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Abstract

We consider a non-cooperative queueing environment where a finite number of cus-

tomers independently choose when to arrive at a queueing system that opens at a

given point in time and serves customers on a last-come first-serve preemptive-resume

(LCFS-PR) basis. Each customer has a service time requirement which is identically

and independently distributed according to some general probability distribution, and

they want to complete service as early as possible while minimizing the time spent

in the queue. In this setting, we establish the existence of an arrival time strategy

that constitutes a symmetric (mixed) Nash equilibrium, and show that there is at

most one symmetric equilibrium. We provide a numerical method to compute this

equilibrium and demonstrate by a numerical example that the social efficiency can be

lower than the efficiency induced by a similar queueing system that serves customers

on a first-come first-serve (FCFS) basis.
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1 Introduction

Customers routinely experience waiting in line whenever the demand for some service

exceeds the capacity to provide it. Examples of such a situation include purchasing popular

concert tickets, calling a telephone hotline, and conducting online bank transactions. To

cope with the excess demand, the allocation of service to customers is often managed with

a queueing system. Since waiting in line is not just a source of emotional frustration for

the customer, but also exerts substantial societal costs, the study of how to optimally

manage such systems constitutes an important mechanism design problem.

This paper considers a non-cooperative environment where a finite number of cus-

tomers independently need to choose when to arrive at a queueing system that provides

some desired service at the end. The customers are served by a single server that only

operates during a certain interval of time, and each customer wishes to complete ser-

vice as early as possible, while minimizing the expected wait in the queue. The order

in which waiting customers are served is determined by the service discipline. While the

most frequently used discipline is the First-Come First-Serve (FCFS), our goal here is

to study the strategic arrival behavior of self-interested customers in a system that em-

ploys the Last-Come First-Servce Preemptive-Resume (LCFS-PR) service discipline. The

LCFS-PR discipline admits any newly arrived customer into service immediately, possibly

preempting the service progress of another customer. The preempted customer then joins

the queue where later arrivals are prioritized over earlier arrivals. When a preempted

customer re-enters service again, her service is resumed from the point of interruption.

The strategic choices of arrival time to queues have been studied for almost half a

century (see Hassin, 2016, for an extensive survey). The problem was first approached

by considering a fluid model for congestion dynamics that studied the equilibrium arrival

behavior of a continuum of customers (Vickrey, 1969). In this model, each customer must

choose their arrival time to a continuously open bottleneck, and each customer has a pre-

ferred time for passing the bottleneck and will incur a cost from being early or late. Similar

fluid models have further been studied and extended in various directions, e.g. to treat

heterogeneous customers (Arnott et al., 1989), elastic customer demand (Arnott et al.,

1993), and hypercongestion (Verhoef, 2003).

The study of strategic arrivals in queueing systems where the server has a limited ser-

vice period (i.e. the server admits an opening and/or closing time) was first formulated

for a Poisson-distributed number of identical customers with exponential service require-

ments that arrive at a server with a known opening and closing time, and wish to minimize

their own waiting time (Glazer and Hassin, 1983). This work showed that, in a symmetric

equilibrium, the customers arrive according to a continuous probability distribution that

extends over a finite interval before and after the opening time. Several variations of this
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model have since been considered, e.g. to treat bulk service (Glazer and Hassin, 1987), no

arrivals prior to opening (Hassin and Kleiner, 2011) and discrete arrival times and deter-

ministic service times (Rapoport et al., 2004; Seale et al., 2005; Stein et al., 2007). While

the aforementioned studies assumed that customers only want to minimize their wait in

the queue, another body of literature studies environments where customers also care

about being served at an early time. This additional type of disutility has been modelled

as a tardiness cost that increases the later one is admitted into service. The equilibrium

behavior induced by such customer preferences has been studied for several variants of

assumptions. Specifically, the symmetric equilibrium have been studied for a Poisson-

distributed number of identical customers with multilinear cost of waiting and tardiness

in time and exponential service time requirements with and without early arrivals, along

with their fluid analogues (Jain et al., 2011; Haviv, 2013). A complete analysis of the

existence and uniqueness of the equilibrium for a general population size with multilin-

ear costs and exponential service times showed that there always exists an equilibrium

and that it is in fact symmetric (Juneja and Shimkin, 2013). Lastly, the uniqueness and

existence of the symmetric equilibrium was established for more general classes of utility

functions and service time distributions (Breinbjerg, 2017).

The above-mentioned studies all considered queueing environments where the FCFS

service discipline was employed. While the FCFS discipline is intuitively fair and accept-

able to most people, it is not the only way, and sometimes not even the optimal way, of

settling a queue (Hassin, 1985). In particular, a recent study shows that the FCFS disci-

pline in fact provides the lowest level of social efficiency (measured as the sum of aggregated

customer utilities) relative to any other service discipline in queueing environments where

the server opens at a given point in time and a continuum of customers choose their ar-

rival time when they associate costs of queueing and being served late (Platz and Østerdal,

2017). Conversely, the same study also shows that the Last-Come First-Serve (LCFS) dis-

cipline provides the highest level of social efficiency. Thus, these two disciplines provide

an upper and a lower bound for efficiency under any general stochastic service disciplines.1

Further support for such equilibrium utility bound has been established in queueing envi-

ronments for a finite (but small) population size where each customer chooses their arrival

time from a discrete set of time slots (Breinbjerg et al., 2016).

In the present paper, we consider a queueing environment where a finite number of

customers with identical preferences, composed of waiting and tardiness costs, choose

when to arrive at a single-server facility that opens at a commonly known point in time

and serves customers on a LCFS-PR basis. We shall restrict attention to facilities with

1For the fluid model, it has been show for varying degrees of random sorting, ranging from FCFS to a

completely random service order, that the choice of service discipline does not play a role for the properties

of social efficiency (de Palma and Fosgerau, 2013).
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no closing time and do not allow customers to leave the queue once they have arrived.

