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Abstract

The lower orthant dominance relation is frequently used for multidimensional social welfare com-
parisons. Recently it has been shown that bivariate dominance can be characterized in terms of
elementary mass transfer operations. We provide an algorithm which explicitly decomposes the mass
transfers into welfare differences and inequality differences.

1 Introduction

Dominance concepts are increasingly used for multidimensional comparisons of social welfare, inequality

and poverty (Aaberge and Brandolini 2014).1 They provide a way of making robust comparisons of

the overall attainment of the groups. In particular, comparisons do not require assumptions about the

relative importance of each of the given dimensions.

A simple and commonly used dominance concept for multidimensional social welfare comparisons is

lower orthant dominance. The idea of using orthant dominance – and related (less restrictive) concepts

– for social welfare comparisons was popularized by Atkinson and Bourguignon (1982), and it has been

significantly developed and refined in several works, (see, e.g., Bourguignon and Chakravarty 2003, Duclos,

Sahn and Younger 2006, Duclos, Sahn and Younger 2007, Gravel, Moyes and Tarroux 2009, Gravel and

∗Support from the Danish Council for Independent Research | Social Sciences (Grant-id: DFF – 1327-00097) is ac-
knowledged, and the third author acknowledges support from the Spanish Ministerio de Ciencia e Innovación under project
ECO2012-33618, co-funded by the ERDF.
†Email: tigo@sam.sdu.dk
‡Email: tra@sam.sdu.dk
§Email: psu@sam.sdu.dk
¶Email: lpro@sam.sdu.dk
1Stochastic dominance is useful in many other fields than welfare economics. It is, for example, an important tool in

decision theory (see, e.g., Levy 1992 or Müller and Stoyan 2002), finance (see, e.g., Sriboonchita, Dhompongsa, Wong, and
Nguyen 2009), as well as in probability theory and statistics (see, e.g., Silvapulle and Sen 2011).



Mukhopadhyay 2010 and Muller and Trannoy 2011).2 Suppose that, for each dimension, a wellbeing

indicator can take a finite number of possible values. Considering multiple dimensions of wellbeing, the

set of possible (multidimensional) outcomes is thus the product set of those possible indicator values for

each dimension. We describe a population distribution by a probability mass function over the outcomes,

i.e., by a function that assigns to each outcome the probability that a randomly selected individual obtains

that outcome (or, put differently, it describes the share of all individuals in the population that obtains

that outcome). For two probability mass functions (i.e., population distributions) f and g, f (lower

orthant) dominates g if and only if the cumulative probability mass at f is smaller than or equal to that

at g for every lower hyperrectangle. This is equivalent to the property that the expected utility (welfare)

of f is at least as high as that of g for any non-decreasing utility (welfare) function with negative cross

derivative (Atkinson and Bourguignon 1982).

The aforementioned characterization of lower orthant dominance is well-known and central to the litera-

ture. The latter definition has a foundation in expected utility theory (and social welfare maximization),3

while the former, equivalent, definition has an operational meaning as it provides an easy way of checking

dominance. However, until very recently, a characterization founded in elementary operations, i.e. con-

ditions specifying exactly which changes in a distribution that are allowed to obtain another distribution

which dominates it, has been missing.4 Such a characterization was recently given by Meyer and Strulovici

(2015) who, in particular for the bivariate case, showed that one probability mass function dominates

another if and only if the dominated probability mass function can be obtained from the dominating

probability mass function by diminishing probability mass transfers and correlation increasing switches.5

Here, a diminishing probability mass transfer is simply a shift of mass from a better to a worse outcome,

hence such a transfer implies an unambiguous welfare reduction.6 A correlation increasing switch consists

of two simultaneous transfers that move mass from intermediate outcomes to more extreme outcomes

without changing the marginal distributions. Among others, Atkinson and Bourguignon (1982), Tsui

(1999), Decancq (2012) and Sonne-Schmidt, Tarp, and Østerdal (2015) argue that correlation increasing

switches are basic operations that (unambiguously) increase inequality.

