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Abstract

In this paper we show that the testable implications derived in Huber and Mellace

(2013) are the best possible to detect invalid instruments, in the presence of heterogeneous

treatment effects and endogeneity. We also provide a formal proof of the fact that those

testable implication are only necessary but not sufficient conditions for instrument validity.
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1 Introduction

In heterogeneous treatment effect models with a binary treatment, a binary instrument is

valid (it allows identifying the Local Average Treatment Effect on the compliers) if (i) the

potential outcomes are mean independent of the instrument, (ii) the types are independent on

the instruments, and (iii) the potential treatment states are weakly monotonic function of the

instrument. Huber and Mellace (2013) derive testable implication of those three assumptions.

The main intuition is that under (i) to (iii), the mean potential outcomes of the always takers

under treatment and the never takers under non-treatment can be both point identified and

bounded. As the point identified mean potential outcomes must lie between the respective

bounds this result provides four testable implications. However, Huber and Mellace (2013) do

not provide any formal proof that those testable implications are the best possible to detect

invalid instrument.

In this paper we show that those testable implications are indeed optimal in the sense of

Preposition 1.1 in Kitagawa (2014). In particular, we show that for any observed joint distribu-

tion of the outcome, the treatment, and the instrument which satisfy the testable implications,
∗Matej Bel University, Dept. of Mathematics, E-mail: lukas.laffers@gmail.com, Web:

http://www.lukaslaffers.com
†University of Southern Denmark, Dept. of Business and Economics, E-mail: giome@sam.sdu.dk, Web:

http://sites.google.com/site/giovannimellace/

1



there exist a DGP which satisfies assumptions (i) to (iii) and is compatible with such joint

distribution. Moreover, we formally prove that it is only possible to refute but not to verify (i)

to (iii), regardless of the sample size.

2 Notation

In this section we follow closely the notation in Huber and Mellace (2013). We denote by Y

the observed outcome, by D the binary treatment and by Z the binary instrument. We define

the potential outcomes as Yd and the potential treatment states as Dz, respectively.1 As shown

in the seminal papers of Imbens and Angrist (1994) and Angrist et al. (1996), the population

can then be categorized into four types (denoted by T), as reported in Table 1.

Table 1: Types

Type T D1 D0 Notion
a 1 1 Always takers
c 1 0 Compliers
df 0 1 Defiers
n 0 0 Never takers

As either D1 or D0 is observed, but never both, without further assumptions, neither the

share of the different types nor their mean potential outcomes are identified. Without loss of

generality assume that Pr(D = 1|Z = 1) > Pr(D = 1|Z = 0), the Local Average Treatment Effect

(LATE) on the compliers is identified under the following three assumptions:2

Assumption 1: (unconfounded type)

Pr(T = t|Z = 1) = Pr(T = t|Z = 0) for t ∈ {a, c, df , n}.

Assumption 2: (mean exclusion restriction)

E(Yd|T = t, Z = 1) = E(Yd|T = t, Z = 0) for d ∈ {0, 1} and t ∈ {a, c, df , n}.

Assumption 3: (monotonicity)

Pr(D1 ≥ D0) = 1.

Under Assumptions 1, and 3, the probability of being a defier is equal to zero and the

probabilities of belonging to any other type is identified and do not depend on the instrument.

Thus, let πt ≡ Pr(T = t), t ∈ {a, c, df , n}, represent the probability of belonging to type T in the

1By defining the potential outcomes, we implicitly assume that the usual Stable Unit Treatment Value assump-
tion (SUTVA) holds.

2If Pr(D = 1|Z = 1) < Pr(D = 1|Z = 0) one can run the test on Z̃ = 1− Z.
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population and denote by Pd|z ≡ Pr(D = d|Z = z) the conditional probability of being treated

given the instrument, the implications of Assumptions 1 and 3 are summarized in Table 2.

