than the price of the safer stock, Pr,t < Ps,t. In terms of the

parameters in Eq. (50), we obtain

Pr,t < Ps,t ⇐⇒ λt > ln

(
Et[Dr,T ]

Et[Ds,T ]

)
1

(σrt − σst) (T − t)
≡ λ∗rs, (56)

where λ∗rs is the market price of risk threshold specific to this pair of stocks.

I will loosely use the term “statistically aligned” for a market price of risk threshold,

λ∗, that is large enough so that Eq. (56) holds for several pairs of stocks, (r, s), and the

size premium is statistically significant. This is not a strict definition because λ∗ changes
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with the sample size and other characteristics of the stocks.12 But in general, λ∗ is smaller

and the size ranking is more likely to be statistically aligned with the risk ranking when:

1. The cash flows are received at a more distant point into the future, so they have

higher “duration”, corresponding to larger (T − t).

2. There is more dispersion in the distribution of risks among the firms, which corre-

sponds to larger risk differences, σrt − σst.

3. There is less dispersion in the expected cash flows among the firms, which cor-

responds to lower cross-sectional variance of the (log of the) expected cash flows

among the firms, Var(ln Et[Di,T ]), so the ratio of expected cash flows among two

random firms is close to one.

Appendix I.B. The HML portolio’s risk (and other scaled-price rankings)

Consider the same pair of stocks, r and s, but now ranked by a scaled-price ratio.

Without loss of generality, condider the BE as the scaling variable. This creates the

price-to-book (PB) ratio that generates the HML portfolio.13 The value and the risk

rankings are aligned if and only if the PB of the risky stock is smaller than the PB of the

safe stock,

Pr,t
Br,t

<
Ps,t
Bs,t

, (57)

where Bi,t (the time t BE of firm i in this case) divides the market value calculated in

Eq. (50) for each stock. In terms of the parameters in Eq. (56),

Pr,t
Br,t

<
Ps,t
Bs,t

⇐⇒ λt > ln

(
Et[Dr,T ]

Et[Ds,T ]

Bs,t

Br,t

)
1

(σrt − σst) (T − t)
≡ λ∗PB,rs, (58)

12Indeed, this only makes sense in finite samples. Asymptotically, if the time series is infinite, the size
premium is significant if there is any (persistent) imbalance between the risks of small and big stocks

13The conclusions are similar for other scaling variables, such as dividends, earnings, or cash flows.
This is expected because the value premium spans several other premiums associated with scaled-price
ratios, as shown in Fama and French (1996).
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which is smaller than the threshold necessary to align the price and the risk rankings,

λ∗PB,rs < λ∗rs, in two cases:

1. If the BE of the risky stocks is larger than the BE of the safer stocks, Br > Bs, the

term inside the log term is closer to 1 and the threshold, λ∗PB,rs, is closer to zero.

2. If the BE is a proxy for expected cash flows, for example, in the limit with Bi,t =

Et[Di,T ], the term inside the log term is 1 so that λt > λ∗PB,rs = 0.

I model the BE as a proxy for expected cash flows, which is both in line with the

evidence in Ball et al. (2017) and with the theoretical framework in Berk (1995). On

the other hand, alternative 1 implies that the BE characteristic is positively related to

the risk of the stocks. It also implies that the BE ranking aligns with the risk ranking

(unconditionally): There should be a “BE premium” (similar to the size premium), which

we do not observe in the data.

The BE as a proxy for expected cash flows: Let us assume that the BE is a good

proxy for the expected cash flows of at least one pair of firms, i = {r, s}, in the universe

of all firms, I:

∃ i ∈ I | Et[Di,T ] ≈ BEi,t ≡ Bi,t. (59)

If the risker firm in this pair has larger expected cash flows, there is a range for the

market price of risk in which the value ranking aligns with the risk ranking while the

price ranking does not,

∃ (r, s) ∈ I | λ∗rs > λt > λ∗PB,rs. (60)

Depending on how well the BE proxies for the expected cash flows, the threshold in

Eq. (58) can even be zero, λ∗PB,rs = 0.