In this paper we show how lower orthant dominance decomposes into welfare reductions and increases

in inequality for the two-dimensional case. More precisely, we provide a constructive proof of Meyer

and Strulovici’s characterization, which, most importantly, yields an algorithm that returns a set of

diminishing transfers and correlation increasing switches whenever a dominance relationship exist. This

means that we can meaningfully disentangle the differences between the two distributions, in term of a

component increasing inequality (the correlation increasing switches) and a component decreasing welfare

(the diminishing transfers). The decomposition technique also enables us to compare lower orthant

dominance to more restrictive stochastic dominance concepts – in particular to the usual stochastic order

which allows only diminishing transfers.

2Note that lower orthant dominance has sometimes been referred to as “first order dominance”, particularly in the
welfare economics literature. In order not to risk confusion with the usual stochastic order – the natural dominance concept
for social welfare comparisons with ordinal data (see, e.g., Arndt et al. 2012, Østerdal 2010, and Range and Østerdal
2013) – we use the term lower orthant dominance as conventional in the probability theory literature (e.g. Shaked and
Shanthikumar 2007).

3The negative cross derivative can be interpreted as an assumption about complementarity of dimensions.
4For example, Moyes (2012) points out in his Footnote 13 that such characterization is missing, even though there are

results in the literature that are making steps in this direction.
5Meyer and Strulovici (2015) is based on a 2010 draft entitled “The Supermodular Stochastic Ordering”. Müller (2013)

provides a similar characterization by elegant use of duality theory.
6Indeed, the usual stochastic order is completely characterized by such transfers, as shown by, e.g., Strassen (1965) and

Kamae, Krengel, and O’Brien (1977).
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2 Notation

Let n,m ∈ N. For x, y ∈ Rm, x 6 (>) y denotes xi 6 (>) yi for all i = 1, . . . ,m, x < (>) y means

x 6 (>) y and x 6= y, and x � (�) y if xi < (>) yi for all i = 1, . . . ,m. Similarly, for two functions

f, g : D → R, f > (6) g if f(x) > (6) g(x) for all x ∈ D, and f > (<) g if f > (6) g and f 6= g.

Denote X(n,m) = X = {x ∈ N2 | x 6 (n,m)} and F(n,m) = F = {f : X → R+}. For ∅ 6= Y ⊆ X let

maxY = y ∈ X be defined by yi = max{xi | x ∈ Y } for i = 1, 2, and let minY be defined analogously.

Moreover, for x ∈ X, ↓x = {y ∈ X | y 6 x}. For f, g ∈ F we say that g results from f

• by a diminishing (bilateral) transfer if there exist x, y ∈ X such that x < y, g(x) − f(x) =

f(y)− g(y) > 0, and g(z) = f(z) for all z ∈ X \ {x, y} (the underlying transfer is a transfer from y

to x of size ε = g(x)− f(x)) and we use the notation g = fx←y
ε ;

• by a correlation increasing switch if there exist x, y ∈ X such that f(x) − g(x) = f(y) − g(y) =

g(v)− f(v) = g(w)− f(w) > 0, and f(z) = g(z) for all z ∈ X \ {x, y, v, w}, where v = min({x, y})
and w = max({x, y}) (note that in this case x and y are incomparable, i.e., x 66 y 66 x, and that

the underlying switch transfers ε = f(x)− g(x) from each x and y to each v and w) and we use the

notation g = fx�y
ε .

Diminishing transfer is illustrated in Figure 2.1 and correlation increasing switch is illustrated in Figure

2.2.

y

x

Figure 2.1: Diminishing transfer

x

y v

w

Figure 2.2: Correlation increasing switch

Throughout the following notation is employed. For any f ∈ F(n,m) and x ∈ X(n,m) denote f̃(x) =∑
y∈↓x f(y), i.e., the cumulative distribution where we for each entry sum all probability mass below and

left of the entry including the row and column in line with the entry, and f̃(0, i) = f̃(j, 0) = f(0, 0) = 0

for all i ∈ {1, . . . ,m} and j ∈ {1, . . . , n}. Furthermore we will denote the marginal distribution as the

partial distribution of each dimension. We can find the marginal distributions by looking respectively at

f̃(n, i) and f̃(j,m).