Table 2: Observed probabilities and type proportions

Cond. treatment prob. type proportions
P1|1 ≡ Pr(D = 1|Z = 1) πa + πc
P0|1 ≡ Pr(D = 0|Z = 1) πn
P1|0 ≡ Pr(D = 1|Z = 0) πa
P0|0 ≡ Pr(D = 0|Z = 0) πc + πn

Similarly, under Assumptions 1, 2, and 3 and using the results in Table 2, we can relate the

four observable conditional means, E(Y|D = d, Z = z), to the types mean potential outcomes:

E(Y|D = 1, Z = 1) =
P1|0
P1|1
· E(Y1|T = a) +

P1|1 − P1|0
P1|1

· E(Y1|T = c),

E(Y|D = 1, Z = 0) = E(Y1|T = a),

E(Y|D = 0, Z = 1) = E(Y0|T = n),

E(Y|D = 0, Z = 0) =
P1|1 − P1|0

P0|0
· E(Y0|T = c) +

P0|1
P0|0
· E(Y0|T = n),

(1)

Let qr ≡
Pr|1−r

Pr|r
and yqr = F−1

Y|D=r,Z=r(qr) with F being the cdf of Y given D = r, Z = r and

r = 0, 1, using the results in Horowitz and Manski (1995), Huber and Mellace (2013) have

shown that

E(Y|D = r, Z = r, Y ≤ yqr ) ≤ E(Y|D = r, Z = 1− r) ≤ E(Y|D = r, Z = r, Y ≥ y1−qr ). (2)

This provides four testable implications which are used by Huber and Mellace (2013) to jointly

test the validity of Assumptions 1, 2, and 3.

3 Formal proof of optimality and non-verifiability

In this section we show that the inequalities in (2) are the best possible to screen invalid

instrument, and that Assumptions 1, 2 and 3 are refutable but non-verifiable in the sense of

Preposition 1.1 in Kitagawa (2014).
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Theorem 1. The following statements hold.

(i) For any probability distribution of the observed variables (Y, D, Z) that satisfies the set of inequal-

ities in (2), there exists a probability distribution of (Y1, Y0, T, Z) that satisfies the Assumptions

1, 2 and 3, and induces the observed probability distribution of (Y, D, Z).

(ii) For any probability distribution of the observed variables (Y, D, Z) satisfying (2), there exists a

probability distribution of (Y1, Y0, T, Z) such that Z is not a valid instrument.

Part (i) states that the inequalities in (2) are the best possible to detect violations of As-

sumptions (1) to (3), (ii) shows that the fact that (2) holds does not guarantee that the instru-

ment is valid. The proof of Theorem 1 is presented below and is based on the results in Huber

et al. (2014).

Proof of theorem 1. Part (i)

We decompose the probability distribution of (Y1, Y0, T, Z) into the distribution of (Y1, Y0)

given T and Z and the probability distribution of T given Z. The latter is uniquely determined

under Assumptions 3 and does not depend on Z (See Table 2). We note that the marginal

distribution of Z does not play any role in the model assumptions. Let hz
t (y1, y0) = f (y1, y0|T =

t, Z = z) be the conditional density of (Y1, Y0) evaluated at (y1, y0) given T = t and Z = z.

For the sake of brevity, we refer to hz
t (y1, y0) by hz

t . Let g(y(d)) denotes an arbitrary probability

density function of Yd. Consider the following specification for hz
t :

h1
a = g(y0) ·

(
α1

a fY(y1|D = 1, Z = 1, Y ≤ yq1) + (1− α1
a) fY(y1|D = 1, Z = 1, Y ≥ y1−q1)

)
,

h0
a = g(y0) · fY(y1|D = 1, Z = 0),

h1
n = g(y1) · fY(y0|D = 0, Z = 1),

h0
n = g(y1) ·

(
α0

n fY(y0|D = 0, Z = 0, Y ≤ yq0) + (1− α0
n) fY(y0|D = 0, Z = 0, Y ≥ y1−q0)