Our main contributions are the following: First, we develop a constructive procedure

that establishes the existence of a symmetric (mixed) Nash equilibrium and show that

there is at most one symmetric equilibrium. Second, we show by a numerical example

that there exists a symmetric Nash equilibrium under the LCFS-PR discipline where the

social efficiency (measured via the price of anarchy) is lower than the efficiency induced

by an identical queueing system that instead serves customers on FCFS basis. Thus, the

equilibrium utility bound found by Platz and Østerdal (2017) does not hold generally for

the queueing environment considered within this paper.

The paper is organized as follows: Section 2 formalizes the queueing environment and

model assumptions. Section 3 defines the relevant notion of the equilibrium solution,

presents the equilibrium properties of the queueing model, and provides the proof hereof.

Section 4 presents a numerical method to compute the symmetric equilibrium and then

compares the resulting social efficiency with that obtained in a corresponding queueing

system that employs the FCFS service discipline. We conclude the paper in Section 5 with

a brief summary and future research directions. Proofs that require technical notation for

the stochastic queueing dynamics are relegated to the Appendix.

2 The LCFS-PR Queueing Game2

A finite set of customers N = {1, 2, ..., η}, η ≥ 2 must obtain service by a single-server

facility. The facility processes customers for service within the bounded interval of time

[0,∞), i.e. the facility starts service at time 0 and does not close before all customers have

been served. The facility serves one customer at a time according to a work-conserving

LCFS-PR regime. We assume that customers may arrive and queue up at the facility both

before and after the opening time, and moreover, that a customer cannot leave the queue

once arrived. The time required for the facility to complete the service of each customer

is assumed to be independent and identically distributed according to the cumulative

distribution function S which is absolutely continuous, strictly increasing and has finite

moments.

Strategy of Arrival. Each customer i ∈ N randomly chooses her time of arrival accord-

ing to the (symmetric) strategy F which represents a cumulative probability distribution

(cdf) that assigns to each point in time t on the real line R the probability F (t) that

customer i has arrived by time t. We assume that F is piecewise differentiable and let

2The queueing game of this paper closely resembles that presented in a companion paper by Breinbjerg

(2017) with the exception of the considered service discipline and the customers’ set of possible arrival

times.
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f+(t) denote the right-derivative of F at point t. Let S(F ) denote the support of strategy

F which is the smallest closed set of probability 1, namely
∫
S(F ) dF (t) = 1.

Time of Departure. Given a strategy F , we consider the probabilities associated with

the time for which a customer has completed her service and departs the system. Let Di

denote the ex-ante cumulative departure time distribution for any customer i such that

Di(d | t, F ) is the probability that customer i has departed the system by time d ∈ R
given that she arrived at time t and the η−1 other customers arrive according to F . Note

that limd→∞Di(d | t, F ) = 1 for all t since the customer population is finite, the service

time distribution S has finite moments, and LCFS-PR is work-conserving. Note also that

Di(d | t, F ) = 0 for all d ≤ t and all d ≤ 0.

Utility Function. We assume that the customers have identical preferences. Each

customer wants to receive service as early as possible and spend a minimum of time in the

queue. To capture such preferences, let V (t, d) be the utility of a customer who arrives at

time t and departs the system at time d after waiting in the queue for d − t time units.

We assume that V is well-defined and continuous for all d ≥ t, and strictly decreasing in

both the departure time d and the waiting time d− t. Moreover, V is bounded from above

and limt→∞ V (t, t) = −∞.

We assume that every customer is (von Neumann-Morgenstern) rational and aims to

maximize her expected utility with respect to her time of arrival. For a given strategy F ,

we denote by Ui customer i’s expected utility by arriving at time t with certainty when

the η − 1 other customers arrive according to F , so

Ui(t, F ) =

∫ ∞
t

V (t, d) dDi(d | t, F ) (1)

where
∫

is the Lebesgue integral over the departure time distribution Di. A LCFS-PR

queueing game is thus represented by a tuple G = 〈 η, V, S 〉.

3 Equilibrium Analysis

This section first defines the notion of a symmetric equilibrium in Section 3.1, which is used

as the solution concept to study outcomes of queueing game G. Subsequently in Section

3.2, we present our main results in Theorem 1. The theorem establishes the existence

and uniqueness of a symmetric Nash equilibrium as well as the general properties of such

equilibrium. The proof of Theorem 1 is presented in Section 3.3.

3.1 Symmetric Equilibrium

To study the strategic arrivals of customers in a queueing game G, we adopt the Nash

equilibrium concept and restrict the analysis only to consider symmetric solutions. This
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restriction is customary when analyzing non-cooperative queueing games (see Breinbjerg,

2017, for further justification). Formally, we define the symmetric equilibrium as follows,

Definition 1 For any queueing game G, we say that strategy F constitutes a symmetric

(Nash) equilibrium if, and only if, it holds for every customer i ∈ N that

(i) Ui(t, F ) ≥ Ui(s, F ) for all t ∈ S(F ) and s ∈ R

(ii) Ui(t, F ) = Ui(s, F ) for all t, s ∈ S(F ).

Definition 1 prescribes a probability distribution that assigns to every point in time, the

probability of each customer arriving at the facility, such that no customer can change her

strategy unilaterally and obtain strictly higher expected utility. We occasionally refer to

a strategy that constitutes a symmetric equilibrium as an equilibrium strategy.

3.2 Results

The main results are summarized in the following theorem which presents some general

properties of the equilibrium strategy under a queueing game G.

Theorem 1 For any queueing game G, there exists one, and only one, strategy F that

constitutes a symmetric equilibrium. Moreover, the following properties hold for F :

(i) F (t) is continuous at all t ∈ R and has F (s) = 0 for all s ≤ 0.

