

A Benders decomposition-based Matheuristic for the

Cardinality Constrained Shift Design Problem

by

Richard Martin Lusby, Troels Martin Range and Jesper Larsen

Discussion Papers on Business and Economics

No. 9/2015

FURTHER INFORMATION

Department of Business and Economics

Faculty of Business and Social Sciences

University of Southern Denmark

Campusvej 55, DK-5230 Odense M

Denmark

E-mail: lho@sam.sdu.dk / http://www.sdu.dk/ivoe

A Benders decomposition-based Matheuristic for the

Cardinality Constrained Shift Design Problem

Richard Martin Lusby1, Troels Martin Range2, and Jesper Larsen1

1Department of Management Engineering, Technical University of Denmark
2Department of Business and Economics, University of Southern Denmark

April 17, 2015

Abstract

The Shift Design Problem is an important optimization problem which arises when
scheduling personnel in industries that require continuous operation. Based on the
forecast, required staffing levels for a set of time periods, a set of shift types that best
covers the demand must be determined. A shift type is a consecutive sequence of time
periods that adheres to legal and union rules and can be assigned to an employee on
any day. In this paper we introduce the Cardinality Constrained Shift Design Problem;
a variant of the Shift Design Problem in which the number of permitted shift types is
bounded by an upper limit. We present an Integer Programming model for this problem
and show that it’s structure lends itself very naturally to Benders decomposition. Due
to convergence issues with a conventional implementation, we propose a matheuristic
based on Benders decomposition for solving the problem. Furthermore, we argue that
an important step in this approach is finding dual alternative optimal solutions to the
Benders subproblems and describe an approach to obtain a diverse set of these. Numer-
ical tests show that the described methodology significantly outperforms a commercial
Mixed Integer Programming solver on instances with 1241 different shift types and re-
mains competitive for larger cases with 2145 shift types. On all classes of problems the
heuristic is able to quickly find good solutions.

Keywords: Scheduling , shift design , integer programmning , benders decomposition
JEL code: C61, MSC code: 90B35, 90C11

1 Introduction

Satisfying the demand for service is a key objective for many companies, and employees
are typically the main resource available to achieve this. While demand may fluctuate
during the course of a day, each staff member is usually assigned to a shift, which starts
at a particular time of the day and lasts a certain duration, making it difficult to match
the demand for employees with the actual number of employees at work. Using different
types of shifts makes it possible to better match the demand. This type of decision problem
mainly arises in industries that require continuous operation, examples of which include

1

airlines, airports, police and emergency services, financial institutions, transportation, and
call centers.

The process of personnel scheduling is often divided into several steps that are carried
out sequentially. Initially, the staffing level required in each of a sequence of consecutive
time periods is determined. The duration of all time periods is often the same and is
typically short, e.g. from five to 15 minutes. Based on union rules and legal requirements
shifts are then established. A shift is a piece of work that spans multiple time periods and
is often equal to a daily piece of work for an employee. Whereas a shift is a particular time
interval on a given day, a shift type is a time interval on any day. An example of a shift
type could be a morning shift that is used every day from 4am to 11am. The set of all
feasible shifts can be extremely large. Therefore, after establishing the demand scenario(s),
i.e. a daily forecast of the number of employees required for specific intervals of time, one
needs to solve a Shift Design Problem (SDP). This entails determining a cost-effective set
of shifts that (in general) cover the demand. In the final personnel rostering phase, named
employees are assigned to a sequence of shifts covering the full rostering period (typically
a month, three months or half a year). This final phase also contains the assignment of
days-off, rest periods, availablities and preferences.

The authors were exposed to a challenging application of the SDP when working with
personnel scheduling for the main security area at Copenhagen Airport, see Nielsen (2012).
Here the staffing level required has weekly cycles. Therefore, when scheduling the personnel
the demand scenario for each of the seven days must be taken into account, as there are daily
differences. For instance, all Mondays look quite similar. As an example Figure 1 gives the
required staffing levels in the main security area for a Monday and a Saturday, respectively.
From the figures the challenge of the SDP is clear; the set of shift types permitted on each
day must be the same, despite the obvious difference in demand scenarios.

(a) Monday (b) Saturday

Figure 1: Example demand profiles

In order to handle the complexity of the rostering process a total of 16 shift types are
used throughout the week. That is, a total of 16 shift types are available for ensuring
a proper coverage of the demand on any of the seven days in the week. Needless to say,
compromises must be made between the demand coverage on any given day and the solution
quality since the shift types must encapsulate the most important structures of each day

2

of the week. In fact, analysis shows that solving each day to optimality independently
requires between 37 and 50 shifts, and that although there are shifts that appear in the
optimal solution of more than one day, there is also a great variation in the chosen shifts,
see Nielsen (2012). What is therefore very interesting for airport management, and also
for SDPs in general, is to work with a constrained version of the problem. In the so-called
Cardinality Constrained Shift Design Problem (CCSDP) one needs to determine the most
cost-effective set of shift types given a strict upper bound on the number of shift types
allowed.

In contrast to SDPs found in the literature, this application has a strict cardinality
constraint on the number of shift types which are allowed across all demand scenarios. This
makes the problem significantly harder to solve, as one set of shift types may be good for
one scenario, but very bad for another. Hence a compromise is necessary to minimize the
overall deviation from staff demand. Like other SDPs, we allow for over and undercoverage,
i.e. it is not a strict requirement that demand is met exactly, but penalties are incurred for
having too many (or too few) staff in a given time period.

We do, however, make two important assumptions regarding the nature of the underlying
problem. Firstly, we do not explicitly model employee breaks; we assume that a shift type
covers a consecutive sequence of periods, the duration of which includes any necessary
break time. The exact timing of an employee’s break is decided by the supervisor on
duty when the employee is at work. This is consistent with what is done in practice at
Copenhagen Airport, and allows the supervisor to dynamically modify the break patterns
to the workload on a specific day. Secondly, we remove from consideration those shift types
that span consecutive days, e.g. a night shift that starts on Friday at 10pm and finishes on
Saturday at 6am. Typically security personnel must be required in such periods, and the
number required does not vary significantly day-to-day. We assume the demand scenarios
account for this. Furthermore, this allows a daily decomposition approach to be considered.

To solve the CCSDP we propose a Benders decomposition based matheuristic that only
ever considers a small set of shift types at any one time. We observe that it is particularly
easy to solve the problem when the set of used shifts is given up front. Through an analysis
of the Benders cuts found while solving a reduced problem, the set of considered shift types
is dynamically updated. We highlight the importance of finding dual alternative optimal
solutions to the Benders subproblem when determining which shift types to include in
set and describe a procedure for finding a diverse set of such solutions. Numerical tests
show that the described methodology significantly outperforms a commercial Mixed Integer
Programming solver on instances with 1241 different shift types and remains competitive
for larger cases with 2145 shift types. On all classes of problems the heuristic is able to
quickly find good solutions.

The paper unfolds in the following way. First, Section 2 provides a review of the related
literature. This is followed in Section 3 by a formal description of the model. Here we
also argue that a specific special case of the SDP is easy to solve. In Section 4, this model
is reformulated using Benders decomposition. We discuss how to derive several different
Benders cuts. The model described includes a significant number of big-M constraints
and is therefore hard to solve. Instead of solving the model to optimality we describe a
matheuristic based on Benders decomposition in Section 5. Section 6 provides a description
and the analysis of computational experiments for the heuristic, while Section 7 gives some

3

concluding remarks.