Definition 2.1 Let n,m ∈ N and f, g ∈ F(n,m). We say that f weakly dominates g, written f � g,

if there exist k ∈ N and f1, . . . , fk ∈ F(n,m) such that f = f1, g = fk, and, for all ` ∈ {2, . . . , k}, f`
results from f`−1 by a diminishing transfer or by a correlation increasing switch. Moreover, we say that

f lower orthant dominates g, written f �LO g, if g̃(n,m) = f̃(n,m) and g̃ > f̃ . Finally, let � and �LO

denote the respective strict relations (requiring in addition k > 1 and g̃ > f̃ , respectively).
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3 Results and algorithm

We are now able to formulate the characterization by Meyer and Strulovici (2015).

Theorem 3.1 Let n,m ∈ N and f, g ∈ F(n,m). f � g if and only if f �LO g.

Our proof is constructive and will proceed in several steps. We will start by showing Proposition 3.2, the

straightforward direction of the equivalence. We just consider what happens when we make a diminishing

bilateral transfer or a correlation increasing switch. A diminishing probability transfer only moves mass in

direction towards the origin, i.e., we only increase f̃ -values. Furthermore, a correlation increasing switch

might decrease some f̃ -values, but because it is a correlation increasing switch, it will simultaneously

increase the f̃ -values somewhere else.

Proposition 3.2 Let n,m ∈ N and f, g ∈ F(n,m). If f � g, then f �LO g.

Proof: Let f, g ∈ X(n,m). If g results from f by a diminishing bilateral transfer from y to x or by a

correlation increasing switch from x to min{x, y} and y to max{x, y}, then g̃(n,m) = f̃(n,m) and it is

straightforward to show that g̃ ≥ f̃ . Therefore, Proposition 3.2 follows by induction on k, the number of

functions f1, . . . , fk ∈ F such that f1 = f , fk = g, and f` results from f`−1 by a diminishing transfer or

a correlation increasing switch for each ` ∈ {2, . . . , k}. q.e.d.

Proposition 3.3 Let n,m ∈ N and f, g ∈ F(n,m). If f �LO g, then f � g.

Our proof of Proposition 3.3 is constructive and yields an algorithm. First we construct a finite sequence

of diminishing transfers creating a function h, f � h �LO g, that has the same marginal distributions

as g. Indeed, applying Lemma 3.4 successively to the rows i0 = m, . . . , 1 not only leads to a function h

that has the same marginal distributions as g, but also assigns at least the same mass as g to each upper

rectangle of the form {(j′, i′) ∈ X | j′ 6 j, i′ > i} where (j, i) ∈ X (see Corollary 3.5).

As every further diminishing transfer increases at least one marginal distribution, it results in a function

that does no longer lower orthant dominate g. If still h �LO g, then we construct in a second step a finite

sequence of correlation increasing switches that finally leads to g.

Lemma 3.4 Let i0 ∈ {1, . . . ,m} and f �LO g such that

f̃(j,m)− f̃(j, i) > g̃(j,m)− g̃(j, i) ∀j ∈ {1, . . . , n− 1}, i ∈ {i0, . . . ,m} and (1)

f̃(n, i) = g̃(n, i) ∀i ∈ {i0, . . . ,m}. (2)

Then there exists h ∈ F that arises from f by finitely many diminishing transfers such that h �LO g and

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i) ∀j ∈ {1, . . . , n− 1}, i ∈ {i0 − 1, . . . ,m} and (3)

h̃(n, i) = g̃(n, i) ∀i ∈ {i0 − 1, . . . ,m}. (4)

Lemma 3.4 reveals the construction of the maximal sequence of diminishing transfers. We first illustrate

and explain its proof. The proof is divided into two steps.

In the first step consider the set of all j ∈ {1, . . . , n} where (3) is not fulfilled and denote its largest index

by j0. In the 4×4 example of Fig. 3.1, i0 = 3, j0 = 2, and in the red area f has less probability mass than
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g. However, f has the same amount or more probability mass than g in the blue area. This means that

the difference between the probability masses of f and g in the grey area must be larger than or equal

to the difference between the probability masses of f and g in the red area. Therefore this amount from

the grey area can be moved to the red area by diminishing bilateral transfers. Now we have removed j0
from the set of all j ∈ {1, . . . , n} where (3) is not fulfilled, and we proceed recursively.

j0

i0

m

n j0

i0

m

n j0

i0

m

n

Figure 3.3: Illustration of Step 1 in the proof of Lemma 3.4.

