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Abstract

We consider the assignment of jobs to agents in a stochastic and dynamic setting. Focus is
on a dynamic scenario with due dates and service levels reflecting the completion of jobs within
certain deadlines. Due dates and other relevant characteristics for currently uncompleted jobs
generated in the past are known, but the consumption of resources needed for their completion
is stochastic. Distributions for the generation of future jobs as well as their characteristics are
known. Capacity is limited, and an arriving job that cannot be assigned to an agent within
its due date must be outsourced. Outsourcing is accompanied by a cost. We develop an
optimization model based on column generation for the assignment of known and future jobs to
agents such that the expected cost of outsourcing is minimum. The model is an extension of a
generalized assignment problem and provides an allocation of known as well as tentative future
jobs to agents. The model is embedded in a rolling horizon framework and subjected to a series
of computational tests. The results indicate that taking stochastic information about future job
arrivals into account in the assignment of jobs to agents implies an improved performance. The
model is highly relevant in the context of patient scheduling in an operating theater. For this
reason patient scheduling constitutes the storyline in the development of the model.

Keywords: Surgery Allocation, Generalized Assignment Problem, Stochastic Knapsack Problem,
Column Generation, Simulation
JEL code: C61, MSC codes: 68M20, 90C11, 90C39

1 Introduction

Surgical costs account for a significant share of total hospital costs, and the operating theatre (OT)
is a pivotal cost driver at any hospital. Part of this cost arises from salary to staff as well as
capital costs of having the operating rooms (ORs) available with the necessary equipment. Efficient
scheduling of resources is the key to keeping costs under control. Scheduling is challenged by several
factors. First, the underlying problem is combinatorial by nature and is often subject to constraints
making it hard to solve. Second, decisions are made in a dynamic environment with new patients
arriving continuously.1 Third, surgery times are stochastic and should be treated accordingly. These
factors in combination make scheduling decisions for an OT particularly difficult.

Running an OT requires decisions within different time horizons. Long term decisions relate
to the strategic level of planning and address the issue of capacity, while medium and short term
decisions relate to allocation and scheduling of capacity with an increasing level of detail (May et al.,

1For this reason, a rescheduling is required on a regular basis.
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2011). To illustrate by an example, the number of surgeons is decided and allocated to blocks of
surgery at the medium term, and patients are next allocated to blocks of surgery at the short term.

Different levels of planning require different types of data. At the long term, data is highly aggre-
gate and must be forecasted. The movement into a shorter time horizon requires more disaggregate
data and provides the possibility for more precise schedules and allocations (Bitran and Tirupati,
1993). The focal point in the literature concerning short term scheduling is the allocation of patients,
who have arrived and been diagnosed. The point to be made in the context of the present study
is that future patient arrivals are ignored or addressed by a simple assignment of unused blocks to
potential future arrivals. However, data on already arrived patients as well as the distributional
characteristics of future arrivals can usually be made available and used for an optimized allocation
of surgery dates to patients. For example, future cancer patients often require treatment within the
planning period and must be handled as an integral part of the planning process. We know the
number of already arrived and diagnosed cancer patients. We do not know the precise arrival times
and diagnoses of future patients, but an estimate of the number of cancer patients arriving during
the next planning period can be made available and taken into account in the planning process.

In this paper we focus on the medium term assignment of patients to surgery dates. We introduce
the dynamic aspect into a combinatorial model with stochastic surgery times by utilizing information
on potential future patient arrivals. The model yields surgery dates for patients known to the system
as well as tentative surgery dates for potential patients who have not yet arrived. It allocates patients
and potential surgeries to combinations of surgeons and dates such that the expected overtime for
surgeons is minimized while minimizing the tardiness of the system and ultimately the expected
number of patients who cannot be treated within a predefined deadline. To test the effect of different
allocation policies for the OT we embed this model into a rolling horizon framework simulating
patient arrivals.

The underlying combinatorial model is a generalized assignment problem (GAP), where already
arrived patients are assigned to a combination of a surgeon and a date. Potential future patients
are also assigned to a surgeon-date combination, and the GAP model is augmented by a set of
service-level constraints measuring the expected number of future and not yet arrived patients who
cannot be treated within a prespecified deadline given the already allocated surgeries of potential
patients. The assignment of more potential surgeries to the available surgeon-date combinations will
lower the expected number of patients not treated within the relevant deadlines and increase the
level of service. However, surgery times are stochastic, and the assignment of more known as well as
potential future patients to any given surgeon-date combination involves a higher risk of overtime for
the surgeon on that day. Overtime in turn increases the direct cost of the schedule. In addition, the
need for reassignment of patients to a new day for surgery due to a violation of a surgeon’s maximum
workload increases. We model this by a strictly convex cost function in expected overtime.

A column-generation-based method is developed for solving the augmented GAP. The main
variables in the problem correspond to feasible allocations of known patients and potential surgeries
to surgeon-date combinations. The number of such variables is huge, and for this reason the relevant
columns are generated by solving a set of pricing problems – one for each surgeon-date combination.
The pricing problems turn out to be variants of the stochastic knapsack problem. We utilize a
dynamic programming method based on a shortest path problem with resource constraints on an
acyclic graph to solve the stochastic knapsack problem.

The main contributions of the paper are:

1. An explicit modeling of stochastic arrival processes and service times, where the stochastic
future arrivals are incorporated into the planning problem.

2. The application of a strictly convex cost function for expected overtime.

3. The extension and embedding of a static one-period stochastic scheduling model into a dynamic
setting.
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The paper unfolds as follows. Section 2 provides a brief review of the relevant literature related
to GAP and surgery scheduling. The augmented GAP model is developed in Section 3. It is
described in detail how to set up constraints measuring and maximizing the service level, how to
set up an extensive formulation of the surgery scheduling problem, and how to generate schedules
for individual surgeon-date combinations. The static model is embedded into a rolling time horizon
simulation in Section 4, and the performance of different allocation policies is tested in Section 5.
Finally, concluding remarks are given in Section 6. All proofs are provided in the appendix.

2 Related literature

The assignment of patients to available surgeons on any given day in a deterministic scenario is
a Generalized Assignment Problem (GAP), where each patient must be assigned to exactly one
surgeon, and surgeons may be assigned multiple tasks. Each surgeon has a capacity, for example,
in terms of the number of hours available. Patients consume a certain amount of this capacity, and
the combined consumption of resources by patients assigned to any surgeon is not allowed to exceed
his capacity. The GAP to be considered in this paper is stochastic and dynamic.

Moccia et al. (2009) address a stochastic GAP with recourse. A given set of jobs is assigned
to agents, but a random subset of jobs does not need to be processed. The assignment of jobs to
agents is decided a priori, and the recourse is a reassignment of jobs from overloaded agents. The
reassignment of jobs is decided upon once the subset of jobs to be executed is known. Mazzola and
Neebe (2012) consider the GAP over discrete time periods within a finite planning horizon. The
underlying idea is that tasks can be reassigned between agents from one period to another and that
reassignments of this type are accompanied by a transition cost. Kogan and Shtub (1997) suggest
a continuous-time optimal control formulation of the problem with due dates imposed for jobs and
inventory as well as shortage costs incurred when jobs are finished ahead of or after their due dates.
Kogan et al. (2016) extend the dynamic GAP to a stochastic environment.

Our focus is different. We do have a set of jobs to be assigned to agents. Some jobs are known,
while others emanate from our expectations regarding future job arrivals. Capacity is limited, and
jobs that cannot be assigned to an agent must be outsourced. Outsourcing is accompanied by a
cost. The problem is to assign known and currently unknown jobs to agents in such a way that the
anticipated cost of outsourcing is minimum. We consider the dynamic scenario with due dates for
jobs and imposed service levels reflecting a policy for the completion of jobs within certain deadlines.
A policy stating that, say, 75% of all jobs of a certain type must be completed no later than two
weeks after their arrival is an example. The scenario is highly relevant in the context of patient
scheduling in an OT, which for this reason defines the storyline in the development of the model. In
addition, planning and scheduling of an OT is of significant importance per se, and many variants
have been studied in the literature. Several reviews exist – see, for instance, Cardoen et al. (2010),
May et al. (2011), Guerriero and Guido (2011), Hulshof et al. (2012), and Demeulemeester et al.
(2013). On-line bibliographies are maintained by Dexter (2016) and Hulshof et al. (2011).

Deterministic models are common in cases with many interrelated resource constraints. Pham
and Klinkert (2008) consider surgical scheduling in the context of a generalized job shop problem and
solve this by Mixed-integer Programming. Gartner and Kolisch (2014) set up MIP models with a
focus on maximizing the contribution to margin. This model is embedded into a rolling horizon, and
the authors show that the time between admission and surgery can be reduced significantly. Riise
et al. (2016) see the surgery scheduling problem as a resource-constrained project scheduling problem
and argue that this formulation can be used to solve several variants of the surgery scheduling
problem. These studies share a focus on the combinatorial aspect of the problem.

Another approach for allocating patients to days is to view the system as a make-to-order (MTO)
system with zero inventories. Accordingly, each patient’s request for surgery is treated as an order,
which is back-logged to be produced in the (near) future. The focus in MTO systems is on customer
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satisfaction – see, for example, Jalora (2006) – which often translates into service levels. However,
it is not always possible to satisfy all orders, and for this reason a rejection of certain orders may
be necessary. This is in focus in the Order Acceptance and Scheduling Problem. Examples can be
found in Ebben et al. (2005) and Mestry et al. (2011) as well as in the review by Slotnick (2011).

