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Abstract

The Steiner traveling salesman problem (STSP) is the problem of finding

a minimum cost tour for a salesman that must visit a set of locations while

traveling along costly streets before returning to his starting point at the depot.

A solution to the problem is a minimum cost tour that both starts and ends at

the depot and visits all the required locations. If different players are associated

with the destinations to be visited, the STSP induces a cooperative traveling

salesman (TS) game that poses the question of how to allocate the total cost of

the tour between the different players involved. This cost allocation problem can

be tackled using tools and solutions from cooperative games.

The purpose of this paper is to generalise the notion of a traveling salesman

(TS) game to allow for multiple depots in the underlying STSP and to analyse

the submodularity of such multi-depot TS games. A multi-depot STSP can be

represented by a connected (di)graph in which a fixed set of nodes are denoted

depots, and a non-negative weight function is defined on the edges of the graph.

The submodularity of multi-depot TS games is analysed by characterising graphs

and digraphs that induce submodular multi-depot TS games for any position of

the depots and for at least one position of the depots, respectively.
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1 Introduction

The Steiner traveling salesman problem (STSP) is a routing problem studied in the

operations research literature.1 In its most simple form it models the situation in

which a salesman affiliated with a fixed depot (warehouse) has to visit a number of

locations before returning to the warehouse. There is a cost associated with traveling

along the roads that connect the locations, and a solution to the problem is a minimum

cost tour that visits the required locations while starting and ending at the depot. This

basic model has been extended in a number of directions, for example by allowing for

multiple salesmen, multiple warehouses, and by adding restrictions on visiting times as

well as capacity.

The STSP can be represented by a graph in which a fixed vertex is denoted the

depot, and a weight function is defined on the edges. If the vertices to be visited are

associated with different players, the STSP induces a cooperative cost allocation game

denoted a traveling salesman game (Potters et al., 1992) in which the cost of a coalition

of players is the cost of a minimum weight tour that visits all players in the coalition.

Once the cooperative game is defined, tools and solution concepts from cooperative

game theory can be applied to analyze and solve the cost allocation problem.

The purpose of this paper is to extend the notion of a traveling salesman game to

allow for multiple depots in the underlying STSP and to consider the submodularity of

such multi-depot TS games. The multi-depot setup considered here may be interpreted

as a situation in which several depots exist, each with their own salesman/vehicle of

unlimited capacity, such that an optimal tour may be a collection of subtours each

originating from a different depot and returning to it’s point of origin.

The focus on submodularity is motivated by the desirable properties of submodular

games. For one thing, submodular games are totally balanced, implying that the core of

every subgame is non-empty. The Shapley value is in the core of and is the barycenter of

the core, Shapley (1971). Furthermore, several solution concepts coincide (the nucleolus

and the kernel, the bargaining set and the core, Maschler et al. (1971), and others can

be more easily computed for this class of games than is generally the case.

In the following, a multi-depot TS problem with k depots will be denoted a k-depot

TS problem. Furthermore, a graph G is said to be globally (locally) k-TS submodular

1The Steiner traveling salesman problem generalizes the traditional traveling salesman problem by
allowing multiple visits to the same vertices and by allowing the set of nodes to be visited to be only
a subset of the nodes of the graph.
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if the game induced by a k-TS problem on G is submodular for every (some) location

of the k depots and for every weight function. This paper characterizes the classes of

globally and locally k-TS submodular graphs and digraphs, respectively.

For the standard case with just one depot in the underlying STSP, Herer and Penn

(1995) provided a characterization of the undirected graphs that induce submodular

traveling salesman games. This result was extended to the directed case in Granot

et al. (2000). The games analyzed in these papers, can be seen as special cases of the

multi-depot TS game for which k = 1. In a related string of research, Granot et al.

(1999) characterized for the case of Chinese postman games both CP-balanced and CP-

submodular graphs. In Granot and Hamers (2004), the authors distinguished between

global and local requirements and characterized the class of locally CP-submodular

graphs as well as locally TS-submodular graphs. The approach of analyzing both global

and local requirements is followed in the present paper. Another related paper is Platz

and Hamers (2015) that introduce multi-depot Chinese postman games and characterize

the classes of (globally and locally) k-CP balanced and k-CP submodular graphs. The

modelling of the multi-depot TS game in the present paper follows a similar approach,

but due to the different combinatorial nature of the two problems, the results and proofs

differ.

The results of this paper show that an undirected graph G is globally k-TS sub-

modular for k ∈ {2, ..., |V (G)|−3} if and only if G does not contain a path of 5 vertices

or more. Likewise, directed graphs are globally k-TS submodular only if they do not

contain specific forbidden structures. For both undirected and directed graphs, the

class of globally k-TS submodular graphs are a proper subset of the class of locally

k-TS subodular graphs.

In analyzing properties of games by characterizing classes of graphs that induce

games with nice properties, I follow an established line of literature on cooperative

games arising from underlying optimization problems. A few examples of such classes

of games are minimum cost spanning tree games (Granot and Huberman, 1981), se-

quencing games (Curiel et al., 1994), Chinese postman games (Hamers et al., 1999),

and minimum colouring games (Deng et al., 2000). An overview can be found in Curiel

(2010).

The paper is structured as follows. Section 2 presents some useful terms and nota-

tion. In section 3, multi-depot traveling salesman games are introduced. Results are

presented in sections 4 and 5 for undirected and directed graphs respectively.

3



2 Preliminaries

From cooperative games, we recall the following definitions: In a cooperative (cost)

game (N, c), N = {1, . . . , n} denotes the finite playerset, and c : 2N → R is a function

that assigns to every coalition S ⊆ N a cost c(S), with c(∅) = 0. Let x ∈ RN be an

allocation of c(N) between the players. A game (N, c) is monotonic if c(S) ≤ c(T ) for

all S ⊂ T ⊆ N , and it is subadditive if c(S ∪ T ) ≤ c(S) + c(T ) for all S, T ⊆ N with

S ∩ T = ∅. The core of a game (N, c) is given by

core(N, c) = {x ∈ RN |
∑
i∈N

xi = c(N),
∑
i∈S

xi ≤ c(S) for all S ⊆ N}.