2 Related Literature

Personnel scheduling is an important and classical problem in Operations Research and has
been widely studied. The survey Ernst et al. (2004b) gives an extensive review on personnel
scheduling. It contains a classification of methods, models and problem types collected
from almost 200 citations. In addition, the same authors have published an annotated
bibliography Ernst et al. (2004a), containing a rich set of notes covering 700 individual
papers. The most updated review on the area is Van den Bergh et al. (2013).

The flexibility of the SDP is determined by shift length, start time and break placements.
A set covering approach for this problem was originally developed by Dantzig (1954). The
approach basically enumerates all possible shifts by treating every feasible combination of
parameters as a new shift. The fundamental problem with this is the rapid increase in the
number of decision variables. Many subsequent developments are based on this approach.

Break placement is part of the SDP and considers the important problem of placing
the breaks within a shift. Break placement is very often an influential factor in making
the set covering approach intractable and has therefore been investigated in several papers.
An integer programming approach is proposed in Gaballa and Pearce (1979). Flexibility in
break placement is incorporated by including a separate variable for every feasible break
option allowed in a shift. This can produce an extremely large number of variables, and
therefore an alternative break placement strategy was proposed by Bechtold and Jacobs
(1990). In Bechtold and Jacobs (1990), a new set of variables is introduced; each variable
represents the total number of employees on all shifts starting their break at a particular
time. Thompson (1990) also describes a set covering approach to match employees to shifts
and also includes the scheduling of meal breaks. The linear program is used to generate
shifts in a construction heuristic. This paper also introduces under and overcoverage to the
model of Dantzig (1954), and has an objective function that sums the cost of under and
overcoverage, like the problem we consider.

A new integer programming formulation allowing multiple breaks and break windows is
proposed by Aykin (1996). Breaks are only modelled implicitly and the resulting formulation
therefore has a much smaller size than the classical set covering model for the same problem.
A comparison of some of the different modelling approaches can be found in Aykin (2000).
Computational tests show that the model based on Aykin (1996) is superior to the approach
suggested in Bechtold and Jacobs (1990).

With respect to solution methods applied in conjunction with modelling, a variety of
heuristic and exact methods have been implemented. To give a few examples, Thompson
(1996) implements a simulated annealing heuristic for the problem, Musliu et al. (2004) is
based on local search and five different kinds of move operators that iteratively change the
incumbent, whereas Glover et al. (1983) is based on artificial intelligence. Exact solution
approaches for large-scale problems are based on branch-and-cut, see e.g. Aykin (1998), and
branch-and-price, see e.g. Mehrotra et al. (2000).

As the first papers only focused on minimizing the use of staff, the developed models
did not allow for undercover. To the authors’ knowledge, the first to consider undercover
was Butler and Maydell (1979). The author considered a staff rostering problem for the

4

Edmonton police department and attempted to roster staff in a way that minimised the
deviation from the desired staffing levels, permitting under as well as overcover. One of the
first contributions that explicitly mentions minimizing the number of shifts as part of the
objective is Musliu et al. (2004). The paper argues for the use of heuristics and describes a
local search approach that minimizes the number of shifts active, while minimizing under
and overcover as well as the average number of duties per week. Furthermore, in Di Gaspero
et al. (2007) the objective function is almost identical to Musliu et al. (2004), i.e. it includes
an aspect minimizing the number of shifts. The paper describes a slightly more theoretical
variant of the problem and terms it the minimum shift design problem. The authors show
that the problem can be solved using a minimum edge-cost flow problem and also present
some hardness properties in the paper. Finally, based on the hardness of the problem they
suggest a local search method heavily inspired by Musliu et al. (2004).

In the seminal paper Dantzig (1954) no instances nor experiments are given. The method
is explained using an example containing six time periods and six patterns. In the following
literature instances are created either randomly or based on practical problems. The papers
Thompson (1990, 1996) look at different demand profiles with a different number of demand
peaks. For other papers it is often only one characteristic based on the problem at hand
(e.g. call centre or airport). In Thompson (1990, 1996), operating days of 15 hours and 20
hours are considered. Using 15 minute intervals and breaks this leads to instances of up
to 6600 shifts. Similarly, based on 24 hour a day service and 15 minute internals, Aykin
(1996) reports instances with up to 8640 shifts. In Mason et al. (1998) a weekly problem
for an airport is solved. Using 80 15 minute time periods a day this leads to 195 full-time
shifts being used in the optimal solution. This corresponds to 39 full-time staff for a weekly
schedule (five days-on, two days-off). Finally, Eveborn and Rönnqvist (2004) present a
general scheduling method based on column-generation. Several scenarios from different
industries are solved (retail and call centres). In the largest instance 200 persons must be
scheduled, and the instances span between one and three weeks, leading to between 140
and 448 time periods.

3 A model for the CCSDP

In this section we formulate the CCSDP as a Mixed Integer Linear Programming (MILP).
The model minimizes the cost of deviation from the demand for staff in each of the scenarios,
while using no more than a specified number of shift types. Recall that, based on the
practical case, we assume that each shift type is 1). comprised of a consecutive sequence of
time periods and 2). completely contained in a given demand scenario (i.e. it does not span
days). By the first assumption we will show that when the shift types used is predetermined,
and thereby fixed, then we can solve the model easily by Linear Programming (LP). The
second assumption allows us to decompose the problem into a master problem and a number
of subproblems – one for each demand scenario – which we will exploit in Section 4.

Firstly, we assume that a set, K, of different independent demand scenarios are given.
Each scenario will typically correspond to the demand of all employees on a given day. Each
scenario is divided into a set, T , of consecutive periods. With each pair k ∈ K and t ∈ T
a demand dkt ≥ 0 for staff is given. It is this demand that we have to match as closely as
possible with employees working shift types in specific demand scenarios. The unit cost of

5

undercovering a period is cu, while the unit cost of overcovering a period is co. These unit
costs scale linearly.

Secondly, we assume that a set, S, of possible shift types is also given. For a period
t ∈ T we denote St ⊆ S the set of shift types covering the period t. Likewise we denote the
set Ts ⊆ T as the periods covered by shift type s ∈ S. In the CCSDP one is allowed to use
at most Smax such shift types to cover the demand. Similarly, we assume that the number
of employees that can be used on any given day is at most Emax. Finally an upper bound
on the number of employees on shift type s ∈ S used for a specific demand scenario k ∈ K
is denoted Mks. This upper bound can be set to

Mks = max {dkt |t ∈ Ts } ,

i.e. the largest demand in any period that the shift type covers for the respective demand
scenario.

