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On highway problems∗

Peter Sudhölter† José M. Zarzuelo‡

Abstract

A highway problem is a cost sharing problem that arises if the common resource is an or-
dered set of sections with fixed costs such that each agent demands consecutive sections. We
show that the core, the prenucleolus, and the Shapley value on the class of TU games associ-
ated with highway problems possess characterizations related to traditional axiomatizations
of the solutions on certain classes of games. However, in the formulation of the employed
simple and intuitive properties the associated games do not occur. The main axioms for the
core and the nucleolus are consistency properties based on the reduced highway problem that
arises from the original highway problem by eliminating any agent of a specific type and us-
ing her charge to maintain a certain part of her sections. The Shapley value is characterized
with the help of individual independence of outside changes, a property that requires the
fee of an agent only depending on the highway problem when truncated to the sections she
demands. An alternative characterization is based on the new contraction property. Finally
it is shown that the games that are associated with generalized highway problems in which
agents may demand non-connected parts are the positive cost games, i.e., nonnegative linear
combinations of dual unanimity games.

Keywords: TU game · airport problem · highway problem · core · nucleolus · Shapley value

JEL codes: C71

1 Introduction

In this paper we analyze a particular kind of cost allocation problem in which some agents jointly

produce and finance a common resource or facility. The peculiarity is that this resource can be

separated into a number of ordered sections. Moreover, each agent requires some consecutive

sections, and each section has a fixed cost. The issue of our present study is how to share the

total cost of all sections among the users in an efficient and fair way. A simple example that
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illustrates this situation is a linear highway, where the sections are delimited by the entry and

exit points, and each car only needs the highway sections between its entry and exit point.1

This example motivates why these problems are called highway problems (Kuipers, Mosquera,

and Zarzuelo 2013). The well-known airport problems can be seen as special highway problems,

in which all agents’ entries coincide.

Cooperative game theory has proved to be very useful to solve cost allocation problems, since

transferable utility (TU) games are highly appropriate to model these kinds of situations. More-

over, the solution concepts of these games embody a criterion of fairness in their definition and

satisfy certain properties or axioms which make them particularly suitable for these problems.

With every highway problem a cooperative TU game is associated by assigning to every coalition

the cost of the highway sections that accommodates all the members in that coalition. Such a

cooperative game is called a highway game. Subsequently some cooperative solution concepts

are applied to the highway game to solve the original problem. In this paper we will focus on

three solution concepts on the class of highway problems: the core, the (pre)nucleolus and the

Shapley value. We axiomatize these three solutions for the class of highway problems.

The axiomatizations of the core and the (pre)nucleolus of highway problems are based on the

consistency principle. According to this principle, if a group of agents pays its share and leaves

the others in a renegotiation, then the shares of the remaining agents do not change in the

subsequent reduced situation. The consistency property has proved to be very powerful in

characterizing some of the most important solutions concepts in cooperative game theory: the

prenucleolus (Sobolev 1975); the core (Peleg 1985, Peleg 1986, Tadenuma 1992, Hwang and

Sudhölter 2001); the Nash bargaining solution (Lensberg 1988); the Shapley value of TU games

and the egalitarian NTU value (Hart and Mas-Colell 1989); the Harsanyi NTU value (Hinojosa,

Romero, and Zarzuelo 2012). Consistency has also played a prominent role in other contexts:

for instance, in bankruptcy problems (Aumann 1985), airport problems (Potters and Sudhölter

1999), and other allocation problems. The aforementioned articles employ different definitions

of consistency because of the context’s diversity. In general, the crucial issue is to identify the

available alternatives for intermediate coalitions in a reduced situation. As a consequence there

is not a canonical way of modeling the reduced problem, and many different kinds of reduced

problems have been proposed in the literature. In the case of a highway problem, we require

the consistency property only for an agent i, whose needs are minimal in the sense that they do

not cover those of any other agent (up to an exception the explanation of which is postponed to

Section 3). We assume that i’s intention is to pay only for the part he uses, so it seems natural

that her payment before leaving should be subtracted from the cost of her sections. So every

agent sharing some of the segments used by i might benefit from this reduction, but it cannot

harm her.

On the other hand one major axiomatization of the Shapley value of a highway problem is based

on a monotonicity principle. This principle has already been used in the context of cooperative

games (Young 1985a) and in cost allocation problems as well (Young 1985b). In the case of

highway problems this principle states that the share payed by agent i may only depend on the

1This example is a simplification of a highway problem because there are other issues of primary importance,
as congestion. In our context these issues will not appear explicitly, but at least some of them might be taken
into account implicitly by the cost of each section.
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highway problem when restricted to the sections of the highway used by that agent.

The paper is organized as follows. In Section 2, we introduce two representations of highway

problems and their corresponding highway games. Section 3 is devoted to the axioms employed

in the subsequent characterizations of the core and the (pre)nucleolus. The game associated with

the reduced highway problem coincides with the Davis–Maschler reduced game of the original

highway game. However, neither the definition of the reduced highway problem nor of the

corresponding reduced highway problem property (RHP) and its converse (CRHP) refer to the

associated highway games. In Section 4, resembling a result of Peleg (1986), we show that the

core is the unique solution for highway problems that satisfies individual rationality, unanimity

for 2-person highway problems (UTPH), RHP, and CRHP. Moreover, if a stronger version of

CRHP is employed, then UTPH may be replaced by non-emptiness. In Section 5 we prove that

the (pre)nucleolus is characterized by single-valuedness, the equal treatment property, covariance

under exclusive prolongations, and RHP. In Section 6 we characterize the Shapley value (a) with

the help of individual independence of outside changes, which is a suitable translation of Young’s

(1985a) strong monotonicity, and, alternatively, (b) with the help of the contraction property

which is some kind of consistency property and entirely new. Indeed, the game associated with

a contracted highway problem, the definition of which requires to compute the solution of a

certain truncated highway problem, is not the Hart–Mas-Colell (1989) “reduced” game of the

original highway problem. In Section 7 we show that a generalized highway game in which the

sections used by an agent may not be connected is a positive cost game, i.e., a nonnegative linear

combination of dual unanimity games, and vice versa. Finally, Section 8 closes the paper with

some discussions.

2 Preliminaries

Let U be a set (|U | > 5 is needed in Example 8.1, and we always assume that {1, . . . , `} ⊆ U if

|U | > `), called the universe of agents. A finite nonempty subset of U is called a coalition.

Definition 2.1 A highway problem is a pair (N, I) such that the following conditions are sat-

isfied:

(1) N is a coalition.

(2) I is a mapping that assigns to each i ∈ N a compact nonempty interval Ii ⊆ R+.

(3) IN = [0, b] for some b ∈ R+, where IS =
⋃
i∈S Ii for S ⊆ N .

Denote by H the set of highway problems. For the generic element (N, I) ∈ H, we typically

write Ii = [ai, bi]. As Ii 6= ∅, we have ai 6 bi.