The game (N, c) is submodular if

c(T ∪ {i})− c(T ) ≤ c(S ∪ {i})− c(S) (2.1)

for all i ∈ N and all S ⊂ T ⊆ N \ {i}.
Next, we recall some notions from graph theory. An undirected (directed) graph

G = (V (G), E(G)) consist of a non-empty, finite set of vertices V (G) and a set of pairs

of vertices E(G) called edges (arcs). An edge {a, b} in an undirected graph and an arc

(a, b) in a directed graph join the vertices a, b and are said to be incident to a and b.

The vertices a and b are adjacent. The degree of a vertex a is equal to the number of

edges incident to a. An arc (a, b) is directed from a to b and can only be traversed in

this direction. A subdivision of a graph G is the graph G′ that arising by (repeatedly)

replacing an edge (arc) in G with a path of length two. A (directed) walk, w, in a graph

G is a sequence of vertices and edges (arcs) on the form: v0, e1, v1, . . . , vm−1, em, vm,

where v0, . . . , vm ∈ V (G), e1, . . . , em ∈ E(G), and m ≥ 0 such that ej = {vi−1, vj} for

all i ∈ {1, . . .m}. If v0 = vm, the walk is said to be closed. A closed walk may be empty,

w = {v0}. A (directed) path is a (directed) walk in which no edge (arc) or vertex is

visited more than once, except v0 in the case of v0 = vm. If there exists an undirected

(directed) path between any to vertices in a (directed) graph G, then G is a (strongly)

connected graph. A closed (directed) walk in which no edge is visited more than once

will be denoted a directed circuit, while a (directed) cycle denotes a closed (directed)

path, that is a (directed) walk in which no edge (arc) or vertex is visited more than

once.

Let G be a graph, and let vs and vt be two vertices in G. Then an s - t vertex cut
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is a set of vertices such that removing these vertices along with the edge (vs, vt), if it

exists, results in a disconnected graph in which vs and vt do not belong to the same

component. A minimal s - t vertex cut, K, is an s - t vertex cut such that no proper

subset of K is an s - t vertex cut.

3 Multi-depot traveling salesman games

Let G = ((V (G), E(G)) be a (strongly) connected (di)graph, and let Q ⊂ V (G) be a

fixed subset of the vertices of G. An element of Q is called a depot. A multi-depot

(Steiner) traveling salesman problem Γ is given by the tuple Γ = {V −(G), (G,Q), t} in

which V −(G) = V (G) \Q denotes the set of vertices in G that are not associated with

depots, and t : E(G)→ [0 :∞) is a weight function defined on the edges (arcs) of G.

Let w = (v0, e1, v1, . . . , em, vm) denote a walk in G. The cost of w equals the sum of

the weights of the edges visited, that is cost(w) =
∑m

i=1 t(ei). A closed walk that starts

and ends at a vertex v ∈ Q is denoted wv. A closed walk wv = {v} is said to be empty,

and the cost of an empty walk is 0.

Let G be a (strongly) connected (di)graph, and let Γ = {V −(G), (G,Q), t} be a

multi-depot STSP defined on G. Next, let S ⊆ V −(G) be a subset of the non-depot

vertices of G. Then for a given Q = {v1, . . . , vk}, an S-tour d(S) is a collection of closed

walks d(S) = {wv1 , . . . , wvk} (some of which may be empty) such that every node in

S is visited. The set of all S-tours is denoted D(S). The notion of an S-tour can be

illustrated using Figure 1. In Figure 1, depots are located at vertices v0 and v2, while

v1 and v3 are associated with players. Two possible S-tours for S = {v1, v3} are then

v2, e2, v1, e2, v2, e3, v3, e3, v2 and the tour consisting of the two subtours v0, e1, v1, e1, v0

and v2, e3, v3, e3, v2.

Figure 1: S-tours in a multi-depot setting

v0 v1 v2 v3
u e u ee1 e2 e3

When depots are located at the vertices of Q, the cost of an S-tour d(S) = {wv1 , . . . , wvk}
is equal to:

CQ(d(S)) =
k∑

i=1

cost(wvi)
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Now, the multi-depot TS game induced by a multi-depot STSP can be defined

as follows. Let G = (V (G), E(G) be a (strongly) connected (directed) graph and let

Γ = {V −(G), (G,Q), t} be a multi-depot STSP defined on G. Then (N, cQ) is the

induced multi-depot TS game in which N = V −(G) is the set of players, and cQ(S) is,

for any S ⊆ N , the cost of a minimum weight S-tour, when the depots are located at

the vertices of Q. That is:

cQ(S) = mind(S)∈D(S)CQ(d(S)).

Note that since N = V −(G) = V (G) \ Q, different sets of depots imply different

sets of players, and in particular, a greater number of depots implies fewer players.

An illustration of two 2-depot TS-problems and their induced games are given in the

example below.

Example 3.1. The graph in Figure 2 illustrates two different 2-depot TS problems

defined on the same graph. For the problem on the left, Q = {v0, v4} while Q = {v0, v3}
for the problem on the right. For both STSPs assume that t({v1, v4}) = 10 while

t(e) = 1 for all other edges in the graph. The two induced 2-depot TS games are shown

in the table below. Note that as the location of the depots change, so does the player

set.

v0 v1

v4

v2

v3v f��
�

@
@
@

f

v
f@@

@

�
�
�

v0 v1

v4

v2

v3v f��
�

@
@
@

f

f
v@@

@

�
�
�

S v1 v2 v3 v1, v2 v1, v3 v2, v3 v1, v2, v3
c{v0,v4}(S) 2 4 2 4 4 4 6

S v1 v2 v4 v1, v2 v1, v4 v2, v4 v1, v2, v4
c{v0,v3}(S) 2 2 2 4 4 4 6

Figure 2: Two 2-TS problems and their induced 2-TS games

We see that with the current choice of weight function, the induced game is not sub-

modular, when the depots are located at v0 and v4, since c{v0,v4}(v1, v2, v3)−c{v0,v4}(v2, v3) =
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2 > 0 = c{v0,v4}(v1, v2)− c{v0,v4}(v2). On the other hand, the induced game is submod-

ular, when Q = {v0, v3}.