Initially we use four types of variables. The first type of variable, ys ∈ {0, 1}, is a binary
variable equal to one if and only if shift type s ∈ S is available for use. We denote y the
vector (ys)s∈S . The second type of variable, xks ∈ Z+, is a non-negative integer variable
that counts the number of employees working shift type s ∈ S for demand scenario k ∈ K.
The final two types of variables are ukt ≥ 0 and okt ≥ 0. These measure the undercover and
overcover, respectively, of the demand in period t ∈ T relative to demand scenario k ∈ K.
The base model can now be written as:

min
∑
k∈K

(∑
t∈T

cuukt +
∑
t∈T

cookt

)
(1)

s.t.
∑
s∈St

xks − okt + ukt = dkt, k ∈ K, t ∈ T (2)

∑
s∈S

xks ≤ Emax, k ∈ K (3)

xks −Mksys ≤ 0, k ∈ K, s ∈ S (4)∑
s∈S

ys ≤ Smax (5)

xks ≥ 0, k ∈ K, s ∈ S (6)

ukt, okt ≥ 0, k ∈ K, t ∈ T (7)

xks ∈ Z, k ∈ K, s ∈ S (8)

ys ∈ {0, 1}, s ∈ S (9)

The model minimizes the cost of deviating from the demand for each of the demand sce-
narios. This is expressed in the objective (1). The matching of the demand with number of
employees assigned to shifts is given by (2), and the maximal number of employees used for
a given demand scenario is enforced by (3). Constraints (4) ensure that staff can only be
assigned to a shift type if the respective shift type is available for use, while Constraint (5)
sets an upper bound on the number of distinct shift types we are allowed to use. We will
refer to Constraint (5) as the cardinality constraint. Finally, constraints (6)-(9) give the
domains of the variables.

6

Model (1)-(9) is complicated by being connected across demand scenarios, i.e. by Con-
straint (5). If this constraint were not present, the model would decompose into |K| inde-
pendent problems where Constraint (4) would become an upper bound on the xks-variables.
The latter constraint would in fact be redundant as we never have more employees work-
ing the shift type than the upper limit Mks. On the other hand, if Constraint (5) and
Constraint (4) are both included, then the ys tend to have small fractional values in the
LP-relaxation, making this LP-relaxation weak.

The upper bound on the number of employees used for any demand scenario further
complicates the model. As we will argue in the following; if we did not have the connections
across the scenarios, nor the upper limit on the number of employees, the problem would
split into |K| independent easy problems to solve.

Denote y ∈ {0, 1}|S| an arbitrary selection of shift types inducing the set S ⊆ S where
s ∈ S if and only if ys = 1. Define the polyhedron of all feasible allocations of employees to
shift types as well as over and undercover relative to the set S as

Pk(y) =

(xk,uk,ok) ∈ R|S|+2|T |

∣∣∣∣∣∣∣∣∣∣

∑
s∈St

xks − okt + ukt = dkt, t ∈ T

xks ≤Mksys, s ∈ S
xks ≥ 0, s ∈ S

okt, ukt ≥ 0, t ∈ T


Minimizing the under and overcoverage using the constraints of Pk(y) results in an integer
selection of the number of employees assigned to shifts as well as an integer under and
overcoverage. This is summarized in the following proposition:

Proposition 1. If all shift types s ∈ S cover a consecutive sequence of periods t ∈ T and
if both dkt and Mks are integer then Pk(y) is an integer polyhedron for an arbitrary choice
of y ∈ {0, 1}|S|.

Proof. As dkt and Mksys are assumed integer, it is sufficient to show that the coefficient
matrix is totally unimodular. Denote A = [ats]t∈T ,s∈S = [as]s∈S the |T |× |S|-matrix where

ats =

{
1, s ∈ St
0, otherwise

Then we can write the coefficient matrix of the polyhedron Pk(y) as[
A −I I
I 0 0

]
where I is the identity matrix and 0 is a matrix comprised of zeros only. Any column in
the matrix A has the structure that exactly one consecutive sequence of ones is present,
i.e. for a given s the column is either as = [0, . . . , 0, 1, . . . , 1]t, as = [1, . . . , 1, 0, . . . , 0]t,
or as = [0, . . . , 0, 1, . . . , 1, 0, . . . , 0]t. This is due to all shift types covering a consecutive
sequence of periods. A matrix having the structure that A has is a so-called interval matrix.
Schrijver (1986) argues that interval matrices are totally unimodular. Furthermore Schrijver
(1986) observes that totally unimodularity is preserved when adding a row or a column
having exactly one non-zero entry with value 1 or -1. This is exactly how the coefficient
matrix of Pk(y) is composed, and it is therefore totally unimodular.

7

A consequence of proposition 1 is that we can relax the integrality of the variables xks
which count the number of employees on a given shift in the case where no upper bound on
the number of employees is present, and still obtain an integer solution for model (1)-(9)
as long as y is integer. This motivates us to set up a Benders decomposition in which the
y-variables are treated as integer variables, while the remaining variables are considered
continuous.

4 Benders Decomposition

Benders decomposition, Benders (1962), is a method for exploiting the structure of mathe-
matical programming problems. It specifically targets problems with a so-called Dual Block
Angular structure. Problems having this structure break into smaller, independent problems
once a set of variables is fixed. Generic descriptions of the Benders decomposition principle
can be found in e.g. Geoffrion (1972) or Dirickx and Jennegren (1979). It has become a
popular technique for solving certain types of complex problems, including e.g. stochastic
programming problems and mixed-integer non-linear programming problems. It has also
been used on problems more closely related to shift scheduling. For example, Rekik et al.
(2004) solves the tour scheduling problem using Benders decomposition, and Cordeau et al.
(2001) use Benders decomposition to generate schedules for flight crew as well as generate
routes for aircraft.

The model for the shift design problem is composed of four types of variables – the
binary y-variables, the integer x-variables and the continuous u-variables and o-variables.
Suppose that we relax the integrality of the x-variables, then Benders decomposition of the
problem can be applied such that only the y-vector is considered in the master problem,
while the remaining variables are considered in a set of subproblems. The master problem is
used to construct solutions for the y-variables, while the subproblems are used to separate
violated valid inequalities which can be used in the master problem. We will adapt this
approach to the CCSDP.

Suppose that we can identify a subset of shift types such that S ⊆ S where |S| ≤ Smax

i.e. a subset of shift types satisfying the cardinality constraint. Denote y the induced
solution having

ys =

{
1, s ∈ S
0, s /∈ S

For y fixed the problem (1)-(9) reduces to |K| independent problems – one for each k ∈ K

8

and these independent problems can be stated as follows:

min
∑
t∈T

cuukt +
∑
t∈T

cookt (10)

s.t.
∑
s∈St

xks − okt + ukt =dkt, t ∈ T (11)

∑
s∈S

xks ≤Emax (12)

xks ≤Mksys, s ∈ S (13)

xks ≥ 0, s ∈ S (14)

ukt, okt ≥ 0, t ∈ T (15)

xks ∈ Z, s ∈ S (16)

Model (10)-(16) identifies the best allocation of employees to shifts for each scenario k ∈ K
when the subset of allowable shifts is given by S. It can be observed that this model always
has a feasible solution e.g. by fixing xks = 0 for all s ∈ S and put ukt = dkt for all periods
t ∈ T . Furthermore, the model will have a bounded optimum as long as co, cu ≥ 0 (even
though unbounded alternative solutions may exist when either co = 0 or cu = 0). This is
also true for the LP-relaxation i.e. if we relax constraint (16), the model still has at least
one bounded optimal solution.

We apply Benders decomposition on the LP-relaxation of problem (10)-(16). The mo-
tivation for this is that if we further relax Constraint (12) then the resulting problem will
always yield an integer solution, as shown in Proposition 1. This is also true in the case
where (12) is not binding. In the following we will denote the problem (10)-(15) for the
primal subproblem.