(ii) The support S(F ) of F is a compact and connected set.

Figure 1 depicts a graphical representation of an equilibrium strategy F for a queueing

game G. Intuitively speaking, Theorem 1 suggests that, in equilibrium, the customers will

not arrive at any point before (or at) the opening time of the system, while they arrive

according to a continuous and strictly increasing probability distribution that extends over

a finite interval of time starting immediately after the opening time.

3.3 Proof of Theorem 1

This section is devoted to the proof of Theorem 1 which proceeds through several lemmas.

We start by establishing a directional result between the expected utility Ui and the

cumulative departure time distribution Di for any customer i.

Lemma 1 For any queueing game G, let F and F̃ be two distinct strategies. For any

customer i ∈ N , then Ui(t, F ) ≥ Ui(t, F̃ ) for any t ∈ R if Di(d | t, F ) ≥ Di(d | t, F̃ ) for

all d ∈ R. Furthermore, if strict inequality holds for some d, then Ui(t, F ) > Ui(t, F̃ ).

This claim follows immediately once we note that the utility function V is monotone

decreasing in the waiting and departure time.

The next result addresses the continuity of an equilibrium strategy.
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t

F1

0 b

Fig. 1: Example of an equilibrium strategy: Let strategy F be an equilibrium strategy under a queueing

game G. Then the support S(F ) = [0, b] where b < ∞ such that F is strictly increasing over the interval

[0, b]. Moreover, F (s) = 0 for all s ≤ 0.

Lemma 2 For any queueing game G, let F be an equilibrium strategy. Then F (t) =

lims↑t F (s) for all t ∈ R.

Proof. We prove by contradiction. Let F be an equilibrium strategy and suppose for

some point in time t ∈ R that F has a point of upwards discontinuity such that F (t) >

lims↑t F (s). We then note the following: For any t ≥ 0, a customer can arrive immediately

after time t and start service instantaneously since any newly arrived customer preempts

the service progress of a customer already residing in the queue. For any t < 0, a customer

can arrive immediately after time t and be prioritized for service ahead of the customers

already residing in the queue. Formally, this means that for any t ∈ R and any i ∈ N ,

Di(d | t, F ) ≤ lims↓tDi(d | s, F ) for all d ∈ R with strict inequality at some d, hence

Ui(t, F ) < lims↓t Ui(s, F ) by Lemma 1. This contradicts the equilibrium definition and

proves that F (t) = lims↑t F (s) for all t ∈ R. �

Since F is right-continuous, by definition, it follows by Lemma 2 that any equilibrium

strategy F is continuous at all t ∈ R. By a similar argument, it can also be shown that

any equilibrium strategy F must have F (s) = 0 for all s ≤ 0, since a customer can arrive

immediately after the opening time and start service instantaneously. Hence, Theorem 1,

part (i), follows immediately.

The next result establishes that all customers, in equilibrium, arrive at the facility

within some bounded interval of time.

Lemma 3 For any queueing game G, let F be an equilibrium strategy. Then S(F ) is a

compact set.

Proof. Let F be an equilibrium strategy. We note that the support S(F ) of F is bounded

from below at 0 since F (s) = 0 for all s ≤ 0. Moreover, S(F ) is also bounded from above
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since the customer population is finite, the service time distribution S has finite moments,

the LCFS-PR discipline is work-conserving, and limt→∞ V (t, t) = −∞ (a formal proof of

this claim can be seen in Breinbjerg, 2017, Lemma 4). The support S(F ) is thus bounded.

Since S(F ) is closed, by definition, it follows immediately from the Heine–Borel theorem

that S(F ) is compact. �

The next result addresses the monotonicity of an equilibrium strategy.

Lemma 4 For any queueing game G, let F be an equilibrium strategy. Then S(F ) is a

connected set, i.e. S(F ) cannot be divided into two disjoint and nonempty sets.

Proof. Let F be an equilibrium strategy. It then follows that F has a bounded support

S(F ) with supremum 0 < b < ∞ by Lemma 3, F is everywhere continuous and have

F (s) = 0 for all s ≤ 0 by Lemma 2.

Now, suppose that S(F ) is not a connected set, in the sense that S(F ) can be divided

into two disjoint nonempty sets. This implies that there exists an interval 0 ≤ t1 < t2 ≤ b
such that F (t1) = F (t2). However this leads to a contradiction of the equilibrium definition

since Ui(t1, F ) > Ui(t2, F ) for any i ∈ N . To see this, note that any customer that

arrives at time t1 will start service instantaneously according to the LCFS-PR service

discipline. Given that V is strictly decreasing in departure time, then any customer

has Ui(t1, F ) > Ui(t2, F ) since they can capitalize on the time interval [t1, t2] where no

customers arrive. Hence, any strategy F with an interior hole in S(F ) cannot be an

equilibrium strategy. �

The claim of Theorem 1, part (ii), thus follows immediately from Lemma 3 and 4. We

next address the existence of an equilibrium strategy for a queueing game G.

Lemma 5 There exists a strategy F that constitutes a symmetric equilibrium for a queue-

ing game G.

Proof. We constructively prove this claim by defining a family of functions {Xb}0<b<∞
where, for each constant b, Xb is the limit of a convergent and recursive sequence {Xb,h |
0 < b < ∞}h∈N indexed by the non-negative integer h. We then show that a member of

the family {Xb} represents an equilibrium strategy.