The elements in N represent the agents involved in the problem. For each i ∈ N , the interval Ii

associated with agent i is an interval representing the (connected) parts of the common facility

that is used by agent i. This common facility is symbolized by IN . Condition (3) says that
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the first part starts at 0, the last one finishes at certain real number b, and there are no gaps

between the parts used by N . The length of an interval represents its cost. Thus the cost of

serving agent i is bi − ai, and accordingly the total cost of the common facility is b that is the

amount to be shared between all the agents.

In order to define the sections of the highway problem (N, I) let (β0, . . . , βm) be a real sequence

of minimal length that satisfies the following properties:

• 0 = β0 6 · · · 6 βm.

• For each i ∈ N there exist r, r′, 0 6 r < r′ 6 m, such that Ii = [βr, βr′ ].

Note that m and (β0, . . . , βm) are uniquely determined by the foregoing properties and mini-

mality. Then

M I = {[βr, βr+1] | r = 0, . . . ,m} (2.1)

is the set of sections of (N, I). Note also that, if βr = βr+1 (i.e., if the r + 1-th section is a

singleton), then there exists i ∈ N with Ii = [βr, βr+1], and if r + 1 < m in addition, then

βr+2 > βr+1. Finally note that M I is totally ordered by [0, β1] ≺ · · · ≺ [βm−1, βm], where ≺=≺I

is the strict total order relation.

The (cost) TU game associated with the highway problem (N, I) is the game (N, cI) defined by

cI(S) = λ∗(IS) for all S ⊆ N, (2.2)

where λ∗ denotes the Lebesgue measure on R. A TU game is a highway game if it the TU game

associated with a highway problem. Note that highway games are concave.2

That is, the real number cI(S) is the cost of serving the agents in S.

Remark 2.2 Kuipers, Mosquera, and Zarzuelo (2013) define a “highway problem” to be a

quadruple (N,M,C, T ) that satisfies the following properties: N is a coalition, M is a finite

nonempty set strictly ordered by ≺ (the set of sections), C : M → R+ is a mapping that

represents the cost of each section, and T : N → 2M \ {∅} is a mapping, where T (i) represents

the set of sections used by agent i, satisfying

T (i) 6= ∅ for all i ∈ N ; (2.3)

if i ∈ N, j, k ∈ T (i), ` ∈M , and j ≺ ` ≺ k, then ` ∈ T (i); (2.4)

for k, ` ∈M,k 6= ` there exists i ∈ N such that k /∈ T (i) 3 `; (2.5)

for k ∈ C−1(0) there exists i ∈ N such that T (i) = {k}; (2.6)

if k ∈ C−1(0) and k < m, then C(k + 1) > 0. (2.7)

Though (2.5) – (2.7) do formally not appear in the aforementioned paper, these conditions may

be added without loss of generality.

2For (N, I) ∈ H, cI(S) + cI(T ) > cI(S ∩ T ) + cI(S ∪ T ) for all S, T ⊆ N .
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The coalition function cM,C,T of the corresponding “highway problem” (N, c) is defined for each

S ⊆ N by

cM,C,T (S) =
∑

t∈T (S)

C(t) for all S ⊆ N, (2.8)

where T (S) =
⋃
i∈S T (i).

Although “highway problems” are formally different from those in Definition 2.1, they are

conceptually equivalent. Indeed, if (N,M,C, T ) is a “highway problem”, then it can be as-

sociated with an element of H as follows. Define αk =
∑k

j=1C(j) for k = 0, . . . ,m, and

Ii =
⋃
k∈T (i)[αk−1, αk] for all i ∈ N , so it is a closed interval. Then it is straightforward to show

that (N,M,C, T ) 7→ (N, I) defines a bijective mapping from “highway problems” to H and that

cM,C,T = cI . Hence, we may say that a highway problem may be represented by (N, I) as well

as by (N,M,C, T ). In what follows we shall use the representation (N, I) except in Section 7

where the representation (N,M,C, T ) is more convenient.

3 Axioms

We now introduce the axioms employed in the subsequent characterizations and their proofs of

the core and the (pre)nucleolus. Denote the set of feasible cost allocations and the set of efficient

feasible cost allocations (preimputations) by X∗(N, I) and X(N, I) respectively, i.e.,

X∗(N, I) =
{
x ∈ RN | x(N) > cI(N)

}
and X(N, I) =

{
x ∈ RN | x(N) = cI(N)

}
,

where x(S) =
∑

i∈S xi for all S ⊆ N and x ∈ RN .

Moreover, let 1S ∈ RN denote the indicator vector of S, i.e., 1Sj =

 1, if j ∈ S,

0, if j ∈ N \ S.

A solution σ assigns to each highway problem (N, I) a subset of X∗(N, I). Its restriction to a

set H′ ⊆ H is again denoted by σ. A solution on H′ is the restriction to H′ of a solution. A

solution σ on H′ satisfies

(1) non-emptiness (NEM) if for all (N, I) ∈ H′: σ(N, I) 6= ∅;

(2) Pareto optimality (PO) if for all (N, I) ∈ H′: σ(N, I) ⊆ X(N, I).

(3) single-valuedness (SIVA) if for all (N, I) ∈ H′: |σ(N, I)| = 1;

(4) the equal treatment property (ETP) if for all (N, I) ∈ H′, all i, j ∈ N , and all x ∈ σ(N, I):

Ii = Ij implies xi = xj ;

(5) individual rationality (IR) if for all (N, I) ∈ H′, all i ∈ N , and all x ∈ σ(N, I): xi 6 λ∗(Ii);

(6) reasonableness from below (REASB) if for all (N, I) ∈ H′, all x ∈ σ(N, I), and all i ∈ N :

xi > λ∗
(
Ii \ IN\{i}

)
;
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(7) covariance under exclusive prolongations (PCOV) if for all (N, I), (N, I ′) ∈ H′: If there

exist i ∈ N , a ∈ Ii \ int IN\{i}, and x > 0 such that,3 with Ij = [aj , bj ] for j ∈ N ,

I ′j =


[ai, bi + x] , if j = i,

[aj , bj ] , if bj 6 ai,

[aj + x, bj + x] , if aj > ai,

then σ(N, I) = σ(N, I ′) + x1{i};

NEM, PO, SIVA, ETP, and IR are standard in the literature and do not need further explanation.

It should be remarked that by the concavity of highway games, IR is equivalent to reasonableness

from above in the sense that each agent has to pay at most his maximal marginal contribution

to the cost of the entire highway. Hence, IR and REASB together may be called reasonableness.

The interpretation of PCOV is simple: If an agent asks for prolonging the highway just for

herself, then the cost for this modification is added to her payment, whereas the payments of

the other agents is not changed.

Remark 3.1 Recall that a solution σ on a set Γ of TU cost games assigns a subset σ(N, c) of

X∗(N, c) = {x ∈ RN | x(N) > c(N)} to each (N, c) ∈ Γ. The axioms NEM, PO (x is Pareto

optimal if x(N) = c(N)), SIVA, ETP (players i, j ∈ N are equals if c(S ∪ {i}) = c(N ∪ {j}) for

all S ⊆ N \ {i, j}), IR (x ∈ RN is individually rational if xi > c({i}) for all i ∈ N), REASB

(x ∈ RN is reasonable from below if xi > minS⊆N\{i}(c(S ∪ {i}) − c(S)) for all i ∈ N), and

COV (σ(N,αc+ β) = ασ(N, c) + β for α > 0, β ∈ RN whenever (N, c), (N,αc+ β) ∈ Γ) on the

set Γ of all games associated with elements of H imply (1) – (8) for the corresponding solution

on H that is, by a slight abuse of notation, again denoted by σ (i.e., σ(N, I) = σ(N, cI) for all

(N, I) ∈ H). Here, COV implies PCOV as well as scale covariance, a property that, though

satisfied by all our solutions, is not needed in our characterization results.