Gerchak et al. (1996) assume that patient arrivals are independent and identically distributed
(i.i.d.) as are surgery times. They set up a dynamic programming model maximizing profits, where
a unit-time penalty is paid for overtime. Likewise, Min and Yih (2010) allocate patients based on
priority when surgery times are i.i.d. and the capacity is scarce. The focus in these papers is on
dynamic and stochastic aspects of surgery scheduling.

Blake and Donald (2002) use a mixed integer linear programming model to allocate blocks of
time in ORs to specific departments. Vissers et al. (2005) construct a so-called cyclic master surgery
schedule, where the number of patients in each category scheduled for a day is determined such that
a target throughput for respective categories is achieved. The allocation of blocks of surgery time to
operating rooms is also in focus by Denton et al. (2010). Their model minimizes the cost of opening
ORs as well as the cost of overtime in a stochastic setting. The authors consider blocks of time
rather than individual patients. Their approach can be seen as a more aggregate model compared
to the one to be suggested in the present paper.

Hans et al. (2008) investigate the (single day) surgery loading problem, where surgery times
are uncertain, and patients are allocated to ORs, such that the probability for violating a hard
daily limit is bounded. Lamiri et al. (2008) develop a column generation model for assigning elective
patients to combinations of ORs and days, where elective patients are mixed with emergency patients
in the ORs. For each OR-day combination the authors use a stochastic variable representing the
time used for emergency patients and in this way obtain an expected overtime. Surgery times for
elective patients are assumed to be deterministic, and the stochasticity of the model is addressed
in the pricing problem. Shylo et al. (2013) assign surgeries to blocks of surgery time such that a
minimal number of blocks are used in the future. They include approximations for both over- and
underutilization of the blocks. Their approach is embedded into a simulation and is shown to be
superior to a first-fit procedure.

The use of methods from management science for the scheduling of OTs with the aim of per-
formance improvement also involves discrete event simulation. Testi et al. (2007) suggest a 3-phase
hierarchical approach for the weekly scheduling of ORs combining optimization and simulation pro-
cedures. A bin-packing problem is solved in order to select the number of sessions to be allocated to
each ward on weekly basis. This is followed by the use of a blocked booking method for determining
optimal time tables in terms of an assignment of wards to ORs. Finally, a simulation tool is used
for an analysis of the performance of the OT under conditions of different sequencing rules. An
investigation of the impact of the choice of appointment system and sequencing rules on waiting
times can also be found in Westeneng (2007) with a focus on outpatient appointment scheduling.
Bowers and Mould (2004) use simulation to explore the balance between maximizing the utilization
of theater sessions while avoiding overruns. VanBerkel and Blake (2007) examine how an increase
in throughput triggers a decrease in waiting time. Cardoen and Demeulemeester (2008) propose a
discrete event simulation approach that allows for an evaluation of multiple clinical pathways and
the inherent uncertainty that accompanies any clinical process. Ma and Demeulemeester (2013) use
discrete event simulation to evaluate and adjust the master surgery schedule in an iterative approach.
This is in turn used to enhance the trade-off between efficiency of resource utilization and the level
of service. Harper (2002) suggests a simulation model for the flow of patients through the hospital
that captures resource consumption over time with a focus on dimensioning. In the context of a
simulation study Kim and Horowitz (2002) explore whether the use of a daily quota system with a
1- or 2-week scheduling window improves the performance of an Intensive Care Unit.

The focus in our paper is on the allocation of patients to combinations of surgeons and days
in a dynamic setting. This is in some contrast to the existing literature, where the focus is either
on capacity or the sequencing of patients. In the literature focusing on sequencing patients are by
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assumption typically known a priori as is the capacity. The capacity problem, the allocation problem,
and the sequencing problem should be solved simultaneously if sub-optimization is to be avoided.
However, the problem to be solved would become highly complex, and it would be very difficult to
obtain a solution with a guaranteed maximum deviation compared to the optimum. We take capacity
for given, too, and address the problem of allocating patients to a set of available combinations of
surgeons and days given a priori while ignoring the sequencing of patients to be addressed at the
operational level. The procedure allows for an allocation of patients taking future expected arrival
patterns into account. Our computational study suggests that an improved performance is obtained
regarding outsourcing of patients because of a violation of imposed due dates or deadlines reflecting
service levels. The aspect to be considered relates to balking in queuing theory and has to the best
of our knowledge not been addressed previously in the literature.

3 A model for patient-to-day allocation

In a deterministic scenario with all data known with certainty the assignment of surgical tasks to
surgeons corresponds to a generalized assignment problem (GAP). A GAP can be decomposed into
a set partitioning problem and a set of knapsack problems – one problem for each surgeon on each
day – and solved by a Branch-and-Price approach (see, e.g., Barnhart et al. (1998)). The model to
be presented does not presuppose deterministic data. By contrast, the model is designed with the
aim of obtaining an improved assignment of surgical tasks to surgeons by incorporating uncertainty
regarding future patient arrivals as an integral part.

The output is a set of schedules for a given set of surgeon-day combinations indicating the
(expected) set of activities to be carried out by that surgeon on that day while ignoring the sequencing
of these activities. Each schedule includes a number of already arrived and known patients along
with a number of slots allocated to potential surgeries for future and not yet arrived patients.2

The model has a finite time horizon split into individual days. The set of days is denoted
D = {1, . . . , D} and is indexed by d and δ. A set of heterogeneous surgeons, S = {1, . . . , S}, is
available to conduct surgeries. The time a surgeon, s ∈ S, is available on day d ∈ D is denoted
Tsd ≥ 0. The cost of surpassing the available time for a surgeon is a non-decreasing convex function
Ωs : R+ → R+ with Ω(0) = 0. Ω(t) measures the cost of having t time units of expected overtime.
A surgeon with no available time on a given day cannot conduct surgeries on that day. We denote
R = {(s, d) ∈ S × D|Tsd > 0} as the set of feasible surgeon-day pairs. The problem is to identify
the cost minimizing assignment of a combination of known and potential future patients to the set
of surgeon-day pairs.

The distinction between known and potential future patients is important. We have information
on arrival dates, due dates, and diagnoses for the set of already arrived or known patients. This
information is for obvious reasons not available for future patients, who have not arrived yet. How-
ever, estimates of within group arrival patterns along with means and variances for the duration of
surgeries are available. We denote C = {1, . . . , C} as the index set for categories of patients. Each
patient belongs to precisely one category, and all patients within a category have the same clinical
pathway. For each c ∈ C we use the following notation:

• Scatc ⊆ S is the set of surgeons who can operate patients in category c.

• Xcd is a stochastic variable corresponding to the number of patients in category c arriving on
day d ∈ D.

• πncd is the probability that n ≥ 0 patients in category c will arrive on day d ∈ D.

2The slots allocated to potential surgeries can in practice be used by the planner to book patients when they arrive
and can be seen as pre-booked surgeries of anonymous not yet known patients.
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• M cat
csd is the maximum number of patients in category c that surgeon s ∈ S can operate on day

d ∈ D.

• Zcatcsj is a stochastic variable with mean µcatcs > 0 and standard deviation σcatcs > 0 of the surgery
time of patient number j = 1, . . . ,maxd∈D{M cat

csd} in category c. Zcatcsj are by assumption i.i.d.
for all j and all days d.

Patient arrivals are by assumption independent.3

At the time of planning, some patients are known, and some of these have already been assigned
to a date of surgery as well as to a specific surgeon. This set of patients still has to be an integral
part of the planning process, since we must account for their surgeries when planning new patients
on the same day. The set of known patients who have arrived and been diagnosed is denoted
P = {C + 1, . . . , C + P}, and for a known patient, p ∈ P, we use the following notation:

• Dp ⊆ D is the set of feasible dates for surgery on patient p ∈ P.

• Spatp ⊆ S is the set of surgeons who can operate patient p ∈ P.

• CPpd is the cost of scheduling patient p ∈ P for surgery on day d ∈ D. If d /∈ Dp then we put

CPpd =∞.

• Zpatp is a stochastic variable with µpatps > 0 and standard deviation σpatps > 0 of the surgery
time.

Each known patient belongs to exactly one category or arriving patients, and we might use the mean
and the standard deviation for the duration of surgery for that category as the relevant mean and
standard deviation for service (i.e., surgery time). We obtain more information, such as age and
co-morbidities, when the patient has arrived, which in turn may have an impact on our estimates
of mean and standard deviation. The mean and variance for the set of known patients in a specific
group is therefore adjusted based on this information, and the mean and standard deviation for
individual patients are allowed to be distinct.

A known patient, p ∈ P, for whom we have fixed a specific date for surgery will have |Dp| = 1,
while a patient for whom we have fixed the surgeon will have |Sp| = 1. Pf = {p ∈ P||Dp| = 1∧|Sp| =
1} is the set of patients with fixed dates and fixed surgeons, and Pu = P \ Pf is the set of patients
for whom either the date of surgery or the surgeon has not been fixed.

3.1 Modeling the service level

The treatment of patients before their due dates and imposed deadlines reflecting service levels are
key issues for most hospitals. For this reason, a model designed to determine the day of surgery
should include performance measures reflecting this issue. This may be obvious for known patients,
but not for patients who have not arrived yet. We model an approximation for the expected number
of future arrivals to be handled within a specific period – the larger the expected share of future
patients to be handled within imposed deadlines the higher the level of service.

Suppose that the target for a category c is to treat, for example, 50% of the patients within
one week, 75% within two weeks, and 90% within three weeks. We set up a measure for this by
constructing a function that measures the expected number of patients in category c violating the
imposed target levels given the number of preallocated surgeries assigned to category c patients in
the future. This number is next compared to the expected number of future patients in category c,
thus obtaining the expected share of patients not treated within the target levels.