We start by providing some useful notation. For a given 0 < b < ∞ and h ∈ N, let

Xb,h : R → [0, 1] be a function where Xb,h(t) is an image of Xb,h at t. For any point in

time t where Xb,h is non-decreasing and right-continuous over [t, b] and Xb,h(s) = 1 for all

s ≥ b, then the expected utility Ui(t,Xb,h) is well-defined for any customer i ∈ N . Lastly,

let Ah(b) = sup{t ∈ R | Xb,h(t) = 0} denote the maximal value of t where Xb,h(t) equals

0.
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Fix b to be a constant, 0 < b < ∞, and let Xb,h(t) = 1 for all t ≥ b. Intuitively, one

may think of Xb,h(b) as the earliest point in time where η − 1 customers have arrived at

the facility with certainty. In this case, if the other η − 1 customers arrive according to

Xb,h, then customer i can arrive at time b and start service instantaneously without being

preempted, thus obtaining an expected utility of Ui(b,Xb,h).

We now define a sequence of recursive functions Xb,0, Xb,1, Xb,2 . . . where Xb,0 is the

designated starting term. We start by characterizing the properties of Xb,0. For each

t ≤ b, let

Xb,0(t) =


1 if xtb,0 < 0

1− xtb,0 if xtb,0 ∈ [0, 1]

0 if xtb,0 > 1

(2)

where

xtb,0 = sup

{
x ∈ [0,∞) | Ui(b,Xb,0) ≤ lim

s↑t
Ui(s,X

x
b,0)

}
(3)

and Xx
b,0 is a function defined as

Xx
b,0(s) =

1− x for s < t

1 for s ≥ t
. (4)

for any s ∈ R given b, x, and t. Otherwise, Xb,0(t) = 1 for all t > b. Intuitively

speaking, xtb,0 represents for a given customer i the maximal expected share of the other

η − 1 customers that can arrive simultaneously at time t such that customer i yields at

least the same expected utility by arriving immediately before time t compared to that

of arriving at time b, assuming that the remaining expected share of customers 1 − xtb,0
arrived before the arrival of customer i. Note that xtb,0 is uniquely determined for each t

since lims↑t Ui(s,Xx
b,0) is strictly decreasing in x. This claim follows immediately by the

preemption property of the LCFS-PR discipline. Therefore, the higher expected share of

customers arriving exactly at time t, the longer customer i is expected to wait in line before

service completion. Note also that A0(b) exists and that Xb,0, by construction, is strictly

increasing over the interval [A0(b), b] since the utility function V is strictly decreasing over

both departure and waiting time. Figure 2 graphically illustrates an example of Xb,0.

We next characterize the recursive statement of Xb,h for each h > 0. Suppose that

Xb,h−1 has been defined for h > 0. For each t ≤ b, let

Xb,h(t) =


Xb,h−1(t) if xtb,h < 0

Xb,h−1(t)− xtb,h if xtb,h ∈ [0, Xb,h−1(t)]

0 if xtb,h > Xb,h−1(t)

(5)
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t

1− xs
b,0

xs
b,0

1

bs

Xb,0

0a

Fig. 2: Example of Xb,0: The constant b is an arbitrarily fixed point in time for which Xb,0(t) = 1 for all

t ≥ b. Note that Xb,0 is continuous and strictly increasing over the time interval [a, b] where a = A0(b).

where

xtb,h = sup

{
x ∈ [0,∞) | Ui(b,Xb,h) ≤ lim

s↑t
Ui(s,X

x
b,h)

}
(6)

and Xx
b,h is a function defined as

Xx
b,h(s) =

Xb,h−1(t)− x for s < t

Xb,h−1(s) for s ≥ t
. (7)

for any s ∈ R given b, h, x and t. Otherwise, Xb,h(t) = 1 for all t > b. Intuitively

speaking, xtb,h represents for a given customer i the maximal expected share of η − 1

customers that arrive simultaneously at time t such that customer i yields at least the

same expected utility by arriving immediately before time t compared to that of arriving

at time b, assuming that an expected share of customers, Xb,h−1(t) − xtb,h, have arrived

before the arrival of customer i, and that the remaining expected share of customers,

1−Xb,h−1(t), arrives according to Xb,h−1. Note that xtb,h is uniquely determined for each t

since lims↑t Ui(s,Xx
b,h) is strictly decreasing in x. This claim follows by a similar argument

to that presented for h = 0. Note also that Ah(b) exists and that Xb,h, by construction,

is strictly increasing over the interval [Ah(b), b] since the utility function V is strictly

decreasing over both departure and waiting time.

The recursive process yields the sequence Xb,0, Xb,1, Xb,2, . . . which is bounded and

monotonically decreasing with Xb,0(t) ≥ Xb,1(t) ≥ . . . over h ∈ N and for all t ∈ R. It thus

follows by the monotone convergence theorem that the sequence is convergent. Let Xb(t) =

limh→∞Xb,h(t) denote the limit of the sequence at each t, and let A(b) = limh→∞Ah(b).

Figure 3 graphically illustrates an example of a recursive sequence Xb,0, Xb,1, . . . that

converges towards the limit Xb.

So far b has been fixed. We now define a family of functions {Xb}0<b<∞ where for each

b, Xb is the limit of the convergent and recursive sequence {Xb,h | 0 < b <∞}h∈N. For each
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Xb,0(s) � xs
b,1

xs
b,1

1

bs0a

Xb,0(t)

Xb,1(t)

Xb,2(t)

...

Xb(t)

Fig. 3: Example of a recursive sequence Xb,0, Xb,1, . . . : As the number of iterations h increases, the hth

recursively stated term Xb,h converges towards the limit Xb. Note that Xb is continuous and strictly

increasing over [a, b] where a = A(b).

member of {Xb}, we examine whether it represents an equilibrium strategy. Specifically,

we establish a value of b for which the member of {Xb} satisfies the following three criteria:

(1) Xb is non-decreasing and right-continuous over R, (2) limt→∞Xb(t) = 1, and lastly

(3) for any customer i, Ui(t,Xb) ≥ Ui(s,Xb) for each t ∈ R where 0 < Xb(s) < Xb(t) for

all s < t, and moreover, Ui(b,Xb) ≥ Ui(q,Xb) for all q ≥ b.3

First we note that Xb satisfies criteria (1) and (2) for any value of 0 < b <∞, by con-

struction. We also note that Xb only satisfies criteria (3) for values of b where A(b) = 0.