We now define reduced highway problems. Let (N, I) ∈ H, i ∈ N , and k ∈ N ∪ {0}. Say that i

is of type k if ∣∣{j ∈ N | Ij ⊆ int Ii}
∣∣ = k.

Moreover, let [aj , bj ] = Ij for all j ∈ N . We call i a left (resp. right) agent, if for all j ∈ N ,

aj < bi 6 bj implies aj 6 ai (resp. aj 6 ai < bj implies bi 6 bj). Agent i is oriented if i is a left

or a right agent.

Definition 3.2 Let (N, I) ∈ H, Ij = [aj , bj ] for all j ∈ N , such that |N | > 2. An agent i ∈ N
is called feasible (w.r.t. reduction) if i is of type 0 or if i is an oriented agent of type 1.

3The symbol int A stands for the interior of A, for every A ⊆ R.
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Let i ∈ N be feasible and x ∈ RN . The reduced problem (N \ {i}, I−i,x) is defined as follows,

where I−i,xj = [a′j , b
′
j ] for all j ∈ N \ {i} and, in case that i is of type 1, k ∈ N is the unique

agent such that ai < ak 6 bk < bi:

If i is of type 0, then

a′j =

 aj , if aj 6 ai,

max{ai, aj − xi}, if ai < aj ,
(3.1)

b′j =

 min{bj , bi − xi}, if bj < bi,

bj − xi, if bj > bi,
(3.2)

The definition of a′j and b′j in the case that i is an oriented agent of type 1 may differ from (3.1)

and (3.2) only inasmuch as

a′k = max
{
ai,min{ak, bi − xi − bk + ak}

}
, if i is a left agent, and (3.3)

b′k = min
{
bi − xi,max{bk − xi, bk − ak + ai}

}
, if i is a right but not left agent, (3.4)

i.e., if i is both a left and a right agent, then we regard her as a left agent.

Note that reduced problems are not necessarily highway problems. Indeed, if xi in Definition

3.2 is small enough, then the “highway” may receive a gap, i.e. IN is not an interval; and if xi is

large enough, then some “intervals” may have a negative length, i.e., are empty because a′j > b′j
may occur.

Lemma 3.3 For any highway problem (N, I) with |N | > 1 there exist at least two distinct

feasible agents.

Proof: Call i ∈ N minimal if for all j ∈ N \ {i} such that Ij 6= Ii it holds Ij \ Ii 6= ∅. There

exists at least one minimal agent i ∈ N , and moreover a minimal agent is of type 0, hence

feasible. Now assume that i is the unique minimal agent. Then Ii $ Ij for all j ∈ N \ {i}.
Choose j ∈ N \ {i} such that aj = maxk∈N\{i} ak, where Ii = [ai, bi] for all i ∈ N . Then j is a

left agent of type 1 or 0, i.e., the second feasible agent has been found. q.e.d.

We recall the definition of the Davis-Maschler reduced cost game now. Let (N, c) be a TU cost

game (i.e., N is a coalition and c : 2N → R, c(∅) = 0), x ∈ X∗(N, c), and ∅ 6= S $ N . The

reduced game with respect to (w.r.t.) S and x is the TU game (S, cS,x) defined by

cS,x(T ) =

 c(N)− x(N \ S), if T = S,

minP⊆N\S
(
c(T ∪ P )− x(P )

)
, if ∅ 6= T $ S.
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Lemma 3.4 Let (N, I) ∈ H with |N | > 2, i ∈ N be a feasible agent, and x ∈ X(N, I). If

λ∗
(
Ii \ IN\{i}

)
6 xi 6 λ∗(Ii) (i.e., xi is reasonable from below and individually rational for i),

then (N \ {i}, I−i,x) ∈ H, xN\{i} ∈ X(N \ {i}, I−i,x), and cI
−i,x

= (cI)N\{i},x.

Proof: Let Ij = [aj , bj ] for all j ∈ N , denote I ′ = I−i,x, and let I ′j = [a′j , b
′
j ] for all j ∈

N \ {i}. From λ∗
(
Ii \ IN\{i}

)
6 xi 6 λ∗(Ii) it follows that (N \ {i}, I ′) ∈ H and, moreover, that

max`∈N b`−xi = maxj∈N\{i} b
′
j , hence xN\{i} ∈ X(N\{i}, I ′) and cI

′
(N\{i}) = cN\{i},x(N\{i}).

Now, let ∅ 6= T $ N \ {i}. Denote T1 = {j ∈ T | aj 6 ai < bj} and T2 = {j ∈ T | aj < bi 6 bj}.
If i is an agent of type 0, then

cI(T ∪ {i})− cI(T ) = max
{

0,min
(
{aj | j ∈ T2} ∪ {bi}

)
−max

(
{bj | j ∈ T1} ∪ {ai}

)}
.

A careful inspection of (3.1) and (3.2) finishes the proof in this case. If i is a left agent of type

1 and k is the unique agent such that ai < ak 6 bk < bi, then the case k /∈ T can be treated as

before. If k ∈ T , then the cases T2 6= ∅ or (T1 6= ∅ and max{bj | j ∈ T1} 6 bi) are straightforward

as well as the case that xi > (bi − ai) − (bk − ak). In the remaining case, I ′k = Ik − ε, where

ε = bk + xi − bi, again a careful inspection (3.1) and (3.2) completes the proof. Finally, if i is a

right agent of type 1, but not a left agent, then we may argue similarly. q.e.d.

We now recall explicitly the definitions by Peleg (1986) of the reduced game property and its

converse. A solution σ on a set Γ of TU games satisfies

(8’) the reduced game property (RGP) if for all (N, c) ∈ Γ, ∅ 6= S $ N , and x ∈ σ(N, c):

(S, cS,x) ∈ Γ and xS ∈ σ(S, cS,x);

(9’) the converse reduced game property (CRGP) if the following condition is satisfied for

(N, c) ∈ Γ with |N | > 3, x ∈ X(N, c) = {x ∈ RN | x(N) = c(N)}: If, for any S ⊆ N with

|S| = 2, (S, cS,x) ∈ Γ and xS ∈ σ(S, cS,x), then x ∈ σ(N, c).

Unfortunately, in general the reduced game of a highway game even w.r.t. imputations that are

reasonable from below may not be highway games (see Example 5.6). However, according to

Lemma 3.4, if only feasible agents may successively be removed, then reducing yields highway

games. Hence, the following definitions are motivated. A solution σ on H′ satisfies

(8) the reduced highway problem property (RHP) if for any (N, I) ∈ H′ with |N | > 1, any

feasible agent i ∈ N , and any x ∈ σ(N, I): (N \ {i}, I−i,x) ∈ H′ and xN\{i} ∈ σ(N \
{i}, I−i,x);

(9) the converse reduced highway problem property (CRHP) if for any (N, I) ∈ H′ with |N | > 3

and any x ∈ X(N, I) the following condition holds: If, for each feasible agent i ∈ N ,

(N \ {i}, I−i,x) ∈ H′ and xN\{i} ∈ σ(N \ {i}, I−i,x), then x ∈ σ(N, I).