While not every k-depot TS game is submodular, it is straightforward to verify

that for any multi-depot TS game (N, cQ) induced by a multi-depot STSP given by

Γ(V −(G), (G,Q), t), it holds that cQ(S) ≤ cQ(T ) for all S ⊂ T ⊆ N (the game is

monotonic), and cQ(S ∪T ) ≤ cQ(S) + cQ(T ) for all S, T ⊆ N with S ∩T = ∅ (the game

is subadditive).

We now turn to the analysis of multi-depot traveling salesman games. Both undi-

rected and directed graphs will be considered, and in both cases, classes of graphs that

give rise to submodular multi-depot TS games are characterized. Since any subaddi-

tive two-player game is submodular, only games of at least three players are consid-

ered.Therefore, |V (G)| ≥ k+3 for all k-depot STS problems considered throughout the

paper.

4 k-TS submodular undirected graphs

4.1 Globally k-TS submodular graphs

Before proceeding to the characterization of graphs, a definition and a few useful ob-

servations are stated.

Let P5 denote a path with 5 vertices. Let P F
5 denote the structure illustrated in

Figure 3, consisting of a path P5 where depots are located only at the endpoints.

v0 v1 v2 vm−1 vm
u e e e ue1 e2 em

Figure 3: The P F
5 structure on a path of length 4 or more

Definition 4.1. Let Γ = (V −(G), (G,Q), t) be a multi-depot TS problem defined on a

connected graph G. Then G is P F
5 -free with respect to Q, if no path v0, e1, v1, . . . , em, vm

exists in Γ such that v0, vm ∈ Q, v1, . . . , vm−1 ∈ V −(G) and m ≥ 4.

That is, a graph G is P F
5 -free with respect to a set of depots Q, if G does not contain

a structure like Figure 3, when depots are located at the vertices in Q. Next, observe

that the presence of a P F
5 structure is incompatible with submodularity of the induced

multi-depot TS game.
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Lemma 4.1. Let G = (V (G), E(G)) be a connected graph, let Γ = (V −(G), (G,Q), t)

be a multi-depot STSP defined on G, and let (N, cQ) be the induced cooperative game.

If (N, cQ) is submodular for all weight functions t, then G is P F
5 -free wrt. Q.

Proof. Assume on the contrary that G is not P F
5 -free with respect to Q. Then there

exists a path P := v0, e1, v1, . . . , em, vm in G, such that v0, vm ∈ Q, v1, . . . , vm−1 ∈
V −(G) and m ≥ 4. Let t(ei) = 1 for i ∈ {1, 2, 3}, let

∑m
i=4 t(ei) = 1, and let t(e) = 10

for all other edges in G. Then cQ(v1, v2, v3)− cQ(v1, v2) = 6− 4 = 2 while cQ(v2, v3)−
cQ(v2) = 4− 4 = 0, violating (2.1), and cQ is not submodular.

Another useful observation is in order.

Lemma 4.2. Let G = (V (G), E(G)) be a connected, undirected graph, and let k ∈
{2, . . . , |V (G)| − 3}. If G is a star graph, then G is globally k-TS-submodular.

Proof. Let G be a star graph, in which vc is the single vertex with degree larger than 1.

vc will be referred to as the center vertex. For any v ∈ V (G)\ vc, let ev denote the edge

connecting v to the center vertex. Consider Γ = (V −(G), (G,Q), t) with |Q| = k, and let

(N, cQ) be the induced k-TS game on G. Now, if S = ∅, then c(S∪v)−c(S) = c(v), and

it follows from the subadditivity of c that cQ(T ∪v)−cQ(T ) ≤ cQ(v) = cQ(S∪v)−cQ(S)

for all S ⊂ T ⊆ N \ {v}. On the other hand, if S 6= ∅, then vc ∈ d(S), and for all

S ⊂ T ⊆ N \ {v}, we have

cQ(T ∪ v)− cQ(T ) = cQ(S ∪ v)− cQ(S) =

{
0 if v = vc

2t(ev) otherwise ,

and (2.1) holds.

We are now ready to characterize globally k-TS submodular graphs for 1 < k <

|V (G)|−2. Recall that for k = 1, a characterization of globally 1-depot TS-submodular

graphs was given in Herer and Penn (1995), and for k ∈ {|V (G)| − 2, |V (G)| − 1}, all

connected graphs are globally k-TS submodular, since there are at most two players in

the induced game.

Theorem 4.1. Let G = (V (G), E(G)) be a connected, undirected graph, and let k ∈
{2, . . . , |V (G)| − 3}. Then G is globally k-TS-submodular if and only if G contains no

path of length 4.
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Proof. Let G be a connected, undirected graph, let Γ = (V −(G), (G,Q), t) be a k-depot

TS problem on G, and let (N, cQ) be the induced k-TS game on G.

First, for the ‘only if’ part assume that G contains a path of length four. Then

there exists a pair (vi, vi+4) of distinct vertices in G such that there is a path P :=

vi, ei+1, vi+1, . . . , ei+4, vi+4, from vi to vi+4 visiting four edges. However, since |Q| = k ≤
|V (G)| − 3, we can then choose a Q such that vi, vi+4 ∈ Q, and vi+1, . . . , vi+3 ∈ V −(G),

implying that G is not P F
5 -free with respect to Q. It then follows from Lemma 4.1 that

the induced game is not submodular for all weight functions and hence, that G is not

globally k-TS submodular.

Now, consider the ‘if’ part and assume that G contains no path of length four. Since

|V (G)| ≥ k + 3, G has at least 5 vertices. Next, note that the only graphs with five

vertices or more that do not contain a path of length four are: star graphs with at least

four pendant vertices, graphs obtained by joining two star graphs by adding an edge

between the two center vertices (a double star), graphs obtained from a stargraph by

adding a single edge between two pendant vertices. The latter two types of graphs are

illustrated in Figure 4.

e e
e

ee

e
@
@@

�
��

vl vr e e
e

e

e

e
�

��

@
@@

e e e
ee

e

e

evc

v1 v2
e12

e1 e2

@
@@

�
��

�
��

@
@@

Figure 4: Globally k-TS submodular graphs

From Lemma 4.2, star graphs are globally k-TS submodular. It remains to be shown

that for both graph types in Figure 4, the induced cooperative game is submodular for

every Q ⊂ V (G) with |Q| = k and every weight function. The two types of graphs are

considered separately.