We then make the following observations:

(i) For b being sufficiently close to ∞, then A(b) > 0. This follows from observing that

A is monotonically increasing in b.

(ii) For b being sufficiently close to 0, then A(b) < 0. This follows by the inverse argu-

ment of (i).

(iii) A(b) is continuous at all b. This follows by construction of Xb and A.

Combining (i), (ii) and (iii), there must exist a b = b∗ such that Xb∗(0) = 0 with A(b∗) = 0.

Figure 4 graphically illustrates an example of such Xb∗ . It thus immediately follows that

Xb∗ represents a strategy that constitutes a symmetric equilibrium. �

We next address the uniqueness of an equilibrium strategy.

Lemma 6 There exists at most one strategy F that constitutes a symmetric equilibrium

for a queueing game G.

Proof. We prove by contradiction. Let F and F̃ be two distinct equilibrium strategies

such that F 6= F̃ . Let b = min{t | F (t) = 1} and b̃ = min{t | F̃ (t) = 1}. In what follows,

we distinguish between the following three cases of b and b̃:

3Note that property (3) is an alternative statement of the equilibrium definition (Definition 1) where

Xb need not have a well-defined support set.
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1

b2b1 b⇤0

Xb⇤(t)

Xb2(t)

Xb1(t)

Fig. 4: Example of {Xb}0<b<∞: All members of {Xb} for which b 6= b∗ yields A(b) 6= 0. Only the member

of {Xb} for which b = b∗ represents an equilibrium strategy as A(b∗) = 0.

b < b̃: In this case, it immediately follows that Ui(t, F ) > Ui(t, F̃ ) for all t ∈ [0, b] and any

i ∈ N . Let s = max{t | F (t) = F̃ (t), 0 ≤ t < b} be the latest point in time at which

the two strategies intersect. Note that s exists and is uniquely determined since F

and F̃ are continuous, F (0) = F̃ (0), and b < b̃. It then follows that the expected

share of customers arriving from time s up until time b is strictly larger under F

than that under F̃ ; hence, Di(d | s, F ) ≤ Di(d |, s, F̃ ) for all d with strict inequality

at some d. Thus Ui(s, F ) < Ui(s, F̃ ) for any i by Lemma 1. This contradicts the

assumption that F provides higher expected utility than F̃ , thus proves that F and

F̃ cannot both be an equilibrium strategy.

b > b̃: The case is symmetric to that of b < b̃ and thus omitted.

b = b̃: In this case, it immediately follows that Ui(t, F ) = Ui(t, F̃ ) for all t ∈ [0, b] and any

i ∈ N . Let s = max{t | F (t) 6= F̃ (t), 0 ≤ t ≤ b} be the latest point in time where

F and F̃ do not intersect, and note that this point always exists since F and F̃ are

continuous and F 6= F̃ . Moreover, f+(s) and f̃+(s) denote the right-derivative of F

and F̃ at point s, respectively. Then one of the following cases must hold:

(i) F (s) > F̃ (s) and f+(s) < f̃+(s)

(ii) F (s) < F̃ (s) and f+(s) > f̃+(s)

If case (i) holds, then there must exist an ε > 0 (sufficiently small) such that F (s)−
F (s−ε) < F̃ (s)−F̃ (s−ε). For such ε, it follows that Di(d | s−ε, F ) ≥ Di(d | s−ε, F̃ )

for all d with strict inequality at some d, hence Ui(s − ε, F ) > Ui(s − ε, F̃ ). This

contradicts that Ui(t, F ) = Ui(t, F̃ ) for all t ∈ [0, b]. A symmetric argument holds in

case (ii); hence, proving that F and F̃ cannot both be an equilibrium strategy.

We have thus shown that there cannot exist two distinct strategies F and F̃ with F 6= F̃

where both constitute a symmetric equilibrium, hence proven Lemma 6. �
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Lemma 5 and 6 thus complete the proof of Theorem 1.

4 Computational Results

This section presents a numerical method to compute an equilibrium strategy for a queue-

ing game G, and moreover, demonstrates a numerically computed example of such equi-

librium strategy (Section 4.1). We subsequently establish the social efficiency of the com-

puted equilibrium example (measured via the price of anarchy) and compare it to the social

efficiency obtained in a corresponding queueing system that employs the FCFS service dis-

cipline (Section 4.2). To obtain tractable numerical solutions for the LCFS-PR game, we

shall restrict attention only to games of two customers with independent, identical and

exponentially distributed service time requirements.

We start by deriving a mathematical expression of Di for the LCFS-PR queueing game

with two customers. The expression is stated in the following lemma.

Lemma 7 For any queueing game G where η = 2 and S is identical, independently and

exponentially distributed, let F be a strategy with b = min{t | F (t) = 1} < ∞. Then the

cumulative departure time distribution Di can be expressed as

Di(d | t, F ) =
∑
a≤t

IaG(d− t;µ) +

∫ t

−∞
f+(a)G(d− t;µ)da

+
∑
t<a<b

Ia (G(a− t;µ)G(d− t;µ) + (1−G(a− t;µ))H(d− a; 2, µ))

+

∫ b

t
f+(a) (G(a− t;µ)G(d− t;µ) + (1−G(a− t;µ))H(d− a; 2, µ)) da

for each t ≥ 0 where G is the cdf of the exponential distribution, H is the cdf of the Erlang

distribution, and Ia is the size of jump discontinuity of F at point a, in the sense that

G(x;µ) =

1− e−µx if x ≥ 0

0 if x < 0

H(x; k, µ) =

1−∑k−1
m=0

1
m!e
−µx(µx)m if x ≥ 0

0 if x < 0

Ia =

F (a)− lims↑a F (s) if F (a)− lims↑a F (s) > 0

0 otherwise

for any x, a ∈ R.