We define πkt ∈ R, µk ≤ 0, and γks ≤ 0 to be the dual variables of constraints (11), (12),
and (13), respectively. Then the dual of the primal subproblem of (10)-(15) becomes

max
∑
t∈T

dktπkt + Emaxµk +
∑
s∈S

Mksysγks (17)

s.t.
∑
t∈Ts

πkt + µk + γks ≤ 0, s ∈ S (18)

− co ≤ πkt ≤ cu, t ∈ T (19)

µk ≤ 0, (20)

γks ≤ 0, s ∈ S (21)

and we denote this problem the dual subproblem for scenario k ∈ K. We can observe
that only the objective of the dual problem changes when changing demand scenario or the
allowable shift set. Thus the polyhedron of feasible dual solutions for each of the primal
subproblems (10)-(15) is identical, and we denote this polyhedron:

9

D =

(π, µ,γ) ∈ R|T |+1+|S|

∣∣∣∣∣∣∣∣∣∣

∑
t∈Ts

πt + µ+ γs ≤ 0, s ∈ S

−co ≤ πt ≤ cu, t ∈ T
µ ≤ 0,
γs ≤ 0, s ∈ S


where π = (πt)t∈T and γ = (γs)s∈S . We observe that (0, 0,0) ∈ D and consequently
D 6= ∅. The dual polyhedron is unbounded. However, if the objective coefficients of the
dual objective (17) are non-negative, then the dual problem (17)-(21) will have a bounded
optimum.

We denote the index set of extreme points of D as P and we write the extreme points
as (πp, µp,γp) ∈ D for p ∈ P. Each dual extreme point yields a so-called Benders (or
optimality) cut for each of the demand scenarios k ∈ K

zk ≥
∑
t∈T

dktπ
p
t + Emaxµp +

∑
s∈S

Mksysγ
p
s , p ∈ P, k ∈ K (22)

where zk is a variable measuring the contribution of scenario k ∈ K to the objective of the
full problem. Intuitively, the Benders cuts collectively approximate the objective of each of
the demand scenarios as a convex piece-wise linear function which is referred to as an outer
approximation. If a Benders cut is binding then a change in a yk variable by ∆ will result
in a potential change of the objective of ∆Mksγ

p
s . Thus the Benders cuts can be used to

give an indication of which variables are good to have in a solution.
The Benders reformulation of the problem (1)-(9) with integrality of the x-variables

relaxed is then

min
∑
k∈K

zk (23)

s.t.
∑
s∈S

ys ≤ Smax (24)

zk −
∑
s∈S

Mksγ
p
sys ≥

∑
t∈T

dktπ
p
t + Emaxµp, p ∈ P, k ∈ K (25)

ys ∈ {0, 1}, s ∈ S (26)

The objective, (23), measures the contribution to the cost of each demand scenario k ∈ K
for the given selection of allowable shift types. The first constraint, (24), states that no
more than Smax shift types are allowed and it is equivalent with Constraint (5) of the base
model. The full set of Benders cuts are given in constraint (25) which is a reordered version
of Constraint (22) where all constants appear on the right-hand side. Finally, the Benders
reformulation maintains the binary nature of the shift type variables ys in constraint (26).
The number of Benders cuts is typically exponential in size compared to the number of
constraints in the dual polyhedron D, and computationally we only use a small subset of
all of the Benders cuts. We let the index set B ⊆ P ×K correspond to the Benders cuts we
use at any given time. Thus we relax constraints (25), only including cuts with indices in
B.

10

In practice we separate the Benders cuts (22) by solving the primal problem (10)-(15),
as we can then directly verify whether or not the Benders cut corresponds to a subproblem
solution having integer x-values, in which case the corresponding solution will be feasible
for the original problem.

4.1 Dual alternative solutions

The subproblems (10)-(15) are severely degenerate. This is due to the cardinality constraint,
which typically only allows a small number of y-variables to be non-zero in an optimal
(integer) solution. As a consequence of the degeneracy the dual optimal solution is rarely
unique; i.e. a set of optimal dual alternative solutions typically exists. The Benders cuts (22)
rely on these dual optimal solutions and multiple Benders cuts can be generated in this case.

Magnanti and Wong (1981) observe that it is important to generate good Benders cuts
which are not dominated by other Benders cuts. As the Benders cuts depend on the dual
optimal solution we generate several diverse dual alternative solutions. We use an approach
inspired by Rousseau et al. (2007), to obtain these dual alternative solutions.1 First we
solve the primal version of the subproblem, and observe that we can obtain the polyhedron
of dual alternative optimal solutions using the complementary slackness conditions. From
this polyhedron we select several dual solutions.

Suppose that we have a solution (x∗k,u
∗
k,o
∗
k) to the subproblem (10)-(15) for a given

shift type solution y and a given scenario k ∈ K. The complementary slackness conditions
impose additional constraints on the dual optimal solution given by the following polytope:

Ck(x∗k,u
∗
k,o
∗
k,y) =


(π, µ,γ) ∈ R|T |+1+|S|

∣∣∣∣∣∣∣∣∣∣∣∣∣∣

∑
t∈Ts

πt + µ+ γs = 0, s ∈ S : x∗ks > 0

πt = −co, t ∈ T : o∗kt > 0
πt = cu, t ∈ T : u∗kt > 0

µ = 0, if
∑
s∈S

x∗ks < Emax

γs = 0, s ∈ S : xks < Mksys


Hence, given a y and a primal optimal (and possibly degenerate) solution (x∗k,u

∗
k,o
∗
k), then

the set of dual optimal alternative solutions is given by

D∗k(x∗k,u
∗
k,o
∗
k,y) = D ∩ Ck(x∗k,u

∗
k,o
∗
k,y)

and each point within this polyhedron will correspond to a Benders cut having equally
large absolute violation of the objective. It is from this set we are interested in obtaining a
diverse set of points. As all points within D∗k(x∗k,u

∗
k,o
∗
k,y) yield the same absolute violation

we can search for points (π, µ,γ) ∈ D∗k(x∗k,u
∗
k,o
∗
k,y) having different characteristics. Let

w1 ∈ R|T |, w2 ∈ R, and w3 ∈ R|S| be weights assigned to π, µ ,and γ respectively. Then
we solve the following problem

max w1π + w2µ+ w3γ (27)

s.t. (π, µ,γ) ∈ D∗k(x∗k,u
∗
k,o
∗
k,y) (28)

1Rousseau et al. (2007) identifies dual alternative solutions in order to find interior points of the dual
optimal polyhedron, and then they use these interior points for stabilization in column generation.

11

The weights w1 of the demand duals π can take any real value, whereas the weights of the
w2 and w3 have to be non-negative in order to obtain bounded solutions.

To obtain several dual alternative solutions we solve (27)-(28) for different settings of
the weights w1, w2, and w3. We initialize w1 = (−1, . . . ,−1), w2 = 0 and w3 = (1, . . . , 1).
Selecting a negative value will tend to minimize the corresponding dual, while selecting a
positive value will tend to maximize the corresponding dual. Leaving the weight at zero
indicates that we have no preferences on the size or sign of the corresponding dual. Our
selection hence tries to minimize π and maximize γ. The shift duals, γ, are upper bounded
by zero. If γs = 0, this value is attained, and implies that Mksysγs = 0. In such cases there
is no contribution to the corresponding Benders cut (22), regardless of the value ys.

When having found a dual solution (π′, µ′,γ ′) by (27)-(28) then the cut, if not already
been found, is added to B and the weights are adjusted. This adjustment follows the simple
rule that if γ′s = 0 and w3

s = 1 then we put w3
s = 0. The process is then repeated by

solving (27)-(28) obtaining Benders cuts and adjusting the weights. It is terminated either
when w3

s = 0 for all γ′s = 0 and thereby no adjustment is conducted, or when a satisfactory
number of dual alternative solutions has been obtained. The adjustment of the weights
results in different sets of shift duals being zero and consequently different y-variables will
have an effect on the zk-variable values.