We denote Lc as the set of treatment deadlines, for example, Lc = {7, 14, 21}, in the example
above. For each treatment deadline, l ∈ Lc, we define the target portion, Hcl ∈ [0, 1], of patients

3This assumption may not hold true for emergency patients who arrive from, for example, traffic accidents.
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intended to be treated within the deadline, where H14
c = 0.75 in the example above. The requirement

that Hcl percent of patients in category c arriving on day d should be allocated to surgery within l
days translates into the following constraint:

E [Ycdl] ≤ (1−Hcl)E [Xcd] (1)

where Ycdl is a stochastic variable indicating the number of patients in category c arriving on day
d who cannot be allocated to surgery within the target of l days. Clearly, Ycdl depends on the
number of available pre-allocated surgery slots for patient category c after day d. Consider a given
day, d ∈ D, and a given category, c ∈ C. We omit the subscripts for day, category, and deadline to
simplify the notation, (i.e., πn is a shorthand for πncd, X for Xcd, and Y for Ycdl). Suppose that
A ∈ N patients of category c arriving on day d can be allocated to surgery on a future day. Define
a set of stochastic variables as follows:

Y A = (X −A)+, A ∈ N (2)

where (x)+ is shorthand for max{0;x}. Y A measures the number of patients (of category c arriving
on day d) who cannot be allocated to surgery within the imposed deadline. The expected value of
the stochastic variable, Y A, can now be derived as stated in Proposition 1:

Proposition 1. Let X be a discrete stochastic variable having probability πn of attaining value n
and let Y A = max{0, X −A}, where A ∈ N is an exogenously given value. Then

E
[
Y A
]

= E [X]−A+

A∑
n=0

πn (A− n) (3)

Clearly, the expected number of patients who cannot be allocated to surgery decreases when the
number of patients who can be allocated to surgery increases (i.e., when A increases). The expected
number of patients who cannot be allocated to surgery, is only defined for integer values of A. For
model building purposes we approximate this relationship by a continuous piecewise linear function
passing through the points (A,E[Y A]) and (A+ 1,E[Y A+1]) for A ∈ N.

Proposition 2. The straight line passing through both (A,E[Y A]) and (A+1,E[Y A+1]) is described
by the function

fA(x) =

(
A∑
n=0

πn − 1

)
x+ E [X]−

A∑
n=0

πnn (4)

The line fA(x) is of interest only for values of x ∈ [A,A + 1], such that it connects the two points
(A,E[Y A]) and (A + 1,E[Y A+1]). Letting successive functions f0(x), f1(x), . . . , fA(x),... connect
the sequence of points (0,E[Y 0]), (1,E[Y 1]), (2,E[Y 2]), . . ., (A,E[Y A]), (A+ 1,E[Y A+1]), . . . yields
a piecewise linear function:

g(x) =



f0(x), 0 ≤ x < 1
f1(x), 1 ≤ x < 2

...
fA(x), A ≤ x < A+ 1

...

(5)

The function g(x) yields the expected number of patients who cannot be allocated for any value
x ≥ 0 corresponding to a possible number of patient allocations. Figure 1 provides an example of the
functions fA(x) and the function g(x). Proposition 3 states the properties of the shape of function
g:
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Figure 1: Illustration of fA(x) for A = 0, . . . , 3 (dashed lines) and g(x) for X Poisson distributed
with mean 1 (full line).

Proposition 3. Let g : R+ → R be defined by (5) and suppose that the cumulative distribution
function, F , is strictly increasing. Then g is continuous, decreasing, and convex.

The function g(x) is convex and can for this reason be rewritten as follows:

g(x) = max
{
fA(x)|A ∈ N

}
Let y be a variable bounded from below by g(x) for any given x. The following result prevails:

y ≥ g(x) = max
{
fA(x)|A ∈ N

}
(6)

⇒ y ≥ fA(x), ∀A ∈ N (7)

The minimum value of y is attained at g(x). Hence, (7) provides a lower bound on the number of
patients in category c arriving on day d who cannot be assigned to surgery as a function of x.4

3.2 Identification of the cost-minimizing set of schedules

For each day a surgeon is available a number of surgeries are allocated to her or him. We will
refer to such an allocation as a schedule for the surgeon on that given day. All known patients
must be assigned to a specific day as well as a specific surgeon. Schedules may also include a
number of tentative surgeries for patients who may arrive in the future before the relevant day for
the schedule at hand. Hence, a schedule for a surgeon-day combination is an assignment of known
patients in combination with a number of tentative potential surgeries. A schedule for a surgeon-
day combination is said to be feasible if all known patients and planned tentative surgeries can be
operated by the surgeon.

Let I denote the set of all feasible schedules, and let Ir ⊆ I denote the set of feasible schedules
for surgeon-day pairs, r ∈ R. By assumption Ir, r ∈ R, partitions the set of all schedules, I. Let
Idayd = {i ∈ I|i ∈ I(s,d), s ∈ S : (s, d) ∈ R} denote all schedules for a given day, d ∈ D. For each
schedule, i ∈ I, we use the notation:

4Bear in mind that x in turn measures the number of operations for patients in category c arriving on day d, who
can be assigned to a surgeon-day combination within the imposed deadline.
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• cSi is the cost of a schedule, which is composed of the cost of assigning known patients as well
as the cost of expected overtime.

• api ∈ {0, 1} is a parameter equal to 1 if and only if patient p ∈ Pu is included in schedule i.

• bci ∈ N is the number of planned surgeries for arriving patients in category c ∈ C in schedule i.

The values cSi , api, and bci (see Section 3.3) can easily be determined when the subset of patients
from P included in the schedule and the number of planned surgeries in each category are known.
Known but not yet allocated patients can be outsourced if necessary. We let

• COPp be the outsourcing cost of patient p ∈ Pu.

An available surgeon-day combination can be used for surgeries. Otherwise, the OR is not open on
that day. Thus, we denote

• COr as the cost of opening the OR for surgeon-day combination r ∈ R.

The direct costs of a schedule relate to personnel. The indirect costs relate to the cost of outsourcing
known patients, the cost of opening an OR, and the cost of violating imposed service levels. For
each category c ∈ C and each l ∈ Lc we let

• CVcl be the unit cost of violating the required service level l of category c (could be set to ∞
for a hard constraint).

Finally, we need the following variables:

• λi ∈ {0, 1} is a variable equal to 1 if and only if schedule i ∈ I is used in the solution.

• ζp ∈ {0, 1} indicates whether or not patient p ∈ Pu is outsourced.

• ρr ∈ {0, 1} indicates whether or not surgeon-day combination r ∈ R is used.

• xcdδ ≥ 0 is the amount of tentative patients in category c ∈ C arriving on day d scheduled for
surgery on day δ > d.5

• ycdl ≥ 0 is the expected number of patients in category c ∈ C arriving on day d who cannot be
allocated within the maximal time l.

• vcl ≥ 0 is the amount of violation of the required service level.

The number of patients in category c arriving on day d and allocated to a day within planning period
D and no later than the target deadline l ∈ Lc can be computed as:

min{D,d+l}∑
δ=d+1

xcdδ (8)

Tentative patient arrivals on day d with d+ l > D may by assumption be allocated to days beyond
the planning horizon. To be more specific, we assume in case d+l > D that a portion of the expected
patient arrivals are allocated to days beyond the planning horizon and that in the long run patients
are distributed evenly over the potential days for surgery. Accordingly, the tentative number of
patient arrivals allocated to surgery on a day beyond the planning horizon can be computed as
follows:

Ecdl =
max{0; d+ l −D}

l
E[Xcd]

5It should be noted that only some combinations of d and δ are feasible.
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The tentative number of patient arrivals allocated to a specific surgery day, δ, is

δ−1∑
d=0

xcdδ

The suggested model can now be stated as follows, provided that the complete set of feasible schedules
I is known along with the components described above:

min
∑
i∈I

cSi λi +
∑
p∈Pu

COPp ζp +
∑
r∈R

COr ρr

+
∑
c∈C

∑
l∈Lc

CVclvcl (9)

s.t.
∑
i∈I

apiλi + ζp = 1, p ∈ Pu (10)

∑
i∈Ir

λi = ρr, r ∈ R (11)

∑
i∈Iday

δ

bciλi ≥
δ−1∑
d=0

xcdδ, c ∈ C, δ ∈ D (12)

fAcd

min{D,d+l}∑
δ=d+1

xcdδ + Ecdl

 ≤ ycdl, c ∈ C, d ∈ D, l ∈ Lc, A ∈ N (13)

∑
d∈D

ycdl − vcl ≤ (1−Hcl)
∑
d∈D

E[Xcd], c ∈ C, l ∈ Lc (14)

λi ∈ {0, 1}, i ∈ I (15)

ζp ∈ {0, 1}, p ∈ Pu (16)

ρr ∈ {0, 1}, r ∈ R (17)

xcdδ ≥ 0, c ∈ C, d, δ ∈ D (18)

ycdl ≥ 0, c ∈ C, d ∈ D, l ∈ Lc (19)

vcl ≥ 0, c ∈ C, l ∈ Lc (20)

Objective (9) minimizes the total cost of the selected set of schedules, the total cost of outsourcing
known patients, the total cost of opening ORs, and the cost of violating the target service levels.
Constraint (10) ensures that each known patient without a fixed surgeon-day pair either gets allo-
cated to exactly one schedule or is outsourced. Constraint (11) imposes the requirement that each
surgeon-day pair has exactly one associated schedule if the corresponding OR is opened for that
surgeon-day pair. The left-hand side of constraint (12) states the number of available surgeries in
category c on day δ, while the right-hand side measures how many patients in category c arriving
earlier than day δ are allocated to have surgery on day δ. The right-hand side has to be no larger
than the left-hand side, since we cannot operate more patients in category c than planned. The
expected number of patients in category c arriving on day d not allocated to a surgery is measured
by constraint (13).6 The target service level corresponding to equation (1) is enforced in constraint
(14) by putting a bound on ycdl over the planning horizon. If this is not satisfied, then vcl measures
the magnitude of the violation, which is penalized by CVcl in the objective function. Finally, con-
straints (15)-(20) state the variable types. In practice, ζp and ρr are naturally integer as long as all
λi variables are integer. Hence, we relax (16) to 0 ≤ ζp ≤ 1 and (17) to 0 ≤ ρr ≤ 1.