First, let G be a double star graph. Let the two nodes with a degree higher than

1 be denoted vl (left-center) and vr (right-center) respectively, as in Figure 4. For

vi ∈ V (G) \ {vl, vr} let ei denote the edge incident to vi. Then, if S = ∅, we have

cQ(S ∪ v) − cQ(S) = c(v) for any v ∈ V −(G), and it follows from subadditivity that

cQ(T ∪ v)− cQ(T ) ≤ c(v) = cQ(S ∪ v)− cQ(S) for all S ⊂ T ⊆ V −(G) \ {v}.
Now, assume instead that S 6= ∅ and note that when coalition S is non-empty,

either vl or vr must belong to d(S). Assume that vl ∈ d(S), and let e∗ denote the
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cheapest edge connecting vr to a node in Q ∪ vl (symmetric arguments can be applied

if vr ∈ d(S)). Let vi ∈ V −(G) and consider three separate cases:

Case 1. vi ∈ {vl, vr}: If vi = vl then cQ(T ∪ vi)− cQ(T ) = cQ(S ∪ vi)− cQ(S) = 0 since

vl ∈ d(S). If vi = vr then cQ(T ∪ vi) − cQ(T ) = cQ(S ∪ vi) − cQ(S) = 0, if vr ∈ d(S),

and cQ(T ∪ vi)− cQ(T ) ≤ cQ(S ∪ vi)− cQ(S) = 2t(e∗) otherwise.

Case 2. vi ∈ V −(G) \ {vl, vr} and vi is adjacent to vl: then cQ(T ∪ vi) − cQ(T ) =

cQ(S ∪ vi)− cQ(S) = 2t(ei).

Case 3. vi ∈ V −(G) \ {vl, vc} and v is adjacent to vr: then cQ(T ∪ vi) − cQ(T ) =

cQ(S∪vi)−cQ(S) = 2t(ei) if vr ∈ {Q∪d(S)}, and cQ(T ∪vi)−cQ(T ) ≤ 2t(ei)+2t(e∗) =

cQ(S ∪ vi)− cQ(S) otherwise.

Thus, (2.1) holds in all three cases, and the induced game is submodular for every

Q ⊂ V (G) and all weight functions.

Next, consider the graph in the right panel of Figure 4. Let the single vertex of

degree larger than 2 be denoted vc and referred to as the center vertex. Let the two

2-degree vertices be denoted v1 and v2 respectively, and let e12 denote the edge incident

to both v1 and v2. Furthermore, for any vi ∈ V (G) \ {vc}, let ei denote the edge

connecting vi to vc, and let e∗ denote the minimum weight edge connecting vc to a node

in Q ∪ {v1, v2}. It remains to be shown that (2.1) holds for all v ∈ V −(G) and all

S ⊂ T ⊆ V −(G) \ v.

If S = ∅, then cQ(S∪v)−cQ(S) = cQ(v) for all v ∈ V −(G), and again, it follows from

the subaditivity of cQ that cQ(T ∪v)−cQ(T ) ≤ cQ(S∪v)−cQ(S) for all S ⊂ T ⊆ N \v.

Therefore, assume instead that S 6= ∅.
First, if vc 6∈ d(S), then {v1, v2} are the only nodes visited by d(S), implying that

either S = {v1},v2 ∈ Q, or S = {v2},v1 ∈ Q. Either way, it must be that vc ∈ d(T ) for

all S ⊂ T . Therefore, if v = vc, then cQ(T ∪{v})− cQ(T ) = 0 < 2t(e∗) = cQ(S ∪{v})−
cQ(S). Likewise, for vi ∈ V −(G) \ {vc, v1, v2}, we have cQ(T ∪ {vi})− cQ(T ) = 2t(ei) <

2t(ei) + 2t(e∗) = cQ(S ∪ {vi})− cQ(S).

Secondly, if vc ∈ d(S), it is trivial that cQ(T∪{vc})−cQ(T ) = cQ(S∪{vc})−cQ(S) =

0, and for vi ∈ V −(G)\{vc, v1, v2}, we have cQ(T∪{vi})−cQ(T ) = cQ(S∪{vi})−cQ(S) =

2t(ei). Finally, consider the case of v = v1 (symmetric arguments can be applied to the

case of V = v2). Then either a) v1 6∈ d(S), v2 ∈ d(S), in which case cQ(T ∪ {v1}) −
cQ(T ) = cQ(S∪{v1})−cQ(S) = min{2t(e1), 2t(e1,2)}, or b) v1, v2 6∈ d(S), implying that

cQ(S ∪{v1})− cQ(S) = min{2t(e1), 2t(e2) + 2t(e1,2)} ≥ cQ(T ∪{vi})− cQ(T ), where the

inequality follows, since vc ∈ d(S)⇒ vc ∈ d(T ). Thus, (2.1) holds.
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Now, consider the following definition:

Definition 4.2. Let G be a connected, undirected graph. Then G fulfills the cut

condition, if there does not exist for any vertex-pair vt, vs ∈ V (G) a minimal s-t vertex

cut in G with cardinality greater than 2.

It follows from Herer and Penn (1995) that an undirected graph G is globally 1-TS

submodular if and only if G satisfies the cut condition for all pairs of vertices.

From the proof of Theorem 4.1, it is easy to verify that globally k-TS submodular

graphs satisfy the cut condition for k > 1. Therefore, the global condition for submod-

ularity of the induced cooperative game has been strengthened by the introduction of

multiple depots in the underlying STSP.

4.2 Locally k-TS submodular graphs

Requiring the induced game to be submodular for all possible locations of depots is very

restrictive, and in some situations it may be more relevant to ask simply whether there

exists at least one location of depots that induces a submodular game for every possible

weight function. Recall that a graph G = (V (G), E(G)) is locally k-TS submodular if

there exists a Q ⊂ V (G), with |Q| = k, such that the induced k-TS game (N, cQ) is

submodular for any weight function.