5 Benders based heuristic

Despite the structure of Model (1)-(9) lending itself very naturally to Benders decomposi-
tion, a conventional implementation of this decomposition algorithm is unlikely to perform
well for the CCSDP. Firstly, one typically requires an optimal integer solution to the master
problem at any given Benders iteration, and the time to find this will most certainly increase
as the number of Benders cuts in the formulation of Model (23)-(26) increases. Secondly, as
mentioned in Section 4.1, there are likely to be many dual alternative optimal solutions for
a given solution to the master problem, each of which can be used to construct a Benders
cut. Combining this large set of potentially weak Benders cuts with the fact that up to
|K| subproblems need to be solved at every iteration, means that that convergence of the
Benders decomposition will be slow. Preliminary experiments confirmed these observations.
For extremely large problems, however, Benders decomposition does make it possible to find
feasible solutions (of a proven quality), while a direct MILP formulation cannot.

Given the expected poor performance of Benders decomposition on a large CCSDP,
as well as the fact that Smax is typically much smaller than |S|, we propose an iterative
heuristic framework based on Benders decomposition which at any given time considers only
a very small set of shift types. This set is then dynamically updated when we detect a shift
type not currently considered, but with the potential to improve the solution quality. This
detection is based on the cuts generated when solving the Benders decomposition for the
small subset of shift types. In what follows we describe the heuristic framework in detail;
an outline of the framework is sketched in Algorithm 1.

The approach begins with the construction of the initial set of shifts types. This is a
heuristic procedure that selects Smax shift types and tries to identify a “good” set of shift
types. Shift types are assigned a score and selected iteratively. The score is based on several
characteristics of the shift types. These are (1) the number of uncovered periods the shift

12

Algorithm 1 The Benders Decomposition Based Heuristic

1: procedure BendersHeuristic(S, K)
2: Ŝ ← initialShiftSet()
3: ẑprev ←∞, Spot ← ∅, S+prev ← ∅
4: solved ← false

5: while time exists and not solved do
6: S+ ← ∅
7: (ẑ, ŷ, B̂)← BendersDecomposition(Ŝ)
8: if ẑ < ẑprev then

9: (Spot, δmin)← getNewShifts(B̂, ŷ, Ŝ,S,K)

10: Ŝ ← Ŝ \ {s|ŷs < ε}
11: else
12: Ŝ ← Ŝ \ S+prev
13: if Spot 6= ∅ then
14: while Spot 6= ∅ and i ≤ maxShifts do
15: spot = argmins∈Spot

{
δmin
s

}
16: S+ ← S+ ∪ {spot}
17: Spot ← Spot \ {spot}
18: i← i+ 1

19: Ŝ ← Ŝ ∪ S+
20: else
21: solved ← true

22: S+prev ← S+
23: ẑprev ← ẑ

return ŷ

type covers. This is to ensure that all periods gets covered by at least one shift type. (2)
the increase in demand (aggregated over scenarios) of the upcoming periods after the shift
type has started. When the demand increases significantly in some periods, more staff are
needed and therefore it is reasonable to start a shift type. (3) the decrease in demand
(aggregated over scenarios) of the upcoming periods after ending the shift type. When the
demand is decreasing then it should be possible to decrease the number of employees and
therefore a shift type should end close to a large decrease in demand. (4) the length of
the shift type (longer is better). The longer a shift type is the more demand it may cover
and therefore these are initially preferred. (5) number of periods from the start of the shift
type to the start of an already inserted shift type (more is better), and (6) the number of
periods from the end of the shift type to the end of an already inserted shift type (more is
better). The last two characteristics are used to get an even spread of starting times and
ending times. The heuristic selects the shift type with the largest score and inserts it into
the initial set of shift types and the scores for the remaining shift types are adjusted. This
is repeated until Smax shift types are selected.

The premise is that one can quickly determine, via Benders decomposition, the optimal
solution to the problem considering a small set of shift types Ŝ, where |Ŝ| is only slightly
larger than Smax, and that the separated Benders cuts can be used to identify shift types
that should be included in Ŝ. That is, we fix ys = 0 for all s ∈ S \ Ŝ and the solve the
resulting restricted restricted problem. This is done by a conventional Benders algorithm

13

where in each Benders iteration the master problem (23)-(26) is solved to integer optimality
after which the subproblems (10)-(15) for each demand scenario are solved sequentially to
obtain violated Benders cuts. This process continues until no more violated Benders cuts
can be found for the integer solution, and the integer solution ŷ is then optimal for the
problem restricted to Ŝ. In this way we can restrict attention to promising shift types only,
i.e. those shift types in Ŝ, and obtain a solution (ẑ, ŷ) where ŷs = 0 for all s ∈ S \ Ŝ and
ŷs ∈ {0, 1} for s ∈ Ŝ, and where ẑ = (ẑk)k∈K is the vector of contributions to the objective
for each demand scenario. We will denote the ẑ =

∑
k∈K ẑk i.e. ẑ is the objective value of

the solution. In addition to the solution we also obtain a set of Benders cuts B̂.
As the solution ŷ satisfies the cardinality constraint and as |Ŝ| is slightly larger than

Smax we must have that some ŷs = 0 for s ∈ Ŝ. If the objective ẑ is better than the
previously found objective, these shifts are removed from the set of promising shifts s ∈ Ŝ.
In this way, we can ensure that the size of Ŝ remains manageable. The resulting set of
Benders cuts B̂ reflects the outer approximation of the objective locally around the solution
ŷ, and it can be used to approximate the change in the objective when a small change to the
solution is made. In the flowing we describe how we use the set B̂ to obtain new promising
shift types to include in Ŝ.

Given an optimal solution ŷ to the reduced problem, the next step of the heuristic
involves identifying a set of promising shift types S+ to add to Ŝ and their potential im-
provements. Algorithm 2 describes in detail how this is done. The procedure analyses the
set of Benders cuts just found. It begins by iterating over all binding cuts, since these
collectively determine the solution quality; a binding Benders cut for a given scenario k
determines the value of ẑk. For each binding cut and pair of shifts (s1 ∈ Ŝ, s2 ∈ S \ Ŝ) we
determine an estimate for the improvement (or deterioration)

δ = Mks2γ
p
s2 −Mks1γ

p
s1

in zk by swapping s2 with s1 in the solution. Note that even though we have only included
a very small subset of shift types in the subproblems the Benders cuts generated include
information, γps2 , on non-included shift type variables. Therefore, since the Benders cuts
are based on dual information, the value Mksγ

p
s for any shift variable ys can be used to

determine the approximate change in objective by forcing ys into the solution. As multiple
Benders cuts may be binding for each of the scenarios we record the maximum change,
∆s1s2k, for the respective scenario. This is due to the fact that only the maximum value of
the right-hand sides of the Benders cuts (22) will determine zk.