Consider the scenario with an empty set of constraints of type (13). This is the case where future
and currently not known patients are simply not taken into account. A similar situation occurs in

6This constraint corresponds to (7), where x is the amount of expected patients allocated to future surgeries.
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the scenario with CVcl = 0 for all c and l, since a violation of imposed service levels is not penalized
in the objective function. By contrast, Hcl = 1 and CVcl > 0 accompanied by

∑
d∈D ycdl = vcl in any

optimal solution is the case with a penalty imposed whenever a tentative patient cannot be offered
surgery.

The number of constraints of type (13) is in principle not finite since A ∈ N. Hence, we test
whether each of the infinitely many constraints of this type is violated and include violated con-
straints in the problem. Constraints (13) are easy to separate, since we only need to check whether

the constraint for c, d, l, A in
∑d+l
δ=d+1 xcdδ ∈ [A,A + 1[ is fulfilled. We add the relevant constraint

and resolve the problem if this is not the case.
The number of possible schedules for each surgeon-day pair, r, is huge. For this reason we generate

schedules dynamically for the LP relaxation of (9)-(20). We apply the approach known as column
generation to construct an LP lower-bound solution.7 The idea is first to remove the integrality
constraints, (15), thus obtaining an LP relaxation. The number of basic variables cannot exceed the
number of constraints. Hence, most of the scheduling variables, λi, from problem (9)-(20) can be
removed (or implicitly fixed at zero), which in turn provides a restricted version of the LP relaxation
of problem (9)-(20). The optimal solution for the LP relaxation is obtained, provided variables are
removed or fixed at zero in an appropriate way (i.e., when the reduced cost coefficients for these
variables are non-negative). For this reason we compute the minimum reduced cost coefficient over
all variables. If the minimal reduced cost coefficient is negative, the corresponding variable is allowed
to exceed zero. Let βp ∈ R be the dual price for constraint (10) with p ∈ Pu, let αr ∈ R be the dual
price for constraint (11) with r ∈ R, and let γcδ ≥ 0 be the dual price for constraint (12) with c ∈ C
and δ ∈ D. Then the reduced cost coefficient for schedule i ∈ Ir with r ∈ R can be computed as

ci = cSi −
∑
p∈Pu

apiβp −
∑
c∈C

bciγcd − αr (21)

Clearly, we need to identify api and bci as well as the direct cost of the schedule, cSi , in order to
compute the minimum reduced cost schedule. We will return to this in Section 3.3.

3.3 The generation of schedules

Surgeons are assigned to a subset of patients as well as a set of tentative surgeries for future patients
for each day they are available. Allocations of this type are identified for each surgeon-day pair
r = (s, d) ∈ R.8 This has to be done such that we minimize the reduced cost of the schedule (i.e.,
minimize (21) for all feasible schedules, i ∈ Ir). The number of possible schedules for each of the
surgeons increases exponentially with the number of patients that the surgeon can operate on a given
day. We cannot include all feasible schedules in model (9)-(20). Consequently, we generate these
schedules dynamically. In this section we describe a model that approximates costs for potential
schedules and identifies the minimum reduced cost schedule given the dual prices of the LP relaxation
of model (9)-(20). The model is referred to as the pricing problem.

The decisions to be made in the pricing problem are who of the known patients and how many
surgeries of each category of patients are to be included in a surgeon’s schedule on a given day. Let
vp ∈ {0, 1} indicate whether or not patient p ∈ P is included in the schedule, and let wcj ∈ {0, 1}
indicate whether or not patient number j in category c is included. Implicitly we assume that
wcj ≥ wcj+1 (i.e., patient number j + 1 in category c can only be included in the schedule if patient
j in category c is included). A fixed patient, p ∈ Pf , will have the corresponding variable, vp, fixed
to either 0 or 1: vp = 1 if the patient is fixed to surgeon s on day d, and vp = 0 if the patient is
fixed to another surgeon or another day.

7The reader is referred to Barnhart et al. (1998) or Lübbecke and Desrosiers (2005) for an introduction to column
generation.

8An empty allocation is allowed. Empty allocations correspond to the case where the OR for a given surgeon-day
pair is not opened.
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In this section we will treat the surgeon-day pairs individually. For convenience we fix r = (s, d),
and, unless otherwise stated, we let Zcatp = Zcatps , Zcatcj = Zcatcsj , Ω(·) = Ωs(·), T = Tsd, C

P
p = CPpd,

α = αr, and γc = γcd.
The cost of a schedule, cS , depends on the direct costs, CPp , of including patient p ∈ P as well

as the expected overtime cost of the schedule. Let Z denote the total processing time for patients
included in the schedule. Z is the sum of the realizations of the respective stochastic variables, i.e.,

Z =
∑
p∈P

vpZ
pat
p +

∑
c∈C

Mcat∑
j=1

wcjZ
cat
cj (22)

Overtime can now be written as the stochastic variable O = (Z − T )+, and the expected cost of
overtime can be evaluated by Jensen’s inequality (Jensen, 1906): E [Ω (O)] ≥ Ω (E [O]). Accordingly,
the expected cost of a schedule can be computed as

cS =
∑
p∈P

CPp vp + Ω (E [O]) (23)

Consider a solution, i ∈ Ir. vip indicates whether or not patient p is included in the schedule,

and wicj indicates whether or not patient j in category c is included in the schedule. Thus, api = vip

and bci =
∑Mcat

c
j=1 wicj . The reduced cost of a schedule can be obtained by combining (21) and (23):

ci =
∑
p∈P

(
CPp − β

)
vp −

∑
c∈C

∑
j

γcwcj + Ω(E[O])− α (24)

Overtime, O, is computed on the basis of the included number of patients in each category. Hence,
the minimum reduced cost column can be found by solving the following binary problem:

min
∑
p∈P

(
CPp − β

)
vp −

∑
c∈C

∑
j

γcwcj + Ω(E[O])− α (25)

s.t. O =

∑
p∈P

vpZ
pat
p +

∑
c∈C

Mcat
c∑
j=1

wcjZ
cat
cj − T

+

(26)

vp ∈ {0, 1} (27)

wcj ∈ {0, 1} (28)

This problem is a variant of a stochastic knapsack problem (see Kellerer et al. (2004)) where the
upper bound on the consumption of time is replaced by a cost of exceeding the upper bound. By
assumption, we do not have the distributions for the surgery times of individual patients and patient
categories. Only estimates of means and variances are available. For this reason we apply the central
limit theorem to obtain an approximation of the expected overtime as stated in Proposition 4:

Proposition 4. Let Z1, . . . , Zn be a set of independent stochastic variables with means µi and
variances σ2

i for i = 1, . . . , n. Let Z = Z1 + . . . + Zn and O = (Z − T )+ for a constant T ≥ 0.
Denote µZ = µ1 + . . .+ µn and σ2

Z = σ2
1 + . . .+ σ2

n. Then

E [O] ≈ σZ (φ(k)− k(1− Φ(k)))

where φ(·) is the probability density function and Φ(·) is the cumulative distribution function for the
standard normal distribution and k = (T − µZ)/σZ .

Kleywegt et al. (2002) observe without proof an analogous result in the case where the Z variables are
normally distributed and Range et al. (2016) provide a proof for this result which is restated in the
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appendix for completeness. Proposition 4 allows for a modification of (25)-(28) into a model, where
accumulated mean and variance for total surgery time provides the foundation for an approximation
of expected overtime. The resulting model will correspond to the pricing problem in the column
generation:

min
∑
p∈P

(
CPp − βp

)
vp −

∑
c∈C

∑
j

γcwcj + Ω(e)− α (29)

s.t. µZ =
∑
p∈P

vpµ
pat
p +

∑
c∈C

Mcat
c∑
j=1

wcjµ
cat
c (30)

σZ =

√√√√∑
p∈P

vp(σ
pat
p )2 +

∑
c∈C

Mcat
c∑
j=1

wcj(σcatc )2 (31)

k =
T − µZ
σZ

(32)

e = σZ (φ(k)− k(1− Φ(k))) (33)

vp ∈ {0, 1} (34)

wcj ∈ {0, 1} (35)

Objective (29) minimizes the reduced cost coefficient of the solution found. The expected use of
time is calculated in (30) and the corresponding standard deviation in (31). The approximation of
expected overtime, e, is computed by constraint (33) utilizing Proposition 4. Finally, known and
future patients can only be selected once, which gives rise to the requirement of binary variables vp
and wcj stated in (34) and (35), respectively.