)
,

h1
c = h0

c = (P1|1 − P1|0)−2 ·
(

P1|1 · fY(y1|D = 1, Z = 1)− P1|0 ·
∫

h1
a dy0

)
·
(

P0|0 · fY(y0|D = 0, Z = 0)− P0|1 ·
∫

h0
n dy1

)
,

h1
df = h0

df = g(y1) · g(y0),

(3)

where the parameters

α1
a =

E(Y|D = 1, Z = 1, Y ≥ y1−q1)− E(Y|D = 1, Z = 0)
E(Y|D = 1, Z = 1, Y ≥ y1−q1)− E(Y|D = 1, Z = 1, Y ≤ yq1)

,

α0
n =

E(Y|D = 0, Z = 0, Y ≥ y1−q0)− E(Y|D = 0, Z = 1))
E(Y|D = 0, Z = 0, Y ≥ y1−q0)− E(Y|D = 0, Z = 0, Y ≤ yq0)

,
(4)
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are set so that the Assumption 2 holds.

Notice that by setting Pr(T = t|Z) = Pr(T = t) = πt, t =, a, c, n as in Table 2, Assumptions

1, and 3 are immediately satisfied. It is left to show that the functions in (3): (a) are proper

probability conditional densities, (b) satisfy Assumption 2 and (c) are compatible with the

observed probability distribution (Y, D, Z).

(a) The inequalities in (2) imply that parameters in (4) lie between [0, 1]. This fact guar-

antees that h1
a , h0

a , h1
n and h0

n are proper densities because their marginals are convex combi-

nations of proper probability densities. We now inspect the non-negativity of the marginal

distribution of h1
c w.r.t. y1 as non-negativity of the marginal distribution of h1

c w.r.t. y0 follows

similarly.

∫
h1

c dy0 = (P1|1 − P1|0)−1 ·
(

P1|1 · fY(y1|D = 1, Z = 1)− P1|0 ·
∫

h1
ady0

)
= (P1|1 − P1|0)−1 · fY(y1|D = 1, Z = 1) · P1|1 ·

(
(1− α1

a) · I{Y ≤ yq1}

+ α1
a · I{Y ≥ y1−q1} + 1 · I{yq1 < Y < y1−q1} + 0 · I{y1−q1 < Y < yq1}

)
≥ 0.

(5)

where I{A} is the indicator function of a set A. Non-negativity follows from α1
a and α0

n lying

in [0, 1].

(b) Note that Assumption 2 is satisfied by construction for the compliers as h1
c = h0

c . We

now show that Assumption 2 is satisfied for the always takers, the proof for the never takers

is symmetric and thus omitted.

∫∫
y1h1

a dy1dy0 =
∫∫

y1
(

α1
a fY(y1|D = 1, Z = 1, Y ≤ yq1)

+ (1− α1
a) fY(y1|D = 1, Z = 1, Y ≥ y1−q1)

)
dy1dy0

= α1
aE(Y|D = 1, Z = 1, Y ≤ yq1) + (1− α1

a)E(Y|D = 1, Z = 1, Y ≥ y1−q1)

= E(Y|D = 1, Z = 0) =
∫∫

y1h0
a dy1dy0.

(6)
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(c) Compatibility with the observed probability distribution of (Y, D, Z) follows immedi-

ately by the following equalities

P1|1 · fY(y|Z = 1, D = 1) = P1|0

∫
h1

a dy0 + (P1|1 − P1|0)
∫

h1
c dy0,

P1|0 · fY(y|Z = 0, D = 1) = P1|0

∫
h0

a dy0,

P0|1 · fY(y|Z = 1, D = 0) = P0|1

∫
h1

n dy1,

P0|0 · fY(y|Z = 0, D = 0) = P0|1

∫
h0

n dy1 + (P1|1 − P1|0)
∫

h0
c dy1.

(7)

Part (ii)

For any given probability distribution of (Y, D, Z) that satisfy the inequalities in (2), con-

sider the specification (3) for hz
t , but with parameters α1

a and α0
n in [0, 1], that are different

from those in (4). This specification satisfies (5), so that hz
t are proper probability distributions

while (7) also holds, so that this choice of hz
t is compatible with the observed distribution of

(Y, D, Z). At the same time, Assumption 2 is violated as the third equation in (6) does not

hold.
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