Now, for a solution on H we suitably restate Peleg’s notion (see also Sudhölter and Peleg 2002)

of “unanimity for two-person games” and present a strong version of CRHP that is similar to a
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modification of CRGP that has been employed by Serrano and Volij (1998) in an axiomatization

of the core and by Sudhölter and Potters (2001) in the axiomatization of the semi-reactive

prebargaining set.

The solution σ on H′ satisfies

(10) unanimity of two-person highway problems (UTPH) if, for any (N, I) ∈ H′ with |N | = 2 :

σ(N, I) =
{
x ∈ X(N, I) | xi 6 cI({i}) for all i ∈ N

}
;

(11) the strong converse reduced highway problem property (SCRHP) if for any (N, I) ∈ H′ with

|N | > 2, and any x ∈ X(N, I) the following condition holds: If, for each feasible agent

i ∈ N , (N \ {i}, I−i,x) ∈ H′ and xN\{i} ∈ σ(N \ {i}, I−i,x), then x ∈ σ(N, I).

4 Characterization of the core of highway problems

Recall that the core of (N, I), denoted C(N, I), is the set

C(N, I) =
{
x ∈ X∗(N, I) | x(S) 6 λ∗(IS) for all S ⊆ N

}
.

Lemma 4.1 The core on H satisfies NEM, PO, IR, REASB, PCOV, RHP, CRHP, SCRHP,

and UTPH.

Proof: NEM follows from the concavity of highway games, PO, IR, REASB, and UTPH are

immediate consequences of the definition of the core, and PCOV follows from the well-known

scale covariance and translation covariance of the core on any set of games. As the core is

reasonable and satisfies RGP on the set of games with nonempty cores (Peleg 1986), Lemma 3.4

shows RHP.

In order to show CRHP and SCRHP, let (N, I) ∈ H such that |N | > 2. Let x ∈ X(N, I) such

that (N \ {i}, I−i,x) ∈ H and xN\{i} ∈ C(N \ {i}, I−i,x) for each feasible agent i ∈ N . Assume

that x /∈ C(N, I) and let ∅ 6= S $ N such that x(S) > cI(S). Two cases may occur:

(a) If |N | > 2, by Lemma 3.3 one of the following subcases must occur: (a1) There exists a

feasible i ∈ S and |S| > 2. In this case x(S \ {i}) > cI(S) − xi > cI
−i,x

(S \ {i}). (a2) There

exists a feasible i ∈ N \ S and |S| 6 |N | − 2. In this case x(S) > cI(S) > cI
−i,x

(S). Hence, in

both subcases xN\{i} /∈ C(N \{i}, I−i,x) and the desired contradiction has been obtained. Thus,

CRHP has been verified.

(b) If |N | = 2, Ij = [aj , bj ] for j ∈ N,N = {k, `}, then both agents are feasible by Lemma 3.3.

If Ik \ I` 6= ∅ 6= I` \ Ik, then we may assume that ak = 0. We conclude that x` > b` − bk

(otherwise xk /∈ X({k}, I−`,x)). Moreover, xk > a` − ak (otherwise ({`}, I−k,x) /∈ H because

a′` > 0, where I−k,x` = [a′`, b
′
`]) so that x ∈ C(N, I). In the remaining case, we may assume that

I` ⊆ Ik, i.e., ak = 0 6 a` 6 b` 6 bk. Then xk 6 bk (otherwise b′` < 0). If xk < bk + a` − b`,
then a` = 0 (otherwise a′` > 0) and b` = bk (otherwise x` < λ∗(I−k,x` )). If, however, Ik = I`,
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then xk < bk + a` − b` = 0 would imply x` > b`, hence b′′k < 0, where I−`,xk = [a′′k, b
′′
k] which is

impossible. Thus, x ∈ C(N, I) and SCRHP has been verified. q.e.d.

Theorem 4.2 The core is the unique solution that satisfies NEM, IR, RHP, and SCRHP.

Proof: By Lemma 4.1 the core satisfies NEM, IR, RHP, and CRHP. In order to show the

opposite implication, let σ be a solution that satisfies the desired properties. Let (N, I) ∈ H.

If |N | = 1, then σ(N, I) = C(N, I) by NEM and IR. Assume that σ(N, I) = C(N, I) whenever

|N | < k for some k > 1. If |N | = k and x ∈ C(N, I), then, by RHP of the core, xN\{i} ∈
C(N \ {i}, I−i,x) = σ(N \ {i}, I−i,x) for each feasible i ∈ N so that by CRHP of σ, x ∈ σ(N, I).

The other inclusion follows by exchanging the roles of σ and C. q.e.d.

The following alternative characterization of the core resembles Peleg’s (1986) one for TU games.

Theorem 4.3 The core is the unique solution that satisfies IR, UTPH, RHP, and CRHP.

Proof: By Lemma 4.1 the core satisfies the required axioms. In order to show uniqueness, let

σ be a solution that satisfies IR, UTPH, RHP, and CRHP. Let (N, I) ∈ H. If |N | 6 2, then

by IR, UTPH, and RHP, σ(N, I) = C(N, I). We proceed by induction on |N | and assume that

σ(N, I) = C(N, I) whenever |N | < t for some t > 2. Now, if |N | = t, let x ∈ σ(N, I) and

y ∈ C(N, I). By RHP of σ and CRHP of C, x ∈ C(N, I). By RHP of C and CRHP of σ,

y ∈ σ(N, I). q.e.d.

Remark 4.4 As it is well known the core does not satisfy SIVA nor ETP on the general class

of TU games, and the same happens for highway problems.

5 Characterization of the nucleolus of a highway game

We now recall the definition of the prenucleolus (Schmeidler 1969) and the prekernel (Maschler,

Peleg, and Shapley 1972).

Let (N, c) be a cost game, x ∈ RN , S ⊆ N , and i, j ∈ N , i 6= j. The excess of S at x is

e(S, x, c) = x(S)− c(S), and the maximum surplus of i over j at x is sij(x, c) = max{e(S, x, c) |
i ∈ S ⊆ N \ {j}}. With X(N, c) = {x ∈ RN | x(N) = c(N)}, the prekernel of (N, c), denoted

by PK(N, c), is the set

PK(N, c) =
{
x ∈ X(N, c) | sij(x, c) = sji(x, c) for all i ∈ N, j ∈ N \ {i}

}
.

The prenucleolus of (N, c) is the subset of elements of X(N, c) that lexicographically minimize

the non-increasingly ordered vector (e(S, x, c))S⊆N of excesses. According to Schmeidler (1969),

the prenucleolus of (N, c) is a singleton whose unique element is denoted by ν(N, c). For a
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zero-antitonic game (N, c)4 – a concave game is zero-antitonic – the prekernel coincides with the

kernel (Maschler, Peleg, and Shapley 1972), i.e., prenucleolus is individually rational, it is the

nucleolus.