Once all such scenario objective changes have been computed, we loop over all shift
types s2 ∈ S \ Ŝ and identify whether or not including s2 instead of s1 ∈ Ŝ in the solution
would produce a negative net change across all demand scenarios. It could be the case that
a shift type is very attractive for one scenario, but not so attractive for other scenarios. If
the estimated net objective change is negative, however, we would still like to tag this shift
type as promising. All shift types with estimated potential improvements are stored in the
set Spot and potential improvements are stored in the vector δmin = (δmin

s)s∈S .
After Spot and δmin have been determined then these are returned to Algorithm 1 where

we check to see if the current solution is better than the previous one. If so, we remove
any shift types not selected in the current solution. If not, we remove any shift types that

14

Algorithm 2 Identifying Promising Shifts

1: procedure getNewShifts(B, ŷ, Ŝ,S,K)
2: ∆← {−∞}, δmin ← {∞}
3: Spot ← ∅
4: for (p, k) in B do
5: if zk =

∑
t∈T dktπ

p
t + Emaxµp +

∑
s∈SMksŷsγ

p
s then

6: for s1 in Ŝ do
7: for s2 in S \ Ŝ and ŷs1 > ε do
8: δ ←Mks2γ

p
s2 −Mks1γ

p
s1

9: ∆s1s2k ← max(∆s1s2k, δ)

10: for s2 in S \ Ŝ do
11: for s1 in Ŝ do
12: δ ← 0
13: for k in K do
14: if ∆s1s2k > −∞ then
15: δ ← δ + ∆s1s2k

16: if δ < δmin
s2 then

17: δmin
s2 ← δ

18: if δmin
s2 < −ε then

19: Spot ← Spot ∪ {s2}
return (Spot, δmin)

were added on the previous iteration since their inclusion did not result in an improve-
ment (e.g. we remove shift types in S+prev). Note that there is no guarantee a shift type
identified as promising actually improves the solution quality. The identification routine
is based on limited information only, and at best is an estimate. For this reason, we do
not consider removing shift types until the Benders decomposition step of the algorithm
has been performed. In other words, we prefer to wait and see if the newly added shift
types actually yield an improvement. As a consequence, the algorithm will never produce a
worse objective on a subsequent iteration. Note that Algorithm 2 is only called anew when
an improving solution is detected. If the objective value does not improve (i.e. the newly
added shift types do not yield an improvement), the set of potential entering shift types
previously computed remains valid.

The set of shift types to then add to Ŝ is simply the maxShifts (or |Spot|, whichever
is the smaller) most promising potential shift types of Spot. Note the maxShifts is a
parameter specified in advance. In practice, we set this to one; however, in general one
should be able to consider any number of shift types to dynamically add.

At any iteration of the Benders heuristic we need information regarding the previous
objective value ẑprev, and the set of shift types added to Ŝ on the previous iteration, denoted
S+prev. Keeping S+prev makes it possible to restore the state of the previous iteration and

try the next best set of potential shift types if the current Ŝ does not contain a better
solution. The heuristic framework terminates when a certain time limit is reached or when
no promising shift types are identified. In this way the algorithm will converge to a locally
optimal solution; however, by identifying the shift types to include using the Benders cuts,
this should provide a reasonable solution. The algorithm terminates when this is the case,

15

or a specified run time has elapsed.

6 Computational experiments

In this section we examine the performance of the proposed methodology on a set of realistic
test instances. These instances are based on data which has been provided by Copenhagen
Airport and focus on a typical week (i.e. seven different demand scenarios). Each demand
scenario specifies for a given day the required staffing level in the main security hall at
15 minute intervals. This gives a total of 96 time periods per day for which there is an
associated staff demand. Using this demand data we construct several instances of the
CCSDP by varying the maximum number of shift types that can be used, Smax, and by
considering different sets of shift types, S. We also analyse the impact of varying the
number of staff available, Emax. For each data set we compare the results obtained using
four different versions of the Benders heuristic; however, the only difference between the
approaches is in the number of dual alternative optimal solutions that one is allowed to find
at a given iteration of the Benders decomposition component of the algorithm. By varying
the number of such solutions, and by extension the number of Benders cuts returned, we
assess the potential benefit in searching for dual alternative optimal solutions. Finally, to
provide a performance comparison all test instances are also solved with the commercial
solver Gurobi version 6.0 (single thread). All tests have been performed on Intel(R) Xeon(R)
CPU X5550 @ 2.67GHz with 24GB ram running Ubuntu Linux 14.04.

Before closely examining the results, we provide more specific details on the different
data sets. We consider two different sets of shift types. The first contains all possible
shift types that have a duration of between four and eight hours. This gives a total of
1241 different shift types. The second set, albeit slightly unrealistic, considers all possible
shift types of between 4 and 12 hours in duration. This second set contains 2145 different
shift types and is included in an attempt to stress test the algorithm. From a staffing
level perspective, we consider instances having 160, 180, and 200 available employees. This
gives a diverse set of instances in which it is impossible to cover all demand (but is almost
possible), regardless of how many shift types are permitted. More undercoverage is expected
on instances with a fewer number of employees. These staffing levels are in line with what
the airport has in practice.

For the three different values for Emax and the two different sets of allowable shift types,
we create 16 different CCSDPs by varying the value of Smax from six to 21. This gives a
total of 3 × 2 × 16 = 96 different CCSDPs. Note that the demand scenarios for all data
sets are the same. We solve each of these data sets five times, once with Gurobi and four
times with the heuristic. Furthermore, we compare a 10 minute solve with a 20 minute
solve and assess the quality of the solutions obtained. In all of the tests it is assumed that
a unit of undercoverage, cu, is ten times as expensive as a unit of overcoverage, co. For
reference, and comparative purposes, considering a relaxed version of the problem in which
no upper bound is enforced on the number of different shift types allowed yields optimal
solutions having 163, 173, and 173 different shift types for the three different staffing levels
on instances with 1241 shift types. For the larger instances these are 171, 169, and 173,
respectively. Such solutions state the number of different shift types with at least one staff
member assigned on any of the given days.

16

Table 1 summarizes the main results. Each row of the table corresponds to a different
set of the instances. An instance set is characterized by a staffing level, a number of possible
shift types, and a time limit. For example, set 180-1241-600 considers 180 employees, 1241
shift types, where a run time of 600 seconds is permitted. Recall that each instance set
contains 16 different CCSDPs. The table reports for each instance set, the number of times
each approach found the best solution within the time limit. The “GRB” column refers to
the approach where Gurobi is used to directly solve Model (1)-(7), and (9). This ensures a
fair comparison between the approaches. Column “cj” refers to the heuristic approach in
which at most j dual alternative optimal solutions are considered at each Benders iteration.
In addition, Table 1 gives the average, percentage difference between the best value found
by each heuristic approach and that found by Gurobi within the allotted time limit. Table 2
provides the same results where the comparison includes a Gurobi solve of Model (1)-(9),
i.e. integral x-variables.