Model (29)-(35) is inherently non-linear and, consequently, we solve this by dynamic program-
ming. However, the binary nature of the problem as well as the close relation to the knapsack
problem allow us to solve the problem as a network problem. For the case where the cost of ex-
pected overtime is linear, Merzifonluoğlu et al. (2012) provide both exact and heuristic solution
methods. We use the method suggested by Range et al. (2016), which can accommodate the convex
cost function of expected overtime and where the knapsack problem is formulated as a resource
constrained shortest path problem on a directed acyclic graph. The authors show that when the
cost of expected overtime is convex, then the problem can in practice be solved fast.

4 Application in a dynamic setting

The GAP-based model presented in Section 3 can be embedded into a rolling time procedure. We
consider a discrete time horizon of D periods (d = 1, . . . , D) with each period representing, for
example, a working day in a regular week. On each day patients arrive into the system according
to a pre-specified arrival process. Let p ≥ 1 denote the period between optimizations, such that the
problem is to be solved at time t ∈ [0, p, 2p, . . . ]. Three different allocation policies are analyzed:

0. First-come-first-served (FCFS): Patients are assigned to the first day with an available
surgeon capable of performing the surgery. The surgeon with the lowest mean surgery time
for the patient is chosen if more than one surgeon is available. Optimization is not an integral
part of this policy.

1. Pre-allocation base fixing: Optimization is performed every pth period at the end of the day.
A feasible schedule is identified for each feasible surgeon-day pair,R = {(s, d) ∈ S×D|Tsd > 0}.
Each schedule i defines the number of surgeries, bci ∈ N, for future patients (excluding surgeries
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for known patients) in category c ∈ C. Patients in category c arriving during the next p days
are upon arrival given an appointment to a specific schedule, i, for which bci > 0 using some
arbitrary allocation rule (e.g., earliest date). The immediate allocation of an arriving patient
to a schedule limits the available amount of time in that schedule for future patients. Patients
arriving during the period between two successive optimizations are fixed to a surgeon-day
pair. Hence, Pu = ∅. The optimization is concerned with an allocation of future surgeries only
and is for this reason driven by the cost of violating the service level.

2. Pool allocation: In this allocation policy patients arriving between optimization runs are
pooled and await an assignment to day and surgeon until the next time the optimization is
run. Consequently, the set Pu = P \ Pf is not empty by construction. Both day and surgeon
are decided upon as an integral outcome of the optimization procedure.

The first-come-first-served policy provides a base allocation policy to be compared to the remaining
two policies. The pre-allocation-based fixing policy is convenient if a hospital wants to give an arriv-
ing patient an immediate appointment to a specific surgeon on a specific day. After a consultation
with a surgeon patients are allowed to choose a day of surgery among the set of available days for
that particular surgeon. The pool allocation policy is more flexible, since patients must wait for their
assignment to a surgeon-day combination. The three policies are not to be considered exhaustive,
but are believed to cover the scheduling process in many hospitals.

5 Computational study

This section is concerned with the performance of the model in a dynamic setting with a rolling
time horizon. The two optimization-based allocation policies described above are compared to the
first-come-first-served (FCFS) approach. Focus is on utilization and overtime of surgeons as well
as waiting time and service level on the patient side. The numerical experiments are designed for
testing the performance of the model in a dynamic setting.

5.1 Base case

We consider a scenario with seven patient categories (see Table 1). Patients arrive 24/7 according
to seven i.i.d. Poisson processes. We consider three different arrival scenarios - low, medium, and
high arrival rates - reflecting an underutilized, a balanced, and an overutilized system, respectively.

Each already arrived and known patient in any given category faces a cost of waiting per day
labeled WC. WC reflects patients’ disutility, for example, caused by not being able to work. Waiting
cost is an integral part in the computation of CPp , which measures the cost of including the patient
in a given schedule. Each patient is given a specific due date depending on category. Patients who
are not offered treatment before their due dates are outsourced. Outsourcing costs are listed in the
column labeled COPc .

The target service level, Hc, is fixed to 95% for all categories, c. CVc measures the penalty for
violating the imposed service level (see Table 1). CVc is derived as a fraction of the outsourcing
cost. Three scenarios are considered, one with no penalty for violation of the service level, N, one
with half of the outsourcing cost imposed as a penalty, H, and one with the penalty set equal to
total outsourcing cost, F. 9 Case N with no penalty imposed for a violation of the service level is
considered myopic, since information on future arrivals is ignored.

The test instances relate to scenarios with four surgeons available. Each surgeon has a number of
minutes available (0, 360, or 420) on each day. Schedules are repeated in a 14-day cycle (see Table 2).
The availability of resources as defined by Table 2 was decided upon such that the normal work load
for each surgeon in the OT is around 30 hours per week. Arrival rates reflecting a balanced scenario

9Observe that service levels along with violation penalties can be used for prioritizing different types of patients.
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arrival rate penalty CVc
c Low Med. High Due date COPc WC N H F
0 2.16 2.88 3.6 14 120 0.8 0 60 120
1 1.62 2.16 2.7 28 120 0.5 0 60 120
2 1.62 2.16 2.7 28 210 2.0 0 105 210
3 0.54 0.72 0.9 14 110 0.2 0 55 110
4 1.08 1.44 1.8 14 160 1.0 0 80 160
5 0.54 0.72 0.9 28 120 0.5 0 60 120
6 1.62 2.16 2.7 28 110 1.0 0 55 110

Table 1: Patient category data

were next set such that system performance reflected a utilization > 95% accompanied by a service
level > 95%.10 Finally, scenarios reflecting under and over utilization were obtained by decreasing
and increasing arrival rates for all patient categories by 30%, respectively.

days
s 1 2 3 4 5 6 7 8 9 10 11 12 13 14
0 420 420 - - 360 360 420 420 - - 360 360 360 -
1 420 420 - - 360 360 420 420 - - 360 360 360 -
2 - 420 420 - 360 360 420 420 - 400 360 - 360 360
3 420 - - 420 360 360 420 - - 420 360 360 360 240

Table 2: Availability of each surgeon (in minutes) for each day.

The heterogeneity among surgeons regarding their capabilities to handle different patient cat-
egories is reflected by physician-specific means and standard deviations for the relevant surgery
durations (see Table 3). In addition, a surgeon may simply not be qualified to perform certain
procedures.11

mean and std.dev. of the surgery times by category c
c µcatc1 σcatc1 µcatc2 σcatc2 µcatc3 σcatc3 µcatc4 σcatc4
0 71 19 75 24 70 20 - -
1 49 24 50 25 55 27 48 23
2 182 67 180 65 175 60 185 69
3 51 27 55 28 - - 50 25
4 98 21 - - 95 20 100 25
5 - - 75 17 80 25 77 20
6 85 20 88 25 - - 87 22

Table 3: Mean and std.dev. of the surgery times by category c

Table 3 reflects the a priori stochastic information for future patients to be adjusted upon patient

10Scheduled time serves as the reference when computing utilization. Hence, overtime on any given day implies an
expected utilization exceeding 100% that day.

11To illustrate by an example, patients in category 0 are not allowed to be assigned to physician 4.
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arrival when more precise information becomes available. This is achieved as follows:12

X1 ∼ i.i.d. N (0, 1)

X2 ∼ i.i.d.Beta(2, 2)

µpatps = X1σ
cat
cs + µcatcs

σpatcs = (0.5 + X2)σcatcs

Available surgeons have an OR and an operating team at their disposal. The cost of having an OR
open is either to be considered i) sunk and ignored in the optimization or ii) variable and charged
if and only if an OR is in use.

It is by assumption possible to extend the number of minutes available for each surgeon on each
day by using overtime. The cost of overtime is made up of the direct cost corresponding to the
overtime payment to staff and an indirect cost reflecting the cost of failure, the cost of postponing
patients, and the cost of disutility of working overtime. Indirect cost is by assumption quadratic in
expected overtime, e (in minutes):

Ωs(e) := a1e+ a2e
2

We investigate for simplicity three scenarios with a1 = 0 and a2 ∈ {1, 0.1, 0.01} yielding an overtime
cost of 3600, 360 and 36 per hour of overtime, respectively.

The computational study is essentially a Monte Carlo experiment. Patient arrivals are in each
replication generated from a Poisson process along with expected surgery durations and their stan-
dard deviations.13 Appropriate warm-up periods must be chosen, since each experiment is initiated
with an empty system. For that purpose we have identified the point in time, when the average
number of patients across 20 different replications has stabilized in a balanced system.14 Each test
instance is solved for a period of 365 days with the first 300 days considered as a warm-up period
to be followed by 65 days during which system performance is measured.

5.2 Implementational issues

We have implemented the model in C++ using the compiler GCC 4.8.2 with the option -O3 enabled.
Gurobi 5.6.2 has been used as a linear programming solver and SIMLIB/C++ 3.02 as a discrete
event simulation library. The computational experiments have been conducted on a Linux system
with an Intel(R) Xeon(R) CPU E5-1620 0 @ 3.60GHz CPU and 24Gb memory. Each experiment
has been assigned to a single core of the processor.

The solution of the model is based upon a column generation procedure alternating between
solving a master problem with a restricted number of columns included and a pricing problem
generating new promising columns.

The sequence for solving the pricing problems is determined by calculating a lower bound on
the reduced cost for each surgeon-day combination and selecting the pricing problems in increasing
order of this lower bound. The bound used is described by Range et al. (2016), who observe that
a deterministic variant of the stochastic knapsack problem can be used to provide a lower bound
the solution when the cost of expected overtime is convex. The solution process for the pricing
problems is stopped prematurely whenever at least two pricing problems identify negative reduced
cost columns.