Remark 5.1 According to Maschler, Peleg, and Shapley (1972), the prekernel of a concave cost

game consists of a single point, namely of the nucleolus.

We define the nucleolus of a highway problem (N, I) to be the (pre)nucleolus of the associated

cost game (N, cI) and denote ν(N, I) = ν(N, cI).

The following technical lemma is useful.

Lemma 5.2 For any (N, I) ∈ H that has exactly two distinct feasible agents k and `, (Ik ∪ I`) ⊆
int Ii for all i ∈ N \ {k, `}.

Proof: Let Ij = [aj , bj ] for j ∈ N , a = min{ak, a`}, say ak = a, and b = max{bk, b`}. Let

i1, i2 ∈ N \ {k, `} such that ai1 = max {ai | i ∈ N \ {k, `}} and bi2 = min {bi | i ∈ N \ {k, `}}.
Note that w.r.t. the highway subproblem

(
N \ {k, `}, (Ij)j∈N\{k,`}

)
, agent i1 is a left agent of

type 0 and i2 is a right agent of type 0. Assume that ai1 > a. As i1 is not feasible, she is not an

agent of type 0, i.e., I` ⊆ int Ii1 . But then i1 is a left agent of type 1, i.e., still feasible, which

was excluded. Similarly it is seen that bi2 > b: Assuming that, on the contrary, bi2 6 b yields

a contradiction because on the on hand side i2 cannot be of type 0 and on the other hand she

cannot be a right agent of type 1. q.e.d.

Lemma 5.3 The nucleolus (on H) satisfies NEM, PO, SIVA, ETP, IR, REASB, PCOV, RHP

and CRHP.

Proof: The prenucleolus on cost games satisfies the properties corresponding to SIVA (hence

NEM), and ETP so that these properties are also satisfied by the nucleolus of highway problems.

Moreover, it satisfies translation covariance which implies PCOV, and, by definition, if satisfies

PO. The prenucleolus always selects a core element if the core is nonempty. By Lemma 3.4 the

reduced problems w.r.t. feasible agents are highway problems, the associated games of which

are Davis-Maschler reduced games. According to Sobolev (1975) the prenucleolus satisfies RGP

which implies that our nucleolus satisfies RHP. In order to show CRHP, let (N, I) ∈ H with

|N | > 3 and let x ∈ X(N, I) such that xN\{i} = ν(N \{i}, I−i,x) for all feasible agents i ∈ N . Let

k, ` ∈ N, k 6= `. By Remark 5.1 it suffices to show that sk`(x, c
I) = s`k(x, c

I). If there is a feasible

agent i ∈ N \ {k, `}, then the game (N \ {i}, c) associated with the reduced highway problem

(N \{i}, I−i,x) is the Davis-Maschler reduced game of (N, cI) so that sk`(x, c
I) = sk`(xN\{i}, c) =

s`k(xN\{i}, c) = s`k(x, c
I). Otherwise, k and ` are the unique feasible agents and we know that

4(N, c) is zero-antitonic if c(S ∪ {i})− c(S) 6 c({i}) for all i ∈ N and S ⊆ N \ {i}.
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sij(x, c
I) = sji(x, c

I) for all {i, j} ⊆ N with i 6= j except {k, `}. As the nucleolus selects a

member of the core, x ∈ C(N, I) by CRHP of the core. Let µ = max{e(S, x, cI) | ∅ 6= S $ N}
and define D = {S $ N | S 6= ∅, e(S, x, cI) = µ}. It suffices to show that sk`(x, c

I) = µ. Assume

the contrary. We claim that D = {N \ {k}}. Let S ∈ D. If S ∩ (N \ {k, `}) 6= ∅, choose

i ∈ S ∩ (N \ {k, `}). As xk > 0 and as Ik ⊆ Ii by Lemma 5.2, e(S ∪ {k}, x, cI) > µ so that

` ∈ S by our assumption. If there exists j ∈ N \ (S ∪ {k, `}), then µ = s`j(x, c
I) = sj`(x, c

I) so

that there exists S′ ∈ D with ` /∈ S′ 3 j which cannot be true by the former argument. Hence,

S = N \ {k} in this case. If S ∩N \ {k, `} = ∅, then ` ∈ S because e({k}, x, cI) < µ. Therefore,

for i ∈ N \ {k, `}, s`i(x, cI) = µ = si`(x, c
I), and hence there exists S′ ∈ D with ` /∈ S′ 3 i

which is impossible by the former argument. Now the proof can be finished. By our claim,

sik(x, c
I) = µ = ski(x, c

I) for i ∈ N \ {k, `} so that we have derived a contradiction to our claim

that N \ {k} is the unique coalition in D. q.e.d.

Theorem 5.4 The nucleolus on H is the unique solution that satisfies SIVA, ETP, PCOV, and

RHP provided |U > 2.

Proof: By Lemma 5.3 the nucleolus satisfies these properties. In order to show the opposite

implication, let σ be a solution that satisfies the desired axioms. Let (N, I) ∈ H and let x be

the unique element of σ(N, I). We have to show that x = ν(N, cI). If |N | = 1, say N = {i},
then by PCOV we may assume that Ii = [0, 0]. Choose j ∈ U \ {i}, define Ij = Ii, and let

y = σ({i, j}, I). By ETP, yi = yj . By RHP, yj = 0 because otherwise I−j,yi = ∅. Hence,

x = yi = 0. If |N | = 2, then by PCOV we may assume that Ii = Ij for i, j ∈ N , and, hence,

xi = xj by ETP. By RHP, x ∈ X(N, I), hence x = ν(N, I). Now we proceed by induction on

|N | and assume that the unique element of σ(N, I) coincides with ν(N, I) whenever |N | < r for

some r > 2. If |N | = r, then by RHP, xN\{i} = ν(N \ {i}, cIi,x) for each feasible agent so that,

by CRHP of ν, x = ν(N, I). q.e.d.

Remark 5.5 (1) A careful inspection of its proof shows that the axiom SIVA in Theorem 5.4

may be replaced by NEM and PO.

(2) The nucleolus does neither satisfy UTPH nor SCRHP.

By means of the following examples we show that a reduced game w.r.t. the nucleolus of a

highway game may not result in a highway game if (1) a non-oriented agent of type 1 is removed

or if (2) an oriented agent of type 2 is removed (provided |U | > 4). This is the reason for the

present definition of RHP, where only agents of type 0 or oriented agents of type 1 may be

removed.

Example 5.6 (1) Let (N, I) the highway problem with N = {1, . . . , 4} ⊆ U , I1 = [0, 2], I2 =

[1, 3], I3 = [2, 4], and I4 = [0, 4]. For x = (1, 1, 1, 1), min{cI(S) − x(S) | ∅ 6= S $ N} = 1

is attained by all 3-person coalitions the indicator functions of which span R4 so that the
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characterization by a balancedness condition due to Kohlberg (1971) shows that ν(N, cI) = x.