Proof. The proof is relegated to Appendix A.1 as it requires additional notation to describe

the stochastic queueing process and its sample path relations.
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4.1 Numerical Procedure and Results

We now present a numerical method to compute an equilibrium strategy. The method is

a discretized variant of the constructive proof of Lemma 5. Figure 5 depicts a flowchart of

the general numerical procedure. For a given set of inputs, the method performs a search

for the value b that induces a function Xb which constitutes an equilibrium strategy. Note

that the number of required iterations for the search of b to converge is a function of the

tolerance parameter ε. For any equilibrium strategy with b 6= 1, the search method (which

combines a linear and binary search) requires multiple, and possibly many, iterations of b

before convergence.

Start

Inputs:

– Service time distribution S
– Population size η = 2
– Utility function V
– Tolerance parameter ε > 0
– Time discretization parameter ∆ > 0
– Initial search parameter α = 0
– Indicator parameter γ = 0

Set b = 1

Compute Xbb := 1
2 (α+ β) b := α+ 1

Xb(0) ≤ ε

γ := 1

α := bγ = 0

A(b) ≤ εβ := b

End

no

yes

no

yesno

yes

See Appendix A.2 for a

numerical procedure under

exponential service times

Search Method for b

Fig. 5: Flowchart of the numerical procedure: Each geometric shape represents an action within the

method. That is, the rounded squares are the start and ending, the trapezium is the exogenous inputs,

the squares are steps in the process, and circles are binary decisions (yes/no) based on a question. The

arrows indicate the flow from one action to another. Note that := is the assignment operator that changes

an existing variable’s value.

We next apply the numerical procedure to compute an equilibrium strategy under

exponential service time which is depicted in Figure 6. The figure illustrates a recursive

sequence {Xb,h}h∈N for b = 4.00 that convergences at h = 14 and represents an equilib-

rium strategy. Intuitively speaking, the symmetric equilibrium prescribes a strategy for
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which each customer arrives according to a strictly increasing probability distribution that

extends over the interval from the opening time and up until time 4.00.

0 1 2 3 4 5
0

0.2

0.4

0.6

0.8

1

t

Xb,0

Xb,1

Xb,2

...
Xb,12

Xb,13

Xb,14

Fig. 6: Numerically computed equilibrium strategy: Example of a strategy that constitutes a symmetric

equilibrium in a queueing game G where η = 2, V (t, d) = −d0.5(d − t)0.8, S is identical, independently

and exponentially distributed with rate µ = 1, and ∆ = 0.1, ε = 0.001. The function Xb,14 represents

an equilibrium strategy in the sense that it approximates the convergent limit of the recursive sequence

{Xb,h}h∈N with respect to the tolerance parameter ε.

4.2 Price of Anarchy (LCFS-PR vs. FCFS)

We measure the social inefficiency of the queueing game via the price of anarchy (PoA)

which corresponds to the ratio of the aggregate expected utility in the Nash equilibrium, to

that of the socially optimal solution. Naturally, the socially optimal solution depends on

the restrictions imposed on the central planner. Similarly to Juneja and Shimkin (2013),

we consider the case where the central planner is allowed to schedule arrivals based on

observed service completions.4 For the considered queueing game with only two customers,

the socially optimal solution is that where one customer starts service at time 0 and the

other starts service immediately after the departure of the first customer with no idleness

at the server. Formally, let W denote the (random) sum of the two customers’ utilities in

the socially optimal solution. Let S1 and S2 be the (random) independent, identical and

exponentially distributed service time requirements of the customers. The expected value

of W conditional on S1 and S2 is then given by

E[W | S1,S2] = V (0,S1) + V (S1,S1 + S2)

where E is the expectation operator. Note that the sum of two independent and identically

exponentially distributed variables follows an Erlang distribution with shape 2. Let g(x;µ)

4Another option is to assume that the arrival times must be prescheduled, with no feedback on service

completions. While this may pose a reasonable choice for the present queueing game, finding the optimal

schedule for this problem is a hard global optimization problem, and typically can only be solved using

heuristic or approximation algorithms.
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and h(x;µ) denote the density function at x for the exponential and Erlang distribution

with rate µ and shape 2, respectively. Then the expected sum of customer utilities for the

socially optimal solution is given by

E[W] =

∫ ∞
0

∫ ∞
0

(V (0, s) + V (s, z)) g(s;µ)h(z;µ)dsdz. (8)

Let U∗i denote the expected utility for customer i induced by the equilibrium strategy for

a queueing game with η = 2, then PoA is given by

PoA =

∑
i U
∗
i

E[W]
. (9)

Table 1 reports the approximated value of PoA in the specific queueing game considered

in Figure 6 for which the utility function is given by V (t, d) = −d0.5(d − t)0.8 and the

service time requirement S is exponentially distributed with rate 1. The table also reports

the approximated PoA obtained by a corresponding queueing game with the FCFS service

discipline as studied by Breinbjerg (2017).5 For the FCFS queueing game, they numerically

computed an equilibrium strategy for a similar queueing game with η = 2, V (t, d) =

−d0.5(d− t)0.8, S is exponentially distributed with rate µ = 1, and ∆ = 0.1, ε = 0.001 (see

Breinbjerg, 2017, Figure 6). For such a corresponding game, they find that the symmetric

equilibrium prescribes a strategy for which both customers arrive with certainty at the

opening time zero. When comparing the two approximated values of PoA, we find that

the FCFS queueing game yields a lower PoA compared to that of the LCFS-PR queueing

game. This means that arrival time incentives provided by FCFS service discipline lead to

lower social inefficiency compared to those by the LCFS-PR discipline. Hence, the general

social efficiency bounds established in Platz and Østerdal (2017) does not hold for the

queueing game with a finite number of customers as considered by the present paper.