We apply limited extensions with only the best paths in a node extended to speed up the search
for negative reduced cost columns (see e.g. Burke and Curtois (2014)). The number of paths initially

12We have on purpose decided upon a data generation process that allows for very short surgery durations for
some patients. The arrival of patients with short surgery durations is believed to facilitate the performance of the
FCFS approach compared to the optimization approaches, since packing is made easier. However, we do not allow
for negative surgery durations; cases of this type are simply left out in the numerical experiments.

13Clearly, seeds differ between replications.
14Numerical experiments indicated that the longest time for stabilization was needed in the balanced system.
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allowed to be extended from a node is set to 5. The number is doubled if the pricing problem does
not yield a negative reduced cost column. The process is continued until a negative reduced cost
column is identified or no unextended paths are left.

Solving the LP relaxation of (9)-(20) does not necessarily lead to an integer solution. In order to
make the solution integral we apply the technique of aggressive variable fixing (see, e.g., Lusby et al.
(2012) or Range et al. (2014). Accordingly, the integer variables are successively fixed at their upper
bounds, and the column generation for (9)-(20) is run again until a new LP relaxation bound (with
respect to the fixed variables) is obtained. This continues until a full integer solution is obtained or
the fixing of variables leads to an infeasible solution.

Let the solution for the LP relaxation of (9)-(20) be (λ,x,y,v), where λ is the vector of the
λi variable values, x is the vector of the xcdδ variable values, y is the vector of the ycdl variable
values, and v is the vector of the vcl variable values. Only λ is required to be integer, and the LP
solution is optimal for the full problem if the corresponding λ is integer. Otherwise, all λi for which
λi = 1 are fixed to unity. Let i = arg maxi

{
λi < 1

}
and fix λi = 1. λi is in this way forced into the

integer solution at the full value of one, which in turn forces other λi variables out of the solution,
for example, variables including the same known patients as λi will never be raised from the lower
bound of zero and can therefore be excluded from the solution.

Columns can be reused from one period to the next provided that already treated patients are
not included. Columns with no already treated patients included and with reduced cost equal to
zero are carried forward from one period to the next. This feature provides a good set of initial
columns for the master problem and a significant speed-up of the solution process.

5.3 Computational results

The computational study involves 36 test scenarios for the underutilized, the balanced, and the
overutilized system, since two policies for the allocation of patients to schedules are considered along
with three levels of overtime cost, two scenarios for cost of opening operating rooms, and three
scenarios for cost of violating service level. Thus, the performance of the system has been analyzed
in 3 times 36 test scenarios. 10 replications are solved for each test scenario, because patient arrivals
and surgery times are stochastic. Hence, a total of 3 times 360 test instances have been solved.

As observed above, each test instance is solved for a period of 365 days, where the first 300 days
are considered as a warm-up period. System performance is measured during the following 65 days.
For each surgeon we compare day combination the expected workload to available hours as defined
in Table 2.15 The expected utilization for each surgeon is next obtained by taking the average
of all utilization measures across all days. The average expected utilization across all surgeons is
finally obtained as an overall performance measure reflecting the average level of workload. Expected
overtime is obtained in a similar way. However, in this case the central limit theorem must be invoked
for an estimation of the expected overtime for each surgeon on any given day (see Proposition 4).

Test statistics are reported in Tables 4-6. Results for the case with low arrival rates are reported
in Table 4, and results for medium and high arrival rates are given in Tables 5 and 6, respectively.
Each row in the tables corresponds to the solution of 10 replications in a given scenario during
365 days with system performance data collected during the last 65 days. Column I indicates a
counter for the run. The following four columns list the run parameters. Column M indicates the
allocation policy, where 0 is the FCFS, and where 1 and 2 refer to the pre-allocation-based fixing
policy and the pool allocation policy described in Section 4. Column a2 reports the a2-coefficient in
the penalty function for overtime, and column CO states the cost of opening an OR. Column P.T
indicates the size of penalties for violating the service level, where N corresponds to no penalty, H
is a penalty equal to half of the outsourcing cost, and F is a penalty equal to the full outsourcing

15The expected workload is simply the sum of the expected surgery durations for the set of known patients scheduled
for a particular day. Clearly, utilization is only computed if the surgeon is assigned to at least one known patient.
Otherwise, the OT is by assumption considered closed.
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cost.16 The following three columns report computational statistics as averages of the 10 replications
for each scenario. Column RT(s) is the time in seconds for solving the LP relaxation of model
(9)-(20). Column TT(s) is the average total time for obtaining an integer solution. The column
labeled gap(%) indicates the average percentage deviation between the integer solution and the LP
relaxation. Aggregate performance statistics across replications are reported in the remaining six
columns. Surgeon statistics are given in columns U(%) and E[O] measuring utilization percentage
and expected overtime, respectively. W (d) is the average waiting time in days and S(%) is the
average service percentage; both are reported for patient categories with deadlines of 14 and 28
days, respectively.

The tests, N, with penalties CVc = 0 put no emphasis on future arrivals. There is no incentive
to put in tentative surgeries when no penalties are present. For this reason empty schedules will
be generated by the pre-allocation-based fixing policy. Consequently, no patients are allocated to
surgeries with CVc = 0, and the service level equals zero. The situation is reflected by instances 1,
4, 7, 10, 13, and 16 and maintained in the tables for completeness only; the results are indicated by
”-”.

5.3.1 Numerical results

The average time used to solve the problem for a single day ranges between a fraction of a second
to around 30 seconds with most of the time being used to solve the LP relaxation. The myopic
cases, N, are the easiest ones to solve, since no emphasis is put on future arrivals. The integrality
gaps are in general small and decreasing in a more utilized system. The gaps are large in instances
22, 28, and 34. This is due to the effect of the cost of opening ORs while myopically optimizing
the allocation of known patients. The model distributes patients on more surgeons, which results
in lower overtime cost. The full cost of ORs is not charged due to fractional solutions. More ORs
are opened with a low utilization when the corresponding columns are fixed to unity. The effect is
especially pronounced in the scenario with low arrival rates.

Consider first the underutilized system with low arrival rates (see Table 4). Most patients are
treated before their due dates. For this reason the service level is close to 100% in all instances, and
utilization is around 80%. Imposing the cost of opening an OR causes slight increases in waiting
time without changing service levels and resource utilization, since some ORs may remain closed in
some periods as a means to decrease operational costs. On the other hand, decreasing the cost of
overtime causes shorter waiting times, since some patients will be treated earlier during surgeons’
overtime. The results indicate that FCFS, with the exception of overtime, performs just as well as
the optimization-based policies in an underutilized system. In this case the key benefit of using the
optimization approaches is a better control for overtime.

Consider next the more balanced system with medium arrival rates (see Table 5). In this case
there is no significant impact of the cost of opening ORs, since for most of the time the system
is running at capacity utilizing all resources. A high cost of overtime implies a rejection of more
patients because treatment before their due dates requires overtime. The pool allocation policy with
a low penalty for violating the service level – i.e., the N cases – prioritizes known patients over
future patients as a means to reduce penalties due to patients’ waiting times. Consequently, known
patients are allocated to earlier time slots, thus reducing the probability for treatment of patients
with a 14-day deadline, who are expected to arrive and to be put into the schedule later. This is
due to the myopic nature of the N cases. A similar phenomenon can be observed in the FCFS case.
This is in contrast to the F case, where the penalty for violating the service level is increased to the
level of the outsourcing cost. In the pool allocation approach slots are reserved for future patients
with the shortest deadline. The consequence is a significant improvement in terms of service level
for patients with short due dates accompanied by an expected overtime comparable to the FCFS
case along with a small reduction in service level for the 28-day patients and an increase in their

16The penalties can be seen in Table 1.
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 81.90 0.61 1.59 100.00 1.58 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 5.44 9.90 2.89 80.69 0.56 2.63 100.00 2.97 100.00
3 1 1.00 0 F 5.71 10.62 3.14 80.34 0.69 2.73 100.00 3.24 100.00
4 1 1.00 50 N 0.07 0.07 0.00 - - - - - -
5 1 1.00 50 H 2.76 6.25 1.14 79.50 0.62 2.77 100.00 3.34 100.00
6 1 1.00 50 F 3.44 7.08 1.62 80.64 0.72 2.72 100.00 3.13 100.00
7 1 0.10 0 N 0.08 0.08 0.00 - - - - - -
8 1 0.10 0 H 5.88 10.62 3.38 80.23 1.69 2.51 100.00 3.16 100.00
9 1 0.10 0 F 6.35 10.08 2.83 80.03 2.07 2.06 100.00 2.95 100.00

10 1 0.10 50 N 0.08 0.08 0.00 - - - - - -
11 1 0.10 50 H 3.18 6.42 1.32 79.16 1.71 2.80 100.00 3.45 100.00
12 1 0.10 50 F 4.06 6.83 1.45 80.33 2.14 2.10 100.00 2.94 100.00
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 5.98 10.01 3.91 80.30 4.51 2.19 100.00 3.08 100.00
15 1 0.01 0 F 6.32 11.76 3.99 80.27 6.33 2.45 99.90 2.74 100.00
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 3.37 6.69 1.52 80.48 4.66 1.97 100.00 3.11 100.00
18 1 0.01 50 F 4.12 8.55 1.82 80.26 6.47 2.33 100.00 2.74 100.00