Let N ′ = {1, 2, 3} and c = cIN ′,x. Then, for any ∅ 6= S ⊆M,

c(S) =

 2, if |S| = 1,

3, if |S| > 2.

We now show that (N ′, c) is not strategically equivalent to a highway game. Assume the contrary.

As each positive multiple of a highway game is a highway game, there exist (N ′, I ′) ∈ H and

y ∈ RN ′ such that c + y = cI
′
. Let I ′i = [a′i, b

′
i] for i ∈ N ′, choose j, k, ` ∈ N ′ such that

a′j = mini∈N ′ a
′
i, and choose k ∈ N ′ \ {j} such that bk = maxi∈N ′\{j} bi, and N ′ = {j, k, `}. As

c({j}) = 2, b′j = a′j + 2 + yj . As a′i > a′j and c({j, i}) = 3 for i ∈ N ′ \ {k}, b′i = a′j + 3 + yj + yi.

Moreover, as c({i}) = 2, a′i = a′j + 1 + yj . Finally, as c({k, `}) = 3, a′k = a′`, and b′k > b′`,

b′k = a′k + 3 + yk + y` = a′j + 4 + y(N ′) = a′j + 3 + yj + yk

so that y` = −1, i.e., cI
′
(N) = cI

′
(N ′ \{`})−1, and the desired contradiction has been obtained.

Note that agent 4 is of type 1, but not oriented.

(2) Now we consider (N, I ′′) ∈ H defined by N = {1, . . . , 4} ⊆ U , I ′′1 = [0, 2], I ′′2 = [1, 3],

I ′′3 = [2, 4], and I ′′4 = [0, 5]. Then ν(N, I ′′) = (1, 1, 1, 2) and the reduced game of (N, cI
′′
) w.r.t.

N ′ and ν(N, I ′′) is, again, (N ′, c). Moreover, agent 4 is a left agent of type 2.

6 The Shapley value of highway problems

In order to recall the definition of the Shapley value (Shapley 1953) of a TU game (N, c), recall

that for any ∅ 6= S ⊆ N , the dual unanimity game (N, u∗S) is defined by

u∗S(T ) =

 1, if T ∩ S 6= ∅,

0, otherwise,

for all T ⊆ S. Note that {(N, u∗S) | ∅ 6= S ⊆ N} is a vector space basis of the Euclidean space

of all TU games with player set N , i.e., of R2N\{∅}. Hence, there are unique real coefficients λS ,

∅ 6= S ⊆ N , such that c =
∑
∅6=S⊆N λSu

∗
S . Now, the Shapley value of (N, c) is the vector

φ(N, c) =
∑
∅6=S⊆N

λS
|S|

1
S (6.1)

so that φ is additive.

The Shapley value of a highway problem (N, I) ∈ H, denoted by φ(N, I), is the Shapley value

of the associated game (N, cI). By slightly abusing notation, for a single-valued solution σ on

H the unique element of the singleton σ(N, I) is also denoted by σ(N, I) and, conversely, we

use φ(N, I) for {φ(N, v)} so that φ becomes a solution. In order to obtain an explicit formula
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for φ(N, I), let T I : N →M I (see (2.1) for the definition of M I) be the function that assigns to

each agent the set of section she uses, i.e., T I(i) = {j ∈ M | j ⊆ Ii} for all i ∈ N , and denote

(T I)−1(j) = {i ∈ N | j ∈ T I(i)} for all j ∈ M . Then we obtain cI =
∑

j∈MI λ∗(j)u∗(T I)−i(j)
so

that, by (6.1),

φi(N, I) =
∑

j∈T I(i)

λ∗(j)

|(T I)−1(j)|
for all i ∈ N. (6.2)

Let (N, I) ∈ H, Ii = [ai, bi] for all i ∈ N , and b = maxi∈N bi. In order to resemble Young’s

(1985a) characterization of φ with the help of strong monotonicity, some preparation is useful.

For α, β ∈ [0, b], α 6 β, the [α, β]-truncated highway problem (N, I [α,β]) is defined by I
[α,β]
i =

[min{(ai − α)+, β − α},min{(bi − α)+, β − α}] for all i ∈ N , where a+ = max{a, 0} for a ∈ R.

Hence, (N, I [α,β]) is the highway problem that arises from (N, I) if the highway is restricted to

the interval [α, β]. We say that a single-valued solution σ (on H′ ⊆ H) satisfies

(12) individual independence of outside changes (IIOC) if for all (N, I), (N, I ′) ∈ H′ and all

i ∈ N : If IIi = I ′I
′
i , then σi(N, I) = σi(N, I

′).

IIOC means that the charge of an agent i may only depend on the highway problem truncated

to her used interval. Note that strong monotonicity of a single-valued solution σ on the set of

games requires that, for (N, c), (N, c′) ∈ Γ, i ∈ N , if c(S ∪ {i}) − c(S) > c′(S ∪ {i}) − c′(S) for

all S ⊆ N , then σi(N, c) > σi(N, c
′). By (6.2), strong monotonicity of σ implies IIOC of the

corresponding solution on H.

Theorem 6.1 The Shapley value on H is the only solution that satisfies SIVA, PO, ETP, and

IIOC.

Proof: The Shapley value satisfies the four axioms by (6.2). In order to prove the other

implication, let σ be a solution that satisfies SIVA, PO, ETP, and IIOC. Let (N, I) ∈ H and

b = max IN . By induction on
∣∣M I

∣∣ we prove that σ(N, I) = φ(N, I). If
∣∣M I

∣∣ = 1, then Ii = Ij for

every i, j ∈ N , and the result follows from SIVA, PO, and ETP. Assume that σ(N, I) = φ(N, I)

whenever
∣∣M I

∣∣ < k for some k > 2. If
∣∣M I

∣∣ = k, let α, β be determined by α 6= b, β 6= 0, and

[0, β], [α, b] ∈M I . Define

P = {i ∈ N | [0, β[ ∩ Ii = ∅} and Q = {i ∈ N | ]α, b] ∩ Ii = ∅}.

Note that, for any i ∈ N \ (P ∪Q), Ii = IN . Hence, by SIVA, PO, and ETP it suffices to show

that σP∪Q(N, I) = φP∪Q(N, I). With I ′ = I [β,b] we have
∣∣∣M I′

∣∣∣ < k and I ′i = Ii for all i ∈ P , and

with I ′ = I [0,α] we have
∣∣∣M I′

∣∣∣ < k and I ′j = Ij for all j ∈ Q so that the inductive hypothesis

finishes the proof. q.e.d.
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6.1 The Shapley value of airport problems

A highway problem (N, I) ∈ H, Ii = [ai, bi] for i ∈ N , is an airport problem if ai = 0 for all

i ∈ N . Let A denote the set of airport problems. Let (N, I) ∈ A and let N = {i1, . . . , in} so

that bi1 6 · · · 6 bin . By (6.2), the Shapley value can be recursively computed as

φi1(N, I) =
bi1
n

and φij+1(N, I) = φij +
bij+1 − bij
n− j

for all j = 1, . . . , n− 1. (6.3)

Let |N | > 2, i ∈ N and x ∈ RN . The contracted problem w.r.t. i and x, denoted (N \
{i}, I−i,x,ctr), is defined as follows. For j ∈ N \ {i}, I−i,x,ctr

j = [0, bj −min{xj , xi}].