In Granot and Hamers (2004), it was shown that the class of locally 1-depot TS

submodular games is equivalent to the class of globally 1-depot TS submodular games.

A similar result does not hold for k-TS submodular games when k > 1. Instead, the

class of locally k-TS submodular games is a superset of the class of globally k-TS

submodular games. The class of locally k-TS submodular graphs can be characterized

as follows.

Theorem 4.2. Let G = (V (G), E(G)) be a connected, undirected graph. Let Γ =

(V −(G), (G,Q), t), and let k ∈ {2, . . . , |V (G)|−3}. Let G1 denote the subgraph induced

by all paths between vertices of Q. Then G is locally k-TS submodular if and only if

there exists a Q ⊂ V (G) such that G is P F
5 -free, with respect to Q, and such that the cut

condition is satisfied for all vertex pairs (vs, vt) in a connected component of G\E(G1).

Proof. Consider first the ’if part’ and assume that there exists a Q ⊂ V (G) such that

G is P F
5 -free with respect to Q. Let G1 be the graph induced by all paths between the

k vertices of Q and note that since G is P F
5 -free with respect to Q, any one of these
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paths can visit at most two player vertices in a row, implying that every player-vertex

in G1 is adjacent to at least one depot and at most one other player vertex within G1,

as illustrated in Figure 5.

G1

v

v′

Figure 5: G locally k-TS submodular

It remains to be shown that (2.1) holds for all players v ∈ V −(G), all S ⊂ T ⊆
N \ {v} and all weight functions t. Consider v ∈ V −(G). We distinguish between two

cases.

Case 1. v ∈ V (G1). Let S ⊂ V −(G), and let P ∗S(v) denote a minimum cost path from

v to a vertex in Q ∪ d(S). Note that P ∗S(v) may: be empty, in case v ∈ d(S); contain a

single edge connecting v to an adjacent vertex in Q∪d(S); or contain exactly two edges,

connecting v to a depot via an adjacent player vertex in G1. Therefore, v ∈ d(S) implies

v ∈ d(T ) for all v ∈ V −(G) ∩ V (G1). Indeed, if v ∈ S, then v ∈ T , and the conclusion

follows trivially. On the other hand, if v ∈ d(S) while v 6∈ S, then there exists a player

vertex v′ ∈ (d(S)∩ V (G1)) such that v ∈ P ∗S(v′). Now, if v ∈ T , the conclusion follows.

If v 6∈ T , then since v′ ∈ T , and v is the only player vertex in V (G1) adjacent to v′, it will

also hold that v ∈ P ∗T (v′), e.g. see Figure 5.2 Therefore,
∑

e∈P ∗
T

2t(e) ≤
∑

e∈P ∗
S

2t(e),

and we conclude that c(T ∪ v)− c(T ) =
∑

e∈P ∗
T

2t(e) ≤
∑

e∈P ∗
S

2t(e) = c(S ∪ v)− c(S),

for all S ⊂ T ⊆ N \ {v}. Thus, condition (2.1) holds.

Case 2. v ∈ V −(G) \ V (G1). Then there exists a vertex v0 ∈ V (G1) that must be

visited on any tour visiting v. For S ⊆ V −(G) \ {v}, let P ∗S(v0) denote the cheapest

(and possibly empty) path connecting v0 to a vertex in Q∪d(S). Note that if v0 ∈ d(T )

then either v0 ∈ d(S), in which case
∑

e∈P ∗
T (v0)

2t(e) =
∑

e∈P ∗
S(v0)

2t(e) = 0, or v0 6∈ d(S)

2Note that v′ may be adjacent to player vertices in V (G)\V (G1) as well, as illustrated in Figure 5.
This will, however, have no influence on P ∗T (v′), since any minimum cost tour that visits such players
must pass through v′.
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implying that
∑

e∈P ∗
T (v0)

2t(e) = 0 ≤
∑

e∈P ∗
S(v0)

2t(e). Now, assume v0 6∈ d(T ). Consider

the graph G \ E(G1), and let G0 denote the connected component containing v and

v0. Furthermore, let (N ′, c′v0) be the 1-depot TS-game defined on G0 in which v0 is

the single vertex associated with a depot, such that N ′ = V (G0) \ {v0}, and c′ is the

restriction of c to coalitions in N ′. Then, cQ(S ∪ {v}) − cQ(S) = c′v0({S ∩ V (G0)} ∪
{v})− c′v0({S ∩ V (G0)} +

∑
e∈P ∗

S(v0)
2t(e) for all S ⊂ N \ {v}. Since the cut condition

holds for all vs, vt ∈ V (G0), it follows from Herer and Penn (1995) and Granot and

Hamers (2004) that (N ′, c′v0) is submodular, which in turn implies that

cQ(T ∪ {v})− cQ(T ) = c′v0({T ∩ V (G0)} ∪ {v})− c′v0({T ∩ V (G0)}) +
∑

e∈P ∗
T (v0)

2t(e)

≤ c′v0({S ∩ V (G0)} ∪ {v})− c′v0({S ∩ V (G0)}) +
∑

e∈P ∗
S(v0)

2t(e)

= cQ(S ∪ {v})− cQ(S), (4.1)

for all v ∈ V −(G) \ V (G1) and all S ⊂ T ⊆ N \ {v}, where the inequality follows from

the submodularity of (N ′, c′v0) and the fact that
∑

e∈P ∗
T (v0)

2t(e) ≤
∑

e∈P ∗
S(v0)

2t(e) holds

for all S ⊂ T ⊆ N \ {v}.