19 2 1.00 0 N 0.41 0.46 3.40 81.25 0.06 1.74 100.00 1.72 100.00
20 2 1.00 0 H 8.14 13.73 3.62 80.97 0.30 1.56 99.91 1.62 100.00
21 2 1.00 0 F 9.04 15.09 3.77 81.00 0.40 1.57 99.98 1.62 99.97
22 2 1.00 50 N 1.83 2.45 17.23 80.01 0.35 2.37 100.00 2.31 100.00
23 2 1.00 50 H 5.41 10.60 1.19 80.01 0.38 1.83 100.00 1.81 100.00
24 2 1.00 50 F 7.25 12.54 1.84 80.89 0.48 1.61 100.00 1.66 99.98
25 2 0.10 0 N 0.46 0.52 3.90 81.32 0.21 1.68 100.00 1.65 100.00
26 2 0.10 0 H 8.65 15.05 4.10 80.90 1.04 1.55 99.95 1.54 99.98
27 2 0.10 0 F 9.74 15.22 3.53 80.89 1.55 1.51 100.00 1.53 99.98
28 2 0.10 50 N 1.74 2.31 17.42 80.51 1.36 2.30 100.00 2.19 100.00
29 2 0.10 50 H 6.19 11.78 1.29 79.73 1.41 1.78 100.00 1.74 100.00
30 2 0.10 50 F 8.00 12.69 1.67 80.77 1.84 1.54 100.00 1.57 100.00
31 2 0.01 0 N 0.50 0.55 3.20 81.39 0.83 1.61 100.00 1.57 100.00
32 2 0.01 0 H 9.27 15.14 4.88 81.00 4.31 1.45 100.00 1.48 100.00
33 2 0.01 0 F 9.76 17.62 4.60 80.96 6.00 1.45 100.00 1.46 100.00
34 2 0.01 50 N 1.81 2.39 18.10 80.37 6.16 1.99 100.00 1.89 100.00
35 2 0.01 50 H 6.26 11.41 1.54 80.09 5.92 1.63 100.00 1.63 100.00
36 2 0.01 50 F 7.58 14.06 2.07 80.82 7.65 1.44 100.00 1.50 100.00

Table 4: Results for the low arrival rate cases.

waiting times. To illustrate by an example, the expected overtime is increased by 0.19 minutes, the
service level for 28-day patients is reduced by 1.21% points, and their waiting time is on average
increased by 4.17 days using the pool allocation policy in instance 21. At the same time, the service
level for 14-day patients is increased by 13.74% points without a change in their expected waiting
time, reflecting a significant performance improvement.17 Finally, a decrease in the cost of overtime
results in shorter waiting times and improved service levels for all patient categories, since more
overtime is used.

Results for system performance in scenarios with the highest arrival rates are reported in Table 6.
The pattern is similar to the case of the more balanced system. It should come as no surprise that
the service level for 14-day patients is low under conditions of a myopic policy (e.g., 22.47% for
the FCFS) because arrival rates are higher. The optimization-based approaches improve upon this
situation by providing a balanced service level across all patient categories. Again, decreasing the
cost of overtime provides an incentive to extend capacity by increasing overtime. The increase in

17Results like these reflect that a meaningful use of the pool allocation policy occurs in cases with a high penalty
for violating the service level.
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 95.93 1.38 13.57 72.94 13.92 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 3.89 5.32 0.50 96.84 1.55 11.82 88.76 19.02 80.11
3 1 1.00 0 F 4.32 5.79 0.56 97.62 2.29 11.97 89.58 18.62 80.02
4 1 1.00 50 N 0.08 0.08 0.00 - - - - - -
5 1 1.00 50 H 3.90 5.33 0.39 96.86 1.57 11.77 89.14 18.73 79.78
6 1 1.00 50 F 4.18 5.66 0.49 97.52 2.14 11.91 89.71 18.78 80.55
7 1 0.10 0 N 0.08 0.08 0.00 - - - - - -
8 1 0.10 0 H 4.20 5.56 0.53 99.59 4.96 11.21 93.04 18.04 85.42
9 1 0.10 0 F 4.51 6.06 0.65 100.54 6.93 10.28 93.80 18.09 88.45

10 1 0.10 50 N 0.07 0.07 0.00 - - - - - -
11 1 0.10 50 H 4.08 5.44 0.40 99.60 5.03 10.89 92.81 18.04 85.96
12 1 0.10 50 F 4.64 6.27 0.55 100.60 7.11 10.35 93.91 18.23 88.04
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 5.41 8.13 0.92 104.81 19.18 9.13 97.11 12.79 99.69
15 1 0.01 0 F 6.90 10.22 1.02 107.10 29.12 7.18 99.15 10.25 100.00
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 5.09 7.70 0.62 104.79 19.14 9.29 97.28 13.12 99.49
18 1 0.01 50 F 6.65 9.94 0.78 107.09 29.33 7.20 99.07 10.16 100.00

19 2 1.00 0 N 1.62 1.69 0.11 94.57 1.08 13.50 74.15 14.77 100.00
20 2 1.00 0 H 14.43 18.27 0.64 97.16 1.29 13.69 79.28 18.23 99.97
21 2 1.00 0 F 15.64 19.45 0.69 97.69 1.57 13.57 86.68 18.09 98.79
22 2 1.00 50 N 4.72 5.18 2.57 95.64 0.96 13.55 74.78 14.99 100.00
23 2 1.00 50 H 13.88 17.67 0.48 97.10 1.27 13.69 79.07 18.20 99.98
24 2 1.00 50 F 15.40 19.21 0.58 97.76 1.63 13.55 86.52 18.10 98.74
25 2 0.10 0 N 1.85 1.93 0.09 98.62 6.52 13.31 83.34 14.69 100.00
26 2 0.10 0 H 14.73 19.01 0.80 100.09 5.39 13.61 86.14 17.27 99.88
27 2 0.10 0 F 16.21 20.62 0.78 100.90 6.88 13.47 91.79 17.23 99.24
28 2 0.10 50 N 4.99 5.50 2.86 98.91 4.74 13.34 83.89 14.73 100.00
29 2 0.10 50 H 14.36 18.67 0.57 100.17 5.61 13.61 85.68 17.28 99.96
30 2 0.10 50 F 15.83 20.16 0.63 100.92 6.87 13.46 92.04 17.30 99.37
31 2 0.01 0 N 2.61 2.70 0.07 108.80 36.33 12.78 99.77 14.30 100.00
32 2 0.01 0 H 17.72 24.02 1.04 105.34 20.64 11.13 99.98 11.60 99.95
33 2 0.01 0 F 20.87 29.02 1.42 106.41 25.42 6.23 100.00 6.35 100.00
34 2 0.01 50 N 6.20 6.92 3.61 108.15 32.24 12.76 99.96 14.01 100.00
35 2 0.01 50 H 16.53 22.30 0.61 105.46 21.09 11.09 100.00 11.57 99.97
36 2 0.01 50 F 17.41 24.25 0.94 106.35 25.15 6.21 100.00 6.29 100.00

Table 5: Results for the medium arrival rate cases.

overtime allows for a treatment of patients who would have been rejected otherwise. Observe that
an excessive use of overtime indicates that capacity is too low, and the amount of overtime provides
an indication of the additional capacity needed to attain the imposed service level.

It is clear that both FCFS and the pre-allocation-based fixing policy are outperformed by the
pool allocation policy in scenarios with high penalties for violation of service levels. To illustrate
by an example, a comparison of scenarios 9 and 27 in Table 5 with arrival rates at a medium level
reveals that the pool allocation policy provides an approximately 11% points higher service level
for 28-day patients at the cost of a 2% points decrease in the service level for 14-day patients with
almost the same utilization of resources and overtime. A comparison of FCFS to the pre-allocation-
based fixing policy shows that the latter provides a balanced service level for patients with different
deadlines along with a higher rate of utilization accompanied with a higher expected overtime.
The main reason is that tentative slots are reserved equally for patients with different deadlines.
A comparison of cases 0 and 19 in the scenario with medium arrival rates reveals that the pool
allocation policy provides a slightly increased service level for 14-day deadline patients and a lower
utilization of resources along with a lower overtime at the cost of increasing the waiting time for
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Instance Comp. Avg. Surgeon Avg. 14 day deadline 28 day deadline
I M a2 CO P.T. RT(s) TT(s) gap(%) U(%) E[O] W(d) S(%) W(d) S(%)
0 0 - - - - - - 96.20 1.47 13.78 22.47 15.17 100.00

1 1 1.00 0 N 0.07 0.07 0.00 - - - - - -
2 1 1.00 0 H 3.82 4.80 0.32 97.14 1.77 12.73 84.84 20.28 71.47
3 1 1.00 0 F 4.16 5.13 0.35 97.79 2.36 12.73 83.92 20.46 72.36
4 1 1.00 50 N 0.08 0.08 0.00 - - - - - -
5 1 1.00 50 H 3.90 4.86 0.28 97.05 1.73 12.75 84.70 20.39 71.69
6 1 1.00 50 F 4.15 5.12 0.32 97.78 2.32 12.78 83.72 20.35 72.66
7 1 0.10 0 N 0.07 0.07 0.00 - - - - - -
8 1 0.10 0 H 4.27 5.29 0.36 100.04 5.74 12.20 86.11 20.25 73.95
9 1 0.10 0 F 4.52 5.48 0.35 101.12 8.28 11.82 88.20 20.76 74.29

10 1 0.10 50 N 0.08 0.08 0.00 - - - - - -
11 1 0.10 50 H 4.21 5.22 0.32 100.05 5.78 12.27 86.57 20.26 73.75
12 1 0.10 50 F 4.52 5.48 0.33 101.24 8.46 11.71 88.13 20.61 73.78
13 1 0.01 0 N 0.08 0.08 0.00 - - - - - -
14 1 0.01 0 H 4.96 6.12 0.34 107.15 27.34 12.77 85.44 20.78 79.62
15 1 0.01 0 F 6.21 7.60 0.41 114.01 53.16 12.69 85.56 20.68 82.22
16 1 0.01 50 N 0.08 0.08 0.00 - - - - - -
17 1 0.01 50 H 5.02 6.20 0.31 107.05 26.96 12.85 85.15 20.81 79.99
18 1 0.01 50 F 6.14 7.52 0.38 114.18 53.71 12.65 85.80 20.71 81.73