The contracted problem can be interpreted as a kind of reduced problem in the following way.

Assume that a payoff vector, say x is at stake, and everybody accepts the payoff assigned to

a certain agent, say i. That is, agent i pays xi and the remaining agents renegotiate in a new

airport problem, the contracted problem, in which the cost of the runway that is used by every

agent j ∈ N \{i} has to be updated taking into account the payoff made by i. In the contracted

problem, we are assuming that the cost of the runway used by agent j 6= i is decreased by xi,

unless this discount were higher than xj , in which case the discount would be xj .

Note that (N, I−i,x,ctr) ∈ A if and only if bj −min{xj , xi} > 0 for all j ∈ N \ {i}.

We say that a solution σ on A satisfies the

(13’) contraction property (CONTR) if it is consistent w.r.t. contracted problems, i.e., if, for

all (N, I) ∈ A with |N | > 1, all x ∈ σ(N, I), and all i ∈ N : (N \ {i}, I−i,x,ctr) ∈ A and

xN\{i} ∈ σ(N, I−i,x,ctr).

Theorem 6.2 On A the Shapley value is the unique solution that satisfies NEM, PO, and

CONTR.

Proof: By definition the Shapley value is a singleton, hence satisfies NEM. By (6.3) it satisfies

PO and CONTR as well. In order to show the uniqueness part, let σ be a solution on A that

satisfies NEM, PO, and CONTR. Let (N, I) ∈ A, Ij = [aj , bj ] for j ∈ N , and x ∈ σ(N, I). By

NEM it suffices to show that x = φ(N, I). We proceed by induction on |N |. If |N | = 1, then

x = φ(N, I) by NEM and PO. Now assume that x = φ(N, I) whenever |N | < k for some k > 2.

If |N | = k, then choose N = {i1, . . . , in} so that bi1 6 · · · 6 bin .

Claim: xj 6 xin for all j ∈ N . Indeed, assume on the contrary that there exists j ∈ N such

that xj > xin . Then cI
−j,x,ctr(

N \ {i}
)
> bin − xin = x(N)− xin > x(N \ {j}) so that xN\{j} is

not feasible for the reduced airport problem (N \ {j}, I−j,x,ctr).

Now let I ′ = I−in,x,ctr, I ′` = [a′`, b
′
`] for ` ∈ N \ {i}. By our claim, b′j = bj −xj . By the inductive

hypothesis, xN\{in} = φ(N \ {in}, I ′) so that we conclude from (6.3) that xi 6 xj if and only if

b′i 6 b′j for all i, j ∈ N \ {in}. Hence, b′i1 6 · · · 6 b′in−1
. By (6.3), xi1 =

b′i1
n−1 =

bi1−xi1
n−1 so that
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xi1 =
bi1
n = φi1(N, I). We proceed recursively and assume that xij = φij (N, I) for j = 1, . . . , t.

If t < n− 1, then, by (6.3),

xit+1 = xit +
b′it+1

− b′it
n− it

= xit +
bit+1 − xit+1 − (bit − xit)

n− it
,

hence xit+1 = xit +
bit+1

−bit
n+1−it = φit+1(N, I). Finally, by PO, xin = φin(N, I). q.e.d

We now generalize CONTR to highway problems.

6.2 The contraction property on highway games

Let (N, I) ∈ H, Ij = [aj , bj ] for all j ∈ N , and assume |N | > 2.

Now assume that |N | > 2. For any left agent i ∈ N of type 0 (i.e., aj > ai implies aj > bi)

and any y ∈ RN we define the contracted problem w.r.t. i and y, (N \ {i}, I−i,y,ctr), for any

j ∈ N \ {i}, by I−i,y,ctr
j = [a′j , b

′
j ], where

a′j =

 aj , if aj 6 ai,

aj − yi , if aj > ai,
and b′j =


bj , if bj < ai,

bj −min{yj , yi} , if bj > ai > aj ,

bj − yi , if aj > ai.

Note that a contracted problem may not be a highway problem.

We say that a solution σ on H satisfies the

(13) contraction property (CONTR) if, for all (N, I) ∈ H with |N | > 2, all left agents i ∈ N of

type 0, with Ii = [ai, bi], and x ∈ σ(N, I): (N, I−i,y,ctr) ∈ H and xN\{i} ∈ σ(N, I−i,y,ctr)

for all y ∈ σ(N, IIN\[0,ai[).

Hence, CONTR requires that σ is consistent w.r.t. any contraction of a highway problem

according to the solution applied to the truncated highway problem the highway of which starts

at the interval used by a left agent of type 0.

In an airport problem each agent i is a left agent of type 0 and ai = 0 so that the current

CONTR coincides with the former CONTR on A – the only further requirement that must be

satisfied on H is that consistency must be satisfied w.r.t. contracted highway problems defined

with the help of any element of the solution applied to the truncated highway problem. Of

course we may also use this slightly stronger contraction property in Theorem 6.2.

It should be noted that this kind of “reduction” that depends on the solution applied to certain

derived problems (here certain truncated highways) is not new for axiomatizations of the Shapley

value – Hart and Mas-Colell (1989) also define their consistency property only for solutions that

satisfy SIVA so that their “reduced game” is defined with the help of the solution applied to
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subgames. Note, however, that the TU game corresponding to a contracted highway problem

w.r.t. the Shapley value does typically not coincide with the corresponding Hart–Mas-Colell

“reduced game” of the initial highway game (which may be illustrated by any 4-person airport

problem with equal positive demands).

Of course, we may also reverse the start and the endpoints of the landing strip of the airport

and call a highway problem (N, I) and airport problem if bi = bj for all i, j ∈ N . This would

lead to a contraction property requiring that the solution is consistent according to a certain

kind of contraction w.r.t. any right agent of type 0.

Theorem 6.3 On H the Shapley value is the unique solution that satisfies NEM, PO, and

CONTR.

Proof: The Shapley value satisfies NEM and PO. In order to show CONTR let (N, I) ∈
H, Ij = [aj , bj ] for j ∈ N , |N | > 2, and i a left agent of type 0. Let I ′ = I [0,ai], I ′′ = IIi , and

I ′′′ = I [bi,max IN ], i.e., I ′ represents the first part of the highway from 0 to ai, I
′′ is the middle

part from ai to bi, and I ′′′ represents the rest, namely the part from bi to max IN . Moreover, let

y′, y′′, y′′ be the Shapley values of (N, I ′), (N, I ′′), (N, I ′′′) respectively. As cI = cI
′
+ cI

′′
+ cI

′′′
,

by the well-known additivity of φ (see (6.2)), x := φ(N, I) = y′ + y′′ + y′′′. Moreover, agent

i is a null-player of (N, cI
′
) and (N, cI

′′′
) (an agent k ∈ N is a null-player of a TU game

(N, c) if c(S ∪ {k}) = c(S) for all S ⊆ N) so that x′i = x′′′i = 0 by definition of φ. Now,

(N, I ′′) ∈ A so that y′′N\{i} = φ(N \ {i}, I ′′−i,y′′,ctr) by Theorem 6.2. Also, it is well-known

that the Shapley value satisfies the strong null-player property, i.e., φN\{i}(N, c) = φ(N \ {i}, c)
(where (N \ {i}, c) denotes the subgame of (N, c) with player set N \ {i}). Let (N \ {i}, I ′−i)
and (N \ {i}, I ′′′−i) denote the corresponding highway subproblems of (N, I ′) and (N, I ′′′). As

cI
−i,x,ctr

= cI
′−i

+cI
′′−i,y′,ctr

+cI
′′′−i

, additivity of the Shapley value yields φ(N \{i}, I−i,x,ctr) =

y′N\{i} + y′′N\{i} + y′′′N\{i} = xN\{i}.