Table 1: Price of Anarchy for LCFS-PR and FCFS∑
i U
∗
i E[W] PoA

LCFS-PR -2.230 -2.129 2.094

FCFS -1.925 -2.129 1.808

Note: Approximated PoA values for a queueing game with η = 2,

V (t, d) = −d0.5(d − t)0.8, S being exponentially distributed with rate

µ = 1, and ∆ = 0.1, ε = 0.001 under the LCFS-PR and FCFS service

discipline, respectively.

5Breinbjerg (2017) considers an almost identical queueing game to the present paper with the exception

that customers arrive to a FCFS queueing system where they are not allowed to arrive before the opening

time. However, this assumption does not affect the equilibrium properties in the LCFS-PR queueing game

since customers will never choose to arrive before the opening time. Hence, the present queueing game

can be directly compared to the FCFS queueing game.

16



5 Conclusion

We have examined the strategic choices of arrival times into a queueing system that

employs the LCFS-PR service discipline, where each customer wants to complete service

as early as possible while spending a minimum amount of time in the queue. Our main

contributions include (1) establishing the existence and uniqueness of a strategy that

constitutes a symmetric Nash equilibrium, and (2) numerically demonstrating an example

for which the LCFS-PR service discipline induces lower social efficiency than that induced

by a similar queueing game that employs the FCFS discipline.

The symmetric equilibrium in our LCFS-PR queueing environment prescribes a (mixed)

arrival time strategy that represents a continuous and strictly increasing probability dis-

tribution that extends over a bounded interval of time. We note that these equilibrium

properties are qualitatively similar to that established by Platz and Østerdal (2017) for

the Last-Come First-Service discipline. While we restricted attention to queueing environ-

ments in which customers could arrive before the opening time and had preferences over

early service completion and waiting time, the basic approach of the constructive proof of

existence carries over to variants of such assumptions.6

Our numerical results for the symmetric equilibrium suggest that the LCFS-PR service

discipline provides incentives for arrival times which lead to higher social inefficiencies

compared to those provided by the FCFS discipline. This is in opposition to the result

that FCFS constitutes the lower bound of social efficiency (Platz and Østerdal, 2017). A

possible explanation for why the LCFS-PR discipline provides lower social efficiency in

our queueing environment, may be the additional inefficiency caused by the property of

preemption. As any newly arrived customer may preempt the service progress of another

customer, the customers must arrive in equilibrium according to a probability distribution

that extends over an “excessively” large interval of time in order to mitigate the expected

disutility of being preempted after arrival. A further and more comprehensive study of

the impact of preemption on social inefficiency propose an interesting challenge for future

research.

Finally, the LCFS-PR queueing game may be further extended in other important di-

rections. One is to extend the equilibrium analysis to allow for asymmetric solutions. This

was recently done for a FCFS queueing game with no closing time, where it was shown

that any equilibrium strategy is in fact symmetric and unique (Juneja and Shimkin, 2013).

While such uniqueness does not necessarily hold for games with closing times, it may

6For example, customers may not only care about early service completion, but rather about the

number of customers who arrived ahead of them. This is the case for concerts or flights with unmarked

seats, where there is no actual penalty for being served late unless other customers have arrived and taken

hold of the better seats. This disutility is modelled as an order penalty and was recently introduced by

Ravner (2014).
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extend to games with more general classes of preferences. Another direction is to com-

prehensively study the differences in social efficiency induced by the FCFS and LCFS-PR

service disciplines. This could be done for various combinations of customer population

sizes, service times distributions (e.g. non-exponential distributions with decreasing haz-

ard rate, heavy tailed, etc.) and utility functions. A third direction is the consideration

of heterogeneous (multiclass) customers. This has for example been considered lately in a

FCFS queueing environment by Guo and Hassin (2012). A fourth direction is to consider

target time preferences where customers have a target time at which they wish to get to

their destination, and are accordingly penalized for being too early or too late. The late-

ness penalty considered in the present paper, is a special case of such preferences where

the target time equals the opening time of the facility. A fifth direction is the consid-

eration of queueing games with multiple servers. This has recently been considered by

Haviv and Ravner (2015) who examine a multi-server system with no queue buffer, where

customers are interested in maximizing the probability of obtaining service.

A Appendix

A.1 Proof of Lemma 7

We start the proof by the following observation: A customer’s waiting time when queueing

under the LCFS-PR service discipline is independent of the queue length she faces upon

arrival, since the discipline allows the customer to suspend the whole queue until after

she completes her service. Thus, without loss of generality, we may say that the customer

arrives at an idle server. A customer’s waiting time in a LCFS-PR queue is then identical

to the period of time between when the customer arrives to an empty system and when she

departs while leaving behind an empty queue. A customer therefore only cares about the

expected share of η−1 customers that has arrived up until her arrival and their respective

service time requirements.

To capture such a concept of waiting time, we start by introducing some notation. Let

A denote the (random) arrival time of one of the two customers, and let {Sj}j∈{1,2} be

a sequence of (random) service time requirements, such that Sj is the service time of the

jth customer to start service. For any customer i ∈ {1, 2}, let Ri denote the (random)

residual service time of customer i if preempted prior to service completion. Moreover, let

Di(t) denote the (random) departure time of customer i when she arrived at time t and

the other customer arrived at A. The departure time of customer i satisfies for each t ≥ 0

the following sample path relation:

Di(t) =

S2 + t if A ≤ t
1{S1+t≤A}(S1 + t) + 1{S1+t>A}(A + S2 + Ri) if A > t
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Intuitively, the sample path above describes the cases for which customer i is preempted

or not prior to service completion. That is, in the event of [A ≤ t], customer i possibly

preempts the customer already residing in the queue and completes her service after S2

time units. In the event of [A > t], customer i is the first to arrive at the system and is

possibly preempted prior to service completion. That is, in the event that [S1 + t ≤ A]

then customer i departs the system at time S1 + t before the other customer arrives at A.