19 2 1.00 0 N 2.28 2.34 0.04 95.02 1.52 11.75 27.40 16.74 100.00
20 2 1.00 0 H 17.57 19.98 0.24 97.40 1.33 13.94 26.53 23.68 99.88
21 2 1.00 0 F 22.31 26.54 0.51 97.91 1.73 13.62 84.95 18.48 88.40
22 2 1.00 50 N 6.28 6.68 1.26 96.09 1.15 13.45 26.80 16.50 100.00
23 2 1.00 50 H 17.46 19.90 0.22 97.39 1.33 13.90 27.01 23.64 99.84
24 2 1.00 50 F 21.51 25.59 0.47 97.88 1.71 13.63 84.78 18.39 88.44
25 2 0.10 0 N 2.67 2.75 0.04 100.60 10.17 12.66 45.24 16.06 100.00
26 2 0.10 0 H 18.33 20.91 0.29 100.67 6.67 13.81 39.81 23.21 99.97
27 2 0.10 0 F 21.51 25.35 0.49 101.25 7.71 13.69 87.19 18.30 89.60
28 2 0.10 50 N 6.75 7.19 1.22 99.88 6.71 13.31 41.53 16.25 100.00
29 2 0.10 50 H 18.21 20.75 0.26 100.62 6.58 13.77 39.45 23.32 99.97
30 2 0.10 50 F 20.99 24.85 0.44 101.21 7.63 13.67 86.58 18.25 89.66
31 2 0.01 0 N 3.75 3.84 0.03 120.80 78.84 13.08 82.60 15.66 100.00
32 2 0.01 0 H 21.29 24.77 0.34 122.69 86.07 13.13 86.91 21.99 99.95
33 2 0.01 0 F 24.61 29.77 0.55 119.18 72.57 13.10 92.43 17.76 97.09
34 2 0.01 50 N 8.69 9.21 0.88 121.64 82.06 13.06 84.79 15.76 100.00
35 2 0.01 50 H 21.40 24.86 0.29 122.79 86.50 13.11 86.94 21.99 99.95
36 2 0.01 50 F 24.70 29.76 0.50 119.30 73.12 13.04 92.71 17.75 97.17

Table 6: Results for the high arrival rate cases.

28-day deadline patients by less than one day. Similar results can be observed in scenarios with high
arrival rates.

6 Conclusion

We have developed a model for allocation of patients to combinations of days for surgery and
surgeons, given a priori. The model is based on a generalized assignment formulation augmented
with constraints taking the stochastic arrival processes of patients into account. The model allows
to balance service levels for different categories of patients.

Schedules for any given surgeon-day combination are generated by the solution of a stochastic
knapsack problem with an objective penalizing expected overtime in terms of an increasing strictly
convex function.

Two patient-allocation policies are tested: One with an allocation of individual patients based
on potential surgeries and another based on an optimization for groups of patients. The first policy
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has the advantage that patients can be informed about their surgery date up front. The second
policy implies that patients must wait before being assigned to a surgeon-day combination. Both
policies are embedded into a rolling horizon simulation and compared to a FCFS policy.

A computational study indicates that the use of information on patients’ arrival distributions
increases the level of service as well as the utilization of surgeons compared to the myopic case, where
this information is not taken into account. System performance under conditions of the FCFS policy
compares to performance based upon a myopic optimization, and FCFS is competitive in scenarios
with low arrival rates compared to capacity. However, FCFS is outperformed in scenarios with high
patient arrival rates compared to capacity. The policies taking future arrivals into account improve
system performance in terms of levels of service, and the best performance is obtained using an
explicit optimization approach.
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A Proofs

In this appendix the proofs of propositions 1-4 are provided.

Proof of proposition 1: Suppose that X is a discrete stochastic variable having probability πn of
attaining value n and that Y A = max{0, X −A} of A ∈ N. Then we have

E
[
Y A
]

= E [max{0, X −A}] (36)

=

∞∑
n=0

πn (max{0, n−A}) (37)

=

A∑
n=0

πn0 +

∞∑
n=A+1

πn (n−A) (38)

=

∞∑
n=A+1

πn (n−A) (39)

=

∞∑
n=A+1

πnn−A
∞∑

n=A+1

πn (40)

=

∞∑
n=A+1

πnn−A

(
1−

A∑
n=0

πn

)
(41)

=

∞∑
n=0

πnn−
A∑
n=0

πnn−A

(
1−

A∑
n=0

πn

)
(42)

= E [X]−
A∑
n=0

πnn−A

(
1−

A∑
n=0

πn

)
(43)

= E [X]−A+

A∑
n=0

πn (A− n) (44)

Proof of proposition 2. Given the two points (A,E[Y A]) and (A+ 1,E[Y A+1]), the slope of the line
passing through these points is

E[Y A+1]− E[Y A]

A+ 1−A
= E[Y A+1]− E[Y A] (45)

= E[X]− (A+ 1) +

A+1∑
n=0

πn (A+ 1− n) (46)

−E[X] +A−
A∑
n=0

πn (A− n) (47)

= −1 +

A+1∑
n=0

πn +

A+1∑
n=0

πn (A− n)−
A∑
n=0

πn (A− n) (48)

= −1 +

A+1∑
n=0

πn + πA+1(A−A− 1) (49)

= −1 +

A∑
n=0

πn (50)
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The intercept will be

E
[
Y A
]
−A

(
−1 +

A∑
n=0

πn

)
= E[X]−A+

A∑
n=0

πn (A− n) +A−
A∑
n=0

πnA (51)

= E[X]−
A∑
n=0

πnn (52)

Hence, the function

fA(x) =

(
−1 +

A∑
n=0

πn

)
x+ E[X]−

A∑
n=0

πnn

passes through the two given points.

Proof of proposition 3. First, we evaluate the point A+1 for function fA and show that this attains
the same value as fA+1 evaluated in the same point:

fA(A+ 1) =

(
A∑
n=0

πn − 1

)
(A+ 1) + E[X]−

A∑
n=0

πnn (53)

=

(
A+1∑
n=0

πn − πA+1 − 1

)
(A+ 1) (54)

+E[X]−
A+1∑
n=0

πnn− πA+1(A+ 1) (55)

=

(
A+1∑
n=0

πn − 1

)
(A+ 1)− πA+1(A+ 1) (56)

+E[X]−
A+1∑
n=0

πnn− πA+1(A+ 1) (57)

=

(
A+1∑
n=0

πn − 1

)
(A+ 1) + E[X]−

A+1∑
n=0

πnn (58)

= fA+1(A+ 1) (59)

Hence, the two lines fA(x) and fA+1(x) intersect in the point A + 1, and the function g(x) will
therefore be continuous.

As the slope of fA(x) is
∑A
n=0 πn − 1 and

∑A
n=0 πn < 1 for any A <∞, we have that the slope

is negative for all functions fA(x). Hence, g(x) is decreasing.
Let A < B be two non-negative integers. Then we have

A∑
n=0

πn − 1 <

B∑
n=0

πn − 1 (60)

because
∑B
n=A+1 πn > 0. Hence, the change in the slope of g will be increasing for increasing values

of A and consequently g will be convex.

Proof of proposition 4. Assume that Z1, . . . , Zn are independent stochastic variables with means µi
and variances σ2

i for i = 1, . . . , n, and that T ≥ 0 is a constant. Denote Z = Z1 + . . . + Zn,
µZ = µ1 + . . . + µn, and σ2

Z = σ2
1 + . . . + σ2

n. By the central limit theorem we have that Z is
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approximately normally distributed (i.e., Z ∼ N
(
µZ , σ

2
Z

)
). Hence, the probability density function

fZ(z) is approximately the probability density function of the normal distribution. We can now
calculate the expected value of the stochastic variable O = (Z − T )+:

E [O] ≈
∫ ∞
T

(z − T )fZ(z)dz (61)

Let
T = µZ + kσZ (62)

Then we have

E [O] ≈
∫ ∞
µZ+kσZ

(z − µZ − kσZ)fZ(z)dz (63)

=

∫ ∞
µZ+kσZ

(z − µZ − kσZ)
1

σZ
√

2π
e
− (z−µZ )2

2σ2
Z dz (64)

After substituting u = (z − µZ)σZ and simplifying we get

E [O] ≈σZ
∫ ∞
k

(u− k)
1√
2π
e−

u2

2 du (65)

which is a special function of the unit normal distribution. Specifically, let

Gu(k) =

∫ ∞
k

(u− k)
1√
2π
e−

u2

2 du (66)

Using the special property of the unit normal distribution that∫ ∞
k

u
1√
2π
e−

u2

2 du =
1√
2π
e−

k2

2 (67)

(66) can be expressed as

Gu(k) =
1√
2π
e−

k2

2 − k
∫ ∞
k

1√
2π
e−

u2

2 du (68)

=φ(k)− k(1− Φ(k)) (69)

where φ and Φ denote the probability density function and the cumulative distribution function
of a unit normal random variable respectively. As a result, expected amount of overtime can be
represented as a simple function of unit normal distribution

E [O] ≈ σZ [φ(k)− k(1− Φ(k))] (70)

where k = (T − µZ)/σZ .
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