Table 1: Results Summary - Gurobi is given Model (1)-(7), and (9)

Found Best Value % Change
Instance Set GRB c0 c1 c3 c5 c0 c1 c3 c5
160-1241-600 1 3 4 8 7 -32.88 -34.61 -36.14 -36.20
180-1241-600 0 3 1 11 5 -40.17 -38.31 -45.59 -44.38
200-1241-600 0 3 2 10 5 -40.15 -40.02 -45.11 -45.00

160-1241-1200 0 3 7 6 5 -26.53 -27.73 -27.72 -28.28
180-1241-1200 0 4 3 8 4 -29.99 -28.50 -34.07 -32.14
200-1241-1200 1 2 0 7 8 -24.20 -23.74 -29.18 -30.15

160-2145-600 3 3 0 6 5 -13.81 -10.61 -18.88 -18.20
180-2145-600 4 2 0 3 8 -12.26 -10.60 -16.21 -17.77
200-2145-600 2 2 2 7 4 -11.73 -13.79 -18.89 -17.34

160-2145-1200 5 3 0 4 4 -7.70 -6.50 -14.54 -13.54
180-2145-1200 4 4 0 3 6 -10.31 -9.29 -13.03 -14.91
200-2145-1200 2 2 3 5 5 -7.37 -10.33 -14.47 -13.12

From Table 1, it is clear to see that the heuristic approach is superior to that of a
Gurobi solve on instance sets containing 1241 shift types. The difference in solution values
obtained on such instances is particularly pronounced when a time limit of 600 seconds is
enforced; on average, all heuristic approaches yield solutions that are around 40% better
than that of a direct MILP solve. Furthermore, the results suggest that there is some
benefit in searching for dual alternative optimal solutions. The heuristic approaches in
which more dual alternative optimal solutions (i.e. c3 and c5) tend to provide the best
results. Interestingly, such approaches consider a fewer total number of solutions to CCDSP;
however, by including more Benders cuts at each iteration, more reliable information is
available when determining new shift types to consider. The difference between the solution
values obtained, for 1241 shift types, when a time limit of 1200 seconds is allowed is not as
pronounced but it is still significant, on average being 25-30% better than the MILP. The
MILP does, however, produce better solutions on two rare occasions.

Looking at the instances containing 2145 shift types, the comparison is not so one-

17

Table 2: Results Summary - Gurobi is given Model (1)-(9)

Found Best Value % Change
Instance Set GRB c0 c1 c3 c5 c0 c1 c3 c5
160-1241-600 0 4 4 8 7 -33.32 -34.34 -34.97 -35.23
180-1241-600 0 3 1 11 5 -37.09 -35.43 -41.02 -39.76
200-1241-600 0 3 2 10 5 -36.24 -36.18 -40.00 -40.23

160-1241-1200 2 2 6 5 3 -27.21 -27.81 -27.76 -28.29
180-1241-1200 0 4 3 8 4 -36.83 -35.34 -39.55 -37.80
200-1241-1200 1 2 0 7 8 -33.47 -33.43 -36.91 -37.90

160-2145-600 0 4 0 7 7 -40.97 -39.01 -44.76 -44.38
180-2145-600 0 2 1 6 10 -40.02 -39.14 -42.61 -44.02
200-2145-600 0 2 2 9 6 -40.13 -41.52 -45.04 -44.03

160-2145-1200 0 4 0 6 6 -37.47 -36.97 -42.37 -41.69
180-2145-1200 0 4 1 6 7 -36.32 -36.06 -38.42 -40.04
200-2145-1200 0 2 3 6 6 -37.75 -39.71 -42.39 -41.64

sided; however, the results still suggest that it is beneficial to consider dual alternative
optimal solutions if running the heuristic. A direct MILP solve using Gurobi is much
more competitive on these instance sets, finding better solutions than the heuristic on
more instances (compared to the instances containing 1241 shift types). That said, all
heuristic approaches still outperform Gurobi by 7-17% on average. A possible explanation
for the closer comparison could be that with 2145 shift types the Benders decomposition
subproblems are larger. Larger subproblems take longer to solve, and this in turn slows
down the Benders decomposition step of the heuristic. As a consequence, fewer solutions to
the CCSDP can be considered for such instances within the allotted time. Table 3 reports
the maximum number of iterations performed as well as the maximum number of total
Benders cuts found by the heuristic approaches on each of the instance sets. From the table
it is clearly evident how many fewer iterations can be performed (and hence Benders cuts
obtained) by the heuristic on the larger problem classes. Nevertheless, the heuristic is able
to find good solutions quickly.

Note that as integrality is not strictly enforced on the x-variables, the heuristic approach
is not guaranteed to find an integer solution; however, all results obtained were either integer
or had an alternative integer solution with the same objective value. This was verified using
a MILP with the only shift types allowed being those found by the heuristic. This MILP
takes on average 0.1 seconds to solve. This is a dramatic improvement compared to the full
MILP, the results of which are given in Table 2.

To provide an indication of how the approaches behave on specific data sets we have
included Figures 2, 3, and 4. Figure 2 provides a comparison of the solution approaches on
the 16 different data sets comprising instance set 200-1241-600, while Figure 3 provides a
comparison of the solution approaches on the 16 different data sets comprising instance set
200-2145-1200. In both Figures 2,and 3, Gurobi is given the relaxed MILP (1)-(7), and (9),
i.e. the integer requirement on the x-variables is removed. Figure 4, on the other hand, gives
the same comparison as Figure 3, with the exception that Gurobi is given Model (1)-(9),

18

Table 3: Heuristic Statistics - iteration counts and total number of Benders cuts found

c0 c1 c3 c5
Instance Set it. cuts it. cuts it. cuts it. cuts

160-1241-600 509 32487 356 45493 276 54908 243 57755
180-1241-600 572 35670 359 45089 268 58097 235 63223
200-1241-600 607 35091 367 46067 296 59842 263 66230

160-1241-1200 982 61584 692 89216 544 110566 464 118429
180-1241-1200 1138 70376 740 91832 548 114855 474 121669
200-1241-1200 1193 69348 723 88664 591 119040 489 122774

160-2145-600 173 10477 137 15171 105 17130 98 18559
180-2145-600 179 10821 135 13915 109 15802 94 17206
200-2145-600 187 11395 117 12164 113 15550 87 16443

160-2145-1200 330 21923 252 28066 201 32452 173 36929
180-2145-1200 348 21244 265 27526 218 32224 179 35259
200-2145-1200 346 20972 231 25006 207 29116 186 32091

i.e. integral x-variables as well. All figures display objective function values (in millions) of
the best found solution by each approach.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

2

4

6

8

10

12

14

Smax

O
b

je
ct

iv
e

(1
0
6
)

Objective Value By Approach

GRB 0 1 3 5

Figure 2: Comparison of solution approaches when Emax = 200, |S| = 1241, and a time
limit of 600 seconds is enforced. Gurobi is given Model (1)-(7), and (9)

19

In Figure 2, one can observe the superiority of the heuristic approach on all instances
considered. In some cases there is a dramatic difference between the values obtained by the
heuristic methods and that of Gurobi. Furthermore, the heuristic approach appears to be
more stable in the sense that the objective decreases as the number of allowed shift types
increases. This is inline with intuition; increasing the number of shift types must allow the
demand scenarios to be matched more exactly. Gurobi seems to be more erratic in this
regard. It is worth mentioning that the best possible solution with 200 available employees
and no bound on the number of allowed shift types is 16500. Note that in Figure 2 in
particular, and to some extent Figures 3 and 4, the comparison is visually distorted due
to the dramatic difference between objective values for some of the instances. Figure 2 is
characteristic of problem instances with 1241 shift types and a time limit of 600 seconds.
On such instances the heuristic approaches find good solutions quickly.

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

1

2

3

4

5

6

Smax

O
b

je
ct

iv
e

(1
0
6
)

Objective Value By Approach

GRB 0 1 3 5

Figure 3: Comparison of solution approaches when Emax = 200, |S| = 2145, and a time
limit of 1200 seconds is enforced. Gurobi is given Model (1)-(7), and (9)

As expected, Figure 3 indicates a closer comparison between a direct MILP solve (with
relaxed x-variables) and the heuristic approaches. Here it would be fair to say that simply
using Gurobi outperforms the heuristics when a few number of shift types are allowed. The
contrary is true when more shift types are allowed; in some cases improvements of at least
35% can be obtained using the heuristic , see e.g. the CCSDPs with 18 - 21 allowable shift
types. This reinforces our conclusion that the Gurobi solve on Model (1)-(7), and (9) is
not as stable as the heuristic approaches. Figure 4 shows the poor performance of the full
MILP compared to the heuristics.