For the ‘only if’ part: First, if G is not P F
5 -free with respect to Q, it follows from

Lemma 4.1 that the induced game is not submodular for every weight function. Next,

let G0 be a connected component in G \ E(G1), and assume that there exists an s− t

vertex cut of cardinality three or more for some vs, vt ∈ G0. In Granot and Hamers

(2004), it was shown that a graph G is locally 1-TS submodular if and only if the cut

condition is satisfied for all vs, vt ∈ V (G). It therefore follows that there exists no

location of a single depot v0 in G0, such that the induced 1-depot TS game (N ′, c′v0) on

G0 is submodular for all weight functions. That is, c′v0({T ∩ V (G0)} ∪ {v})− c′v0({T ∩
V (G0)}) ≤ c′v0({S ∩ V (G0)} ∪ {v}) − c′v0({S ∩ V (G0)}) does not hold for all t. If we

furthermore choose S ⊂ T ⊆ N \ {v} such that
∑

e∈P ∗
T (v0)

2t(e) =
∑

e∈P ∗
S(v0)

2t(e), then

(4.1) does not hold, and (N, cQ) is not submodular for all weight functions. Therefore,

there does not exist a Q with |Q| = k such that every induced game on G is submodular,

and G is not locally k-TS submodular.
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5 k-TS submodular directed graphs

5.1 Globally k-TS submodular digraphs

We now turn to consider directed graphs. First, note that a directed cycle C with arc

set E(C) is globally k-TS submodular for all k ∈ {2, . . . , |V (G)| − 3}, since c(S) =∑
e∈E(C) t(e) for all S ⊆ N . For digraphs in general, any induced game is submodular

if k ≥ |V (G)|−2, since the game is then either a one or a two-player subadditive game.

Granot et al. (2000) consider the case of k = 1 and provide the equivalence theorem

below. The graphs referred to as F1 and F2 are illustrated in Figure 6.
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Figure 6: Forbidden subgraphs F1 and F2

Theorem 5.1. [Granot et al. (2000)] Let G be a strongly connected digraph. Then the

following three statements are equivalent.

• G is globally TS-submodular

• G does not contain a subdivision of F1 or F2

• G is a 1-sum of harmonic digraphs each of which is an outerplanar graph with a

directed cycle on its outer boundary3

If a directed graph G contains a subdivision of F1 or F2, then for every 1-depot

STSP on G it is possible to choose a location of the single depot such that the induced

game is not submodular for all weight functions t. Therefore, G is not globally 1-depot

TS submodular. A similar result holds for the case of k > 1 as shown below.

3In Granot et al. (2000), a digraph G is said to be harmonic if every pair of cycles in G visit their
common vertices in the same order, i.e., all pairs of cycles are in harmony. An outerplanar graph is a
graph that can be embedded in the plane such that no edges cross, and such that all vertices of the
graph lie on the boundary of the outer face of the embedding.
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Lemma 5.1. Let G = (V (G), E(G)) be a strongly connected, directed graph, and let

k ∈ {2, . . . , |V (G)| − 3}. If G is globally k-TS submodular, then G does not contain (a

subdivision of ) F1 or F2.

Proof. To arrive at a contradiction, assume first that G contains (a subdivision of) F1,

and let Γ = (V −(G), (G,Q), t) be a multi-depot STSP on G. Referring to the graph

in the left panel of Figure 6, consider the vertices {v0, v1, v2, v3} ∈ V (F1). For any

{i, j}, i 6= j, let Pij denote the directed path from vertex vi to vertex vj. Let E(Pij)

denote the set of arcs in Pij. Next, construct the following weight function: let t be

such that
∑

e∈E(Pij)
t(e) = 1 for all {i, j} ∈ {{0, 1}, {1, 2}, {0, 3}, {3, 2}, {2, 0}}, and

let t(e) = 100 for all other arcs in G. Since we consider k ≤ |V (G)| − 3, we can

choose Q ⊂ V (G) such that v0 ∈ Q and v1, v2, v3 ∈ V −(G). Now, let S = {v2} and

T = {v1, v2}. Then we see that c(T∪v3)−c(T ) = 6−3 = 3 > 0 = 3−3 = c(S∪v3)−c(S),

and the induced game is not submodular. Next, assume instead that G contains (a

subdivision of) F2, refer to the right panel of Figure 6, and let
∑

e∈E(Pij)
t(e) = 1 for all

{i, j} ∈ {{0, 1}, {1, 2}, {2, 3}, {3, 0}, {1, 3}}, and let t(e) = 100 for all other arcs in G.

Then, if S = {v1}, and T = {v1, v2}, we see that c(T ∪ v3) − c(T ) = 4 − 3 = 1 > 0 =

3 − 3 = c(S ∪ v3) − c(S). Again, the induced game is not submodular, therefore, G is

not globally k-TS submodular for any k ∈ {2, . . . |V (G)| − 3}.

Before moving on, some notation is required. Let a 1-sum of two graphs G1 and G2

be the graph that is obtained by joining G1 and G2 by coalescing one vertex from G1

with one vertex of G2. The vertex joining the two former graphs will be referred to as

the link vertex, and each of the original graphs will be referred to as a component in

the 1-sum. Figure 7 illustrates.
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v4
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Figure 7: A 1-sum of two directed cycles

As noted above, any directed cycle C is globally k-TS submodular for all k ∈
{2, |V (C)| − 3}, and it follows from Theorem 5.1 that 1-sums of directed cycles are
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globally 1-TS submodular. However, 1-sums of directed cycles or more generally, 1-

sums of directed circuits are not globally k-TS submodular for k > 1.4 In fact, if G

contains a 1-sum of directed cycles (or circuits) of at least three vertices each, then G

is not globally k-TS submodular for any k ∈ {2, . . . , |V (G)| − 3}.

Lemma 5.2. Let G = (V (G), E(G)) be a strongly connected, directed graph. Let

k ∈ {2, . . . , |V (G)| − 3}. If G contains a 1-sum of two directed circuits C1 and C2 such

that each circuit is a closed walk of length three or more, then G is not globally k-TS

submodular.

Proof. To arrive at a contradiction, assume that such a 1-sum exists and note that

|V (C1)|, |V (C2)| ≥ 3. (Figure 7 illustrates the case where G contains a 1-sum of a two

cycles with three vertices each, but the proof holds for cycles/circuits in general.) Let

v2 denote the link vertex in this 1-sum and let v0, v1 be vertices in C1 such that paths

P01, P12, P20 exist. Likewise, let v3, v4 be vertices in C2 such that paths P23, P34, P42 ex-

ist. Let Γ = (V −(G), (G,Q), t) be a multi-depot STSP on G. Now, since the number of

depots 2 ≤ k ≤ |V (G)|−3, we can choose Q ⊂ V (G) such that v1, v2, v3 ∈ V −(G) while

v0, v4 ∈ Q, implying that a depot exists in each component of the 1-sum. Next, define

the weight function t on G as follows: for any path Pij ∈ {P01, P12, P20, P23, P34, P42}
let

∑
e∈E(Pij)

t(e) = 1, and let t(e) = 100 for all other arcs in G. Then, if S = {v2} and

T = {v1, v2}, we see that c(S ∪ v3) − c(S) = 3 − 3 = 0, while c(T ∪ v3) − c(T ) ≥ 1.