Otherwise, if [S1 + t > A], then customer i is preempted and does not depart the system

until the other customer has competed her service and i has competed her residual service

requirement, i.e. she departs at time A + S2 + Ri.

Fix a strategy F and let A ∼ F . Moreover, let Sj ∼ G for any j where G is the

exponential probability distribution, such that for any x ∈ R

G(x;µ) =

1− e−µx if x ≥ 0

0 if x < 0

and g(x;µ) denote the density of G at x. We then characterize the probability of the event

[Di(t) ≤ d] conditional on A, S1 and S2, which equals zero for any d < t, and otherwise

is given by

Pr {Di(t) ≤ d | S1,S2,A} = E
[
1{Di(t)≤d} | S1,S2,A

]
= 1{A≤t}G(d− t;µ)

+ 1{A>t}
[
1{S1+t≤A}G(d− t;µ) + 1{S1+t>A}H(d−A; 2, µ)

]
for any 0 ≤ t ≤ d, where H denotes the Erlang probability distribution defined by

H(x; k, µ) =

1−∑k−1
m=0

1
m!e
−µx(µx)m if x ≥ 0

0 if x < 0
.

Note that the memoryless property of the exponential distribution implies that the distri-

bution of the residual service times does not depend on how long a customer has been in

service prior to preemption since the remaining time is still probabilistically the same as in

the beginning of her arrival time. That means that customer i’s departure time is the sum

of two independent, identically and exponentially distributed variables (or equivalently,

Erlang distributed with shape 2) with location at time A in the case she is preempted.

Consequently, the conditional probability Pr {Di(t) ≤ d | S1,S2,A} is therefore indepen-

dent of S2.

We next characterize Di by marginalizing out the variables A and S1 such that

Di(d | t, F ) = Pr {Di(t) ≤ d}

=

∫
S(F )

∫
S(G)

Pr {Di(t) ≤ d | S1,S2,A}dG(s− t;µ)dF (a)

=

∫ b

−∞

∫ ∞
0

Pr {Di(t) ≤ d | S1,S2,A} g(s− t;µ)dsdF (a)
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for each t ≥ 0 where all integrals are Lebesgue integrals and the supremum of the support

S(F ) is given by b. Since F might have points of discontinuity, let Ia denote the jump size

of F at the point in time a, so

Ia =

F (a)− lims↑a F (s) if F (a)− lims↑a F (s) > 0

0 otherwise

for any a ∈ R. Then we may express Di as follows

Di(d | t, F ) =
∑
a≤b

Ia

∫ ∞
0

Pr {Di(t) ≤ d | S1,S2,A} g(s− t;µ)ds

+

∫ b

−∞

∫ ∞
0

Pr {Di(t) ≤ d | S1,S2,A} g(s− t;µ)f+(a)dsda

We next insert the expression for Pr {Di(t) ≤ d | S1,S2,A} and divide the expression in

the two intervals of (−∞, t] and (t, b], respectively, so

Di(d | t, F ) =
∑
a≤t

IaG(d− t;µ) +

∫ t

−∞
f+(a)G(d− t;µ)da

+
∑
t<a≤b

Ia

(∫ a

0
g(s− t;µ)G(d− t;µ)ds+

∫ ∞
a

g(s− t;µ)H(d− a; 2, µ)ds

)

+

∫ b

t
f+(a)

(∫ a

0
g(s− t;µ)G(d− t;µ)ds+

∫ ∞
a

g(s− t;µ)H(d− a; 2, µ)ds

)
da

The claim of Lemma 7 now follows immediately once we note that
∫ a

0 g(s− t;µ) = G(a−
t;µ) and

∫∞
a g(s− t;µ) = 1−G(a− t;µ). �

A.2 Numerical Procedure

We here present a numerical method to compute Xb for a given b. Note that V , η, µ, ε,

∆ and b are exogenous inputs to the procedure:

1. Let T b∆ = {t ∈ {0, 1, 2, . . . } : t∆ < b} be a discretization of the interval [0, b) wrt. ∆.

2. Let Xb,h(s) = 1 for all s ≥ b and all h ∈ N

3. Compute Ui(b,Xb,h) =
∫∞
b V (b, d)dDi(d | b,Xb,h) according to the expression of Di

in Lemma 7 (note that Ui(b,Xb,h) is the same for all h ∈ N).7

7We can further reduce the expression of Di in the context of the constructive procedure in Lemma 5.

That is, for a given customer i the procedure considers the other customer’s strategy to be such that only

one jump occurs immediately after the point in time that customer i arrives. Thus, the Di in this context

can be expressed as

lim
s↑t

Di(d | s, F ) = lim
s↑t

F (s)G(d− t;µ) + ItH(d− t; 2, µ)

+

∫ b

t

f+(a) [G(a− s;µ)G(d− s;µ) + (1−G(a− s;µ))H(d− a; 2, µ)] da
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4. Let h = 0 and sequentially compute Xb,0(t) for each t ∈ T b∆ according to equation

(2).

5. Assign h := h + 1 and sequentially compute Xb,h(t) for each t ∈ T b∆ according to

equation (5).

6. If Xb,h(t)−Xb,h−1(t) ≤ ε for all t ∈ T b∆ then let Xb = Xb,h and stop procedure

7. Else, go back to step (5) and begin the next iteration of h.

Remark 1 Although the considered queueing game allows customers to arrive on the

real line, we restrict ourselves only to compute the image of Xb,h at non-negative points in

time. This is done to save computing time, as we know the equilibrium strategy constitutes

a probability distribution with support on the non-negative real line.
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