If Eq. (59) holds for several pairs of stocks, then a large portfolio of value stocks (with

low PB) should contain a disproportional number of risky stocks, so σvalue,t > σgrowth,t
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equivalent to Eq. (51), even if the prevailing market price of risk is lower than the one

necessary to generate the size premium. The equivalent to Eq. (54) (with λ∗PB < λ∗) is

σhml,t =


f(λt) > 0 λt < λ∗

f(λt) > 0 λt ≥ λ∗
=⇒ µhml,t =


f(λt)λt > 0 λt < λ∗

f(λt)λt > 0 λt ≥ λ∗
, (61)

which is the mathematical representation of the second testable prediction of the model:

Hypothesis 2 (H2): Given that the BE is a proxy for expected cash flows: The value

premium increases with the market price of risk, being small, but still positive, even if

the market price of risk is lower than the threshold below which the size premium is zero,

λt ≤ λ∗.

The relative magnitudes of the size and the value premiums: On the other hand,

scaling by the BE can also work in the direction of randomizing the ranking and breaking

the alignment with the risk ranking. Intuitively, any adjustment remotely related to the

expected cash flows helps if the market price of risk is low because the price ranking is

mostly unrelated to risk in this case. But a less than perfect adjustment to the price

ranking should disturb the alignment with the risk ranking in case this alignment was

already good. The proportion of risky firms in the portfolio of small stocks is high if the

market price of risk is large. Hence, reshuffling the ranking by some variable that is only

an imperfect proxy for expected cash flows is likely to make the distribution of risk more

uniform among the (value) portfolios and reduce the (value) premium.
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Appendix I.C. The PB characteristic could be related to a risk orthogonal

to size

In a multidimensional setting, the SDF in Eq. (45) becomes

dζt = −ζt[rft dt+ λ>t dz1t], (62)

where dz1t is a multi-dimensional standard Brownian motion and λt is the multi-dimensional

stochastic process representing the time t market price of risk associated with each risk

source. We also adjust the price process in Eq. (46) to

dPit = Pit[µit dt+ σ>it , dz1t + σ̃>it dzt], (63)

where σit is now a multi-dimensional stochastic process, and dzt is independent of dz1t.

The multi-dimensional equivalent to the expected excess rate of return in Eq. (47) is now

µit − rft = σ>itλt, (64)

and the equivalents of Eq. (52) are

µsmb,t = σ>smb,tλt, (65)

µhml,t = σ>hml,tλt, (66)

where λt is the multi-dimensional market price of risk process, and σsmb,t and σhml,t are

the multi-dimensional stochastic sensitivities of the returns on the SMB and on the HML

portfolios to the (independent) exogenous priced shocks to the economy, respectively.

The main difference from the one-dimensional formulation is that with a single risk

source the premiums on small and value stocks (and indeed all risk premiums) must be
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perfectly correlated given that there is only one priced risk in the economy.

Let the kth element in σsmb,t be equal to zero while being different from zero in

σhml,t. This means that the PB ranking captures this risk, but the price ranking does

not. Consequently, it is impossible to find a constant, a, that multiplied by the risk of

the SMB portfolio, σsmb,t, gives the risk of the HML portfolio, σhml,t:

@ a ∈ R | σhml,t = aσsmb,t. (67)

And therefore, it is also (usually) impossible to represent the expected return on the HML

portfolio as a multiple of the expected return on the SMB portfolio:14

@ a ∈ R | µhml,t = aσ>smb,tλt = aµsmb,t. (68)

If the PB is really related to this particular risk, then Eq. (68) should always hold. In

particular, it should hold regardless of the prevailing market price of risk when the (PB)

portfolios are formed, λf,t.

The alternative is that the BE is a proxy for expected cash flows. In this case, Eq. (68)

still holds when the market price of risk is low because the size and the risk rankings are

not aligned in these states anyway, as given by Eq. (54). However, the two portfolios

reflect similar risks when the market price of risk is high, λf,t > λ∗, and therefore the

constant, a, in Eq. (54) could exist.15 Testing this hypothesis is equivalent to testing

whether such a constant, a, exists depending on the market price of risk on the portfolio

formation date, λf,t:

Hypothesis 3 (H3): Given that the BE is a proxy for expected cash flows, and the PB

characteristic is not related to risks that are orthogonal to size: The value premium can

14Except for very particular combinations of σsmb,t and λt.
15In fact, the constant a only exists in general if the size and the value rankings have the same relative

exposures to the different priced shocks to the economy. So this is a restrictive test.
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be a multiple of (be spanned by) the size premium, µhml,t = aµsmb,t, if and only if the

market price of risk is high, λt > λ∗.
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