Thus, the induced game is not submodular, and therefore, G is not globally k-TS sub-

modular.

Let C2 denote a directed cycle with only 2 vertices. Then from Theorem 5.1 and

Lemmas 5.1 and 5.2, we can infer the following:

Theorem 5.2. Let G = (V (G), E(G)) be a strongly connected, directed graph, and let

k ∈ {2, . . . , |V (G)| − 3}. If G is globally k-TS submodular, then G is a 1-sum of a

harmonic, outerplanar graph with a directed cycle on its outer boundary and (copies

of) C2, such that G does not contain a 1-sum of directed circuits each of length three

or more.

Even for graphs fulfilling the requirements above, whether the graph is globally k-

TS submodular may depend on the specific structure of the graph and the number of

depots as shown below.

4Recall that a directed circuit is a closed walk in which no edge is visited more than once, while
a directed cycle denotes a closed path, implying that neither vertices nor edges are visited more than
once.
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In the remainder of this section, we focus on the case where G is an oriented graph,

implying that G contains no bi-directed edges, and hence no C2. We already know that

for G to be k-TS submodular, it must be a harmonic and outerplanar graph with a

directed cycle on its outer boundary. While it follows from Granot et al. (2000) that

this is sufficient for G to be globally 1-TS submodular, the same does not hold for the

case of k ≥ 2.

Theorem 5.3. Let G = (E(G), V (G)) be a harmonic and outerplanar graph with a

directed cycle on its outer boundary. Let G contain a directed cycle Ci such that G \
V (Ci) is a collection of weakly connected components for which at least two distinct

components contain 2 vertices or more. Let C0 denote the shortest such cycle in G.

Then G is globally k-TS submodular if and only if k > |V (G)| − (|V (C0)|+ 2).

Proof. Let Γ = (V −(G), (G,Q), t) be a multi depot STSP on G. For the if part, it

needs to be shown that (2.1) holds for all v ∈ V −(G), S ⊂ T ⊆ V −(G)\v. If S = ∅, the

result follows from the subadditivity of c. Therefore, assume instead that S 6= ∅. Let

vi ∈ V −(G) and consider three cases depending on whether vi belongs to d(S) and/or

d(T ):

Case 1. vi ∈ d(S): We start by showing that if vi is visited on a min cost tour of S,

then vi is also visited on a minimum cost tour of T , i.e., v ∈ d(S)⇒ v ∈ d(T ). To see

this, recall that G is an outerplanar graph with a directed cycle on its outer boundary

and denote this cycle by C. Let v0 ∈ Q be a depot in d(T ) and number the vertices of

C in the order they are visited in a tour starting from v0 and ending at v|V (G)|−1 = v0.

To arrive at a contradiction, assume that there exists a vi ∈ V −(G) and an S ⊂ T ⊆
V −(G) \ vi such that vi ∈ d(S) but vi 6∈ d(T ). Furthermore, let h = max{l|l < i, vl ∈
d(T )}. Now, since vi 6∈ d(T ), there exists a vertex pair vh, vj ∈ d(T ) such that the arc

(eh, ej) - denoted ehj - exists, and eh,j ∈ d(T ). Furthermore, since all the vertices of G

lie on C, there exist a path from vh to vj that visits vi. Let Phij denote the minimum

cost path from vh to vj that visits vi. Then since vi is not in d(T ), we must have

t(ehj) ≤
∑

e∈Phij
t(e). Furthermore, since only the endpoints of Phij are in d(T ), no

vertices of C that lie between vh and vj belong to T , implying that no vertices between

vh and vj belong to S.

Now, let Chj denote the smallest cycle that visits vh, vj and all vertices in S, and

note that for d(S) to be a minimum cost tour, it must be that Chj ∩ Q = ∅, while

Phij ∩Q 6= ∅.5 However, since Chj ∩Q = ∅, there are only two possible cases for d(T ):

5It follows from the definition that ehj belongs to chj .
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Case 1.1. There exist a path vl, el,l+1, vl+1, el+1,l+2, vl+2 such that vl, vl+2 ∈ Chj, vl+1 6∈
Chj, but vl+1 ∈ Q ∩ d(T ). Then, since d(T ) is a minimum cost tour, it must be that

t(el,l+1) + t(el+1,l+2) <
∑

e∈Phij
t(e). This, however, contradicts that d(S) is a minimum

cost tour of S.

Case 1.2. There exist a vertex pair vl, vm ∈ Chj, such that vl, vm are the endpoints of

a path Plm of length 3 or more, and such that Plm ∈ d(T ), Plm ∩ Q 6= ∅ and vl, vm

are the only vertices of Plm that lie on Chj. Then, either
∑

e∈Plm
t(e) <

∑
e∈Phij

t(e),

which contradicts that d(S) is a minimum cost tour of S, or Plm ∩ T 6= ∅. However, if

the latter is true, then G \ V (Chj) is a collection of weakly connected components for

which at least two distinct components contain 2 vertices or more, namely the paths

Phij and Plm. We then know that k > |V (G)| − (|V (Chj)|+ 2), which contradicts that

Chj ∩Q = ∅.

We conclude that there cannot exist a vi ∈ V −(G) and a S ⊂ T ⊆ V −(G) \ vi such

that vi ∈ d(S) and vi 6∈ d(T ). Now, because vi ∈ d(S) ⇒ vi ∈ d(T ), it follows that

(2.1) holds trivially, since c(T ∪ vi)− c(T ) = c(S ∪ vi)− c(S) = 0.

Case 2. vi 6∈ d(S), vi ∈ d(T ). Then c(S ∪ vi)− c(S) ≥ 0 = c(T ∪ vi)− c(T ), where the

(weak) inequality follows from monotonicity, and (2.1) holds.