20

6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
0

1

2

3

4

5

6

Smax

O
b

je
ct

iv
e

(1
0
6
)

Objective Value By Approach

GRB 0 1 3 5

Figure 4: Comparison of solution approaches when Emax = 200, |S| = 2145, and a time
limit of 1200 seconds is enforced. Gurobi is given Model (1)-(9)

7 Conclusion

In this paper we have formulated the CCSDP as a MILP that lends itself very naturally to
Benders Decomposition and described a special case of the SDP that is easy to solve. Due
to convergence issues with standard Benders decomposition, we have proposed a Benders
decomposition based matheuristic for solving this problem. Furthermore, we have outlined
a technique for finding dual alternative optimal solutions to the Benders subproblem; each
dual alternative optimal solution can be used to construct a Benders cut and thus provide
information for the Benders master problem.

The proposed heuristic considers a small set of shift types at any one time and is
dynamically updated upon analysis of the Benders cuts obtained to find the optimal solution
to the reduced problem. Improving shift types are found by looking at the coefficients of
the Benders cuts and identifying those which could potentially improve the solution quality.

Computational experiments performed on 96 test instances based on realistic data pro-
vided by Copenhagen Airport confirm the efficiency of the proposed methodology. On
instances containing 1241 shift types the proposed heuristic outperformed a direct MILP
solve using Gurobi, providing solutions that were on average 40% better when a time limit
of 600 seconds was enforced and solutions that were around 25% better over 20 minutes.
The heuristic appears to be more stable than the MILP solve. Furthermore, finding dual al-
ternative optimal solutions seems to improve the performance of the heuristic, often finding
better solutions than when it was not used. This is despite the fact that searching alter-

21

native solutions reduces the number of solutions to a CCSDP the algorithm can consider,
given a certain time limit.

On instances with 2145 shift types the results are not so definitive; directly solving the
MILP outperforms the benders heuristic when few shift types are allowed, but is unable to
compete with the heuristic when the number of shift types increases. On average, however,
the heuristic approaches find solutions that are 10-19% better within 10 minutes and 7 to
19% over 20 minutes.

Interesting extensions of the current work include speeding up the Benders decompo-
sition component of the algorithm. Despite the fact that we only ever consider a severely
limited set of shift types, this can be cumbersome at times. The dramatic difference in the
number of iterations the heuristic can perform on each of the two data sets is evidence to
support this. Furthermore, the proposed framework can easily be applied in a stochastic
programming environment, where one does not have a daily demand scenario for each day of
the week (as is the case here) but multiple demand scenarios (each with a given probability
of occuring) for a given day.

References

Aykin, T., 1996. Optimal shift scheduling with multiple break windows. Management Science 42 (4),
591–602.

Aykin, T., 1998. A composite branch and cut algorithm for optimal shift scheduling with multiple
breaks and break windows. Journal of the Operational Research Society 49 (6), 603–615.

Aykin, T., 2000. A comparative evaluation of modeling approaches to the labor shift scheduling
problem. European Journal of Operational Research 125 (2), 381–397.

Bechtold, S., Jacobs, L., 1990. Implicit modeling of flexible break assignments in optimal shift
scheduling. Management Science 36 (11), 1339–1351.

Benders, J., 1962. Partitioning procedures for solving mixed-variables programming problems. Nu-
merische Mathematik 4 (1), 238–252.

Butler, D., Maydell, U., 1979. Manpower scheduling in the Edmonton police department. INFOR
Journal 17 (4), 366 – 372.

Cordeau, J., Stojkovic, G., Soumis, F., Desrosiers, J., 2001. Benders decomposition for simultaneous
aircraft routing and crew scheduling. Transportation Science 35 (4), 375–388.

Dantzig, G. B., 1954. Letter to the editora comment on edie’s traffic delays at toll booths? Journal
of the Operations Research Society of America 2 (3), 339–341.

Di Gaspero, L., Gärtner, J., Kortsarz, G., Musliu, N., Schaerf, A., Slany, W., 2007. The minimum
shift design problem. Annals of Operations Research 155 (1), 79–105.

Dirickx, Y., Jennegren, L., 1979. Systems analysis by multi-level methods: with applications to
economics and management. John Wiley & Sons, Inc.

Ernst, A., Jiang, H., Krishnamoorthy, M., Owens, B., Sier, D., 2004a. An annotated bibliography
of personnel scheduling and rostering. Annals of Operations Research 127 (1-4), 21–144.

22

Ernst, A., Jiang, H., Krishnamoorthy, M., Sier, D., 2004b. Staff scheduling and rostering: A review
of applications, methods and models. European Journal of Operational Research 153 (1), 3–27.

Eveborn, P., Rönnqvist, M., 2004. Scheduler - a system for staff planning. Annals of Operations
Research 128 (1-4), 21–45, cited By 20.

Gaballa, A., Pearce, W., 1979. Telephone sales manpower-planning at qantas. Interfaces 9 (3), 1–9.

Geoffrion, A., 1972. Generalized benders decomposition. Journal of Optimization Theory and Ap-
plications 10 (4), 237–260.

Glover, F., Glover, R., McMillan, C., 1983. Heuristic programming approach to the employee schedul-
ing problem and some thoughts on ’managerial robots’. Proceedings of the Hawaii International
Conference on System Science, 420–436.

Magnanti, T., Wong, R., 1981. Accelerating benders decomposition - algorithmic enhancement and
model selection criteria. Operations Research 29 (3), 464–484.

Mason, A. J., Ryan, D. M., Panton, D. M., 1998. Integrated simulation, heuristic and optimisation
approaches to staff scheduling. Operations Research 46 (2), 161–175.

Mehrotra, A., Murphy, K., Trick, M., 2000. Optimal shift scheduling: A branch-and-price approach.
Naval Research Logistics 47 (3), 185–200.

Musliu, N., Schaerf, A., Slany, W., 2004. Local search for shift design. European Journal of Opera-
tional Research 153 (1), 51 – 64, timetabling and Rostering.

Nielsen, S. B., September 2012. Staff scheduling at copenhagen airport. Master’s thesis, Department
of Management Engineering, Technical University of Denmark.

Rekik, M., Cordeau, J., Soumis, F., 2004. Using benders decomposition to implicitly model tour
scheduling. Annals of Operations Research 128 (1-4), 111–133.

Rousseau, L.-M., Gendreau, M., Feillet, D., 2007. Interior point stabilization for column generation.
Operations Research Letters 35 (5), 660–668.

Schrijver, A., 1986. Theory of Linear and Integer Programming. John Wiley & Sons, Inc., New York,
NY, USA.

Thompson, G., 1990. Shift scheduling in services when employees have limited availability: An l.p.
approach. Journal of Operations Management 9 (3), 352–370.

Thompson, G., 1996. A simulated-annealing heuristic for shift scheduling using non-continuously
available employees. Computers and Operations Research 23 (3), 275–288.

Van den Bergh, J., Belien, J., De Bruecker, P., Demeulemeester, E., De Boeck, L., 2013. Personnel
scheduling: A literature review. European Journal of Operational Research 226 (3), 367–385.

23