To prove uniqueness, let σ be a solution that satisfies NEM, PO, and CONTR. Let (N, I) ∈ H,

Ij = [aj , bj ] for all j ∈ N , x ∈ σ(N, I). It remains to show that x = φ(N, I). We proceed by

induction on |N |. If |N | = 1, then x = φ(N, I) by NEM and PO. Now assume that x = φ(N, I)

whenever |N | < k for some k > 2. If |N | = k, choose i ∈ N such that ai > aj for all j ∈ N .

Then i is not only a left agent of type 0, but the truncated highway problem (N, I [ai,max IN ]) is

an airport problem so that, by Theorem 6.2, σ
(
N, I [ai,max IN ]

)
= φ

(
N, I [ai,max IN ]

)
. CONTR of

φ and the inductive hypothesis complete the proof. q.e.d.

Note that the empty solution satisfies PO and CONTR, but violates NEM, and that the nucleolus

satisfies NEM and PO, but violates CONTR provided that |U | > 3. The solution σ that differs

from the Shapley value only in as much as σ
(
{i}, I

)
=
{
φ({i}, I), φ({i}, I) + 1

}
for one-person

highway problems ({i}, I) satisfies NEM and CONTR, but violates PO. Hence, each of the

axioms employed in Theorem 6.2 as well as in Theorem 6.3 is logically independent of the

remaining axioms.
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7 Generalized highway problems

The definition of a generalized highway problem (N, I) differs from Definition 2.1 only inasmuch

as (2) is weakened to “I is a mapping that assigns to each i ∈ N a finite union of compact

nonempty intervals in R+.” Hence, in a generalized highway problem the customers may use

disconnected sections of the highway. The associated TU cost game (N, cI) is still defined by

(2.2). For a generalized highway problem it is convenient to use the representation of Kuipers,

Mosquera, and Zarzuelo (2013): A tuple (N,M,C, T ) is a generalized highway problem if it

satisfies (2.3), (2.5), (2.6), and (2.7) of Remark 2.2 so that the cost function cM,C,T is defined

by (2.8). In particular we do not need a strict ordering ≺ of M . Hence, we denote by GH the

set of generalized highway games (N,M,C, T ).

Let (N,M,C, T ) ∈ GH. We now show that (N, cM,C,T ) is a positive game. A game (N, c) is called

positive if c =
∑
∅6=S⊆N λSu

∗
S , where the unique coefficients λS , ∅ 6= S ⊆ N, are nonnegative.

For each section j ∈M let T−1(j) = {i ∈ N | j ∈ T (i)}, i.e., the set of users of j. Therefore, we

have

cM,C,T =
∑
j∈M

C(j)u∗T−1(j). (7.4)

As C(j) > 0 for all j ∈ M , (N, cM,C,T ) is a positive game. The following theorem shows that

the converse is also true.

Theorem 7.1 A TU cost game is a positive game if and only if it is a highway game.

Proof: By (7.4) we only have to show the only-if part. Let N be a coalition, λS > 0 for all

∅ 6= S ⊆ N , and let c =
∑
∅6=S⊆N λSu

∗
S . We define the direct generalized highway problem

(N,M,C, T ) (corresponding to (N, c)) by

M = 2N \ {∅}, T (i) = {S ∈M | i ∈ S} for all i ∈ N, and C(S) = λS for all S ∈M.

Then T−1(S) = S and, by (7.4), CM,C,T = c. q.e.d.

It should be remarked that the game (N ′, c) defined in Example 5.6 is a generalized highway

game. Indeed, with I1 = [0, 2], I2 = [1, 3], and I3 = [0, 1] ∪ [2, 3], cI = c. Note also, that this

example is not pathological. Thus, the set of generalized highway game strictly contains the set

of highway games.

8 Discussion

The first part of Theorem 5.5 of Potters and Sudhölter (1999) provides a characterization of

the nucleolus on airport problems that employs properties similar to those that occur in our

Theorem 5.4. However, our properties are defined without mentioning the games associated

with the corresponding cost sharing problems (here highway problems) whereas in the mentioned
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paper, e.g., the covariance property refers to the associated games rather than directly to airport

problems.

The first part of the aforementioned Theorem 5.5 characterizes the modiclus (Sudhölter 1996)

on airport problems. However, for an airport game (N, c) the modiclus coincides with the

prenucleolus of the dual game (N, c∗) (defined by c∗(S) = c(S) − c(N \ S) for all S ⊆ N)

and it is a member of C(N, c). By means of the following 5-person example we show that the

prenucleolus of the dual of a highway game (N, c) may not be a member of the core of this game.

In fact, we show that the least core5 of the dual of the highway game does not intersect the core.

(Another 5-person example of a general convex game the modiclus of which does not belong to

the least core of the dual game was already found by Sudhölter (1997, Example 3.2(iii)).)

Example 8.1 Let (N, I) ∈ H be defined by N = {1, . . . , 5}, I1 = [0, 6], I2 = [0, 4], I3 =

[3, 9], I4 = [5, 10], and I5 = [6, 10], and let c = cI . With x = (4, 3, 1, 1, 1), µ = maxS⊆N (c(S) −
x(S)) = 5. Hence, for any y ∈ LC(N, c∗), c(S)− y(S) 6 5 for all S ⊆ N .

Claim 1: y1 > 3. Assume, on the contrary, that y1 = 3 − ε for some ε > 0. As c({1, 4}) =

c({1, 5}) = 10, y4, y5 > 2+ε. As c({1, 3}) = 9, x3 > 1+ε. By Pareto optimality of y, y2 6 2−2ε.

We conclude that x3 > 2 + 2ε, and a contradiction to Pareto optimality has been obtained.

Claim 2: y2 > 3. Assume, on the contrary, y2 = 3−ε for some ε > 0. Then y3, y4 > 1+ε, y4 > ε,

and, hence, y1 6 5− 2ε. Thus, y5 > 2ε, and the desired contradiction has been obtained.

Claim 3: y1 + y2 > 6 = c({1, 2}). Assume the contrary. By Claims 1 and 2, y1 = y2 = 3. Then

y3 > 1, y4, y5 > 2, which is in contradiction to Pareto optimality. Thus, LC(N, c∗) ∩ C(I, c) = ∅.

We may define the Shapley value for generalized highway problems and characterize it similarly

to Theorem 6.1 by conveniently adapting the proof. The other characterizations on highway

games proposed in this paper do not possess straightforward generalizations on generalized

highway games.
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