Case 3. vi 6∈ d(S), vi 6∈ d(T ). Let g = max{l|l < i, vl ∈ d(S)}, then there exists a

vertex pair vg, vk, such that the arc egk exists and belongs to d(S). Furthermore, for the

minimum cost path P S
gik from vg to vk that visits vi, it holds that t(egk) <

∑
e∈PS

gik
t(e).

Likewise, since vi 6∈ d(T ) there exists a vertex pair vh, vj such that h = max{l|l <

i, vl ∈ d(T )}, the arc ehj exists, ehj ∈ d(T ), and t(ehj) <
∑

e∈PT
hij

t(e), where P T
hij is the

minimum cost path from vh to vj that visits vi. From Theorem 5.3 it follows that G does

not contain the forbidden structure, F2, and we therefore have either g ≤ h < i < k ≤ j,

or h ≤ g < i < k ≤ j. We consider the two cases separately:

Case 3.1. h ≤ g < i < k ≤ j. Let P T
hj denote the minimum cost path from vh to

vj (that may or may not be identical to P T
hij). Then since only the endpoints of this

path is in d(T ), no players in T and hence no players in S lie on C between vh and

vj. Furthermore, if there exists a depot in the part of C that is common to d(S) and

d(T ), i.e., if (d(S) ∩ d(T )) ∩ Q 6= ∅, this contradicts that d(S) is a minimum cost

tour, since a minimum cost tour could visit ehj instead of egk. Thus, it must be that

(d(S) ∩ d(T )) ∩ Q = ∅, and that there is a depot on the path from vh that goes via

egk to vj. However, we can now use arguments similar to those above to show that this

implies a contradiction. First, for d(T ) to be a minimum cost tour, there must then

18



exist a vertex pair vl, vm in d(S)∩d(T ), such that vl, vm are the endpoints of a path for

which no other vertices belong to d(S)∩ d(T ), and such that at least one of these other

vertices is a depot. Now, in case no players of T are on this path (apart from at the

endpoints) this contradicts that both d(S) and d(T ) are minimum cost tours. On the

other hand, if some player of T reside on this path, this implies that G \ (d(S) ∩ d(T ))

is a collection of weakly connected components for which at least two such components

contain 2 vertices or more, which in turn contradicts that (d(S) ∩ d(T )) ∩Q = ∅.

Case 3.2. g ≤ h < i < k ≤ j. Now, since g ≤ h and j ≤ k, it must be that∑
e∈Phij

t(e) ≤
∑

e∈Pgik
t(e). Next, since vh is the last vertex in d(T ) before vi, and Phij

is the minimum weight path from vh to vj, we get c(T ∪ vi) − c(T ) =
∑

e∈Phij
t(e) −

t(ehj) ≤
∑

e∈Pgik
t(e) − t(egk) = c(S ∪ vi) − c(S), where the inequality follows since

t(egk) ≤ t(ehj) +
∑

e∈Pgik
t(e) −

∑
e∈Phij

t(e) must hold for d(S) to be a minimum cost

tour. Thus, (2.1) holds.

Next, consider the only if part and assume that k ≤ |V (G)| − (|V (C0)|+ 2). Recall

that C0 is the shortest directed cycle in G such that G \ V (C0) contains two weakly

connected components with at least two vertices each, as illustrated in Figure 8. Let

the two components be denoted W1 and W2 respectively. For each component W , let

PW denote the shortest path between two vertices of C0 that visits at least two vertices

of W . Next, let v0 be a vertex in C0, let v1, v2 be vertices on PW1 , and let v3, v4 be

vertices on V (PW2).

Consider Γ = (V −(G), (G,Q), t), and note that for any k ≤ |V (G)| − (|V (C0)|+ 2),

we can choose Q ⊂ V (G) such that v1, v4 ∈ Q while both v0, v2, v3 ∈ V −(G), and

V (C0) ⊂ V −(G). That is, there are no depots located at any vertices of C0, and at

least one depot is located on both PW1 and PW2 . Next, define a weight function t on

G as follows: for any e ∈ E(C0) ∪ E(PW1) ∪ E(PW2)), let t(e) = 1, and let t(e) be

arbitrarily high (e.g. |E(G)|) for all other arcs in G. Without loss of generality, assume

that |E(PW2)| ≥ |E(PW1)|.
Next, let S = {v0}. Then since there are no depots in C0, a minimum cost tour of

S visits V (C0) ∪ V (W1), and the cost of this tour is c(S) = |E(C0)| + |E(PW1)| − 1.

It follows that c(S ∪ v1) − c(S) = 0. Furthermore, let T = {v0, v3}. Then we have

c(T ) = |E(C0)| + |E(PW2)| − 1. However, since any tour of T ∪ v1 must visit both

V (PW1), V (PW2), and V (C0), it follows that c(T ∪v1)−c(T ) = |E(PW1)|−1 > 0. Thus,

the induced game is not submodular, and G is not globally k-TS submodular.
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C0

Figure 8: G not globally 2-TS submodular but globally 3-TS submodular

5.2 Locally k-TS submodular digraphs

Recall that for a graph G to be locally k-TS submodular, we only require that one

location of k depots in G induces a submodular game for all weight functions. While

all globally k-TS submodular graphs are obviously also locally k-TS submodular, it is

easy to show that the opposite is not true, and hence that the class of globally k-TS

submodular graphs is a proper subset of the class of locally k-TS submodular graphs.

Proposition 5.1. The set of globally k-TS submodular graphs is a proper subset of

the set of locally k-TS submodular graphs.

Proof. We need only show that there exists graphs that are locally k-TS submodular

but not globally k-TS submodular. To see this, consider the graph G in Figure 9. Since

G is a subdivision of F1, it is not globally k-TS submodular, for k ∈ {1, 2, 3}. However,

G is locally k-TS submodular for k = {2, 3}. For k = 2, choose Q = {v0, v1}. It can

readily be verified that for this location of depots, the induced game is submodular for

any weight function. Thus G is locally 2-TS submodular.

v0

v1

g
g

g
g

g
g

6

-

?� -

6

�

Figure 9: A locally (but not globally) 2-TS submodular graph
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