So far we have only employed diminishing transfers from (j0 + 1, i) to (j0, i) for some i ∈ {i0, . . . ,m}. In

the second step we have to make sure that f̃(n, i0 − 1) = g̃(n, i0 − 1), i.e. the green area in Figure 3.4

must be equal in f and g. To ensure this we employ diminishing transfers from (j, i0) to (j, i0 − 1) for

some j ∈ {1, . . . , n}.

i0

m

n

Figure 3.4: Illustration of Step 2 in the proof of Lemma 3.4.

Proof of Lemma 3.4: Due to lower orthant dominance we have g̃(n, i0−1) > f̃(n, i0−1) and g̃(n,m) =

f̃(n,m),

f̃(n,m)− f̃(n, i0 − 1) > g̃(n,m)− g̃(n, i0 − 1). (5)

Step 1: We show that there exists h that arises from f by finitely many diminishing transfers such that

h �LO g and

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i) (6)

for all j ∈ {1, . . . , n} and all i ∈ {i0 − 1, . . . ,m}.

Let

K(f) = K = {j ∈ {1, . . . , n} | f̃(j,m)− f̃(j, i0 − 1) < g̃(j,m)− g̃(j, i0 − 1)}

and k = |K|. We proceed by induction on k. If k = 0, then h = f fulfils (3). Assume that our

statement is correct whenever k < ` for some ` ∈ N. Now, if k = `, we proceed as follows. Let
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j0 = maxK. By (5), j0 < n. Moreover, because j0 is maximal, α := f̃(j0 + 1,m) − f̃(j0 + 1, i0 − 1) >

g̃(j0 + 1,m)− g̃(j0 + 1, i0 − 1) := β, we conclude that(
α−

(
f̃(j0,m)− f̃(j0, i0 − 1)

))
−
(
β −

(
g̃(j0,m)− g̃(j0, i0 − 1)

))
>

(
g̃(j0,m)− g̃(j0, i0 − 1)

)
−
(
f̃(j0,m)− f̃(j0, i0 − 1)

)
,

i.e.,

m∑
i=i0

(
f(j0 + 1, i)− g(j0 + 1, i)

)
>
(
g̃(j0,m)− g̃(j0, i0 − 1)

)
−
(
f̃(j0,m)− f̃(j0, i0 − 1)

)
=: ε > 0. (7)

Let A = {i ∈ {i0, . . . ,m} | f(j0+1, i) > g(j0+1, i)}. There exist εi > 0, i ∈ A, such that
∑

i∈A εi = ε and

f(j0+1, i)−εi > g(j0+1, i) for all i ∈ A. Let h arise from f by transferring εi from (j0+1, i) to (j0, i) for

all i ∈ A (i.e., h arises from f by a sequence of |A| diminishing transfers). As g̃(j0, i0− 1) > f̃(j0, i0− 1),

(1) applied to j = j0 yields g̃(j0, i) > f̃(j0, i) + ε for all i = i0, . . . ,m. As h̃(j0, i)− f̃(j0, i) 6 ε for i ∈ A
and h̃(j, i) = f̃(j, i) for all other pairs (j, i), we conclude that h �LO g. Moreover, K(h) ⊆ K(f) \ {j0}
by construction. Finally, as only transfers from the right hand to the left hand side are employed, (6) is

still satisfied for all i ∈ {i0, . . . ,m} by (1). Hence, by the inductive hypothesis, this step is complete.

Step 2: We now finish the proof. By Step 1 we may assume that f̃(j,m)−f̃(j, i0−1) > g̃(j,m)−g̃(j, i0−1)

for all j = 1, . . . , n. Let g̃(n, i0 − 1)− f̃(n, i0 − 1) = ρ(f) = ρ > 0. If ρ = 0, we may choose h = f . Hence

we assume that ρ > 0. Let

L(f) = L = {j ∈ {1, . . . , n} |f(j, i0) > g(j, i0)} ,

and ` = |L|. As ρ =
∑n

t=1

(
f(t, i0) − g(t, i0)

)
, we conclude that ` > 0 (and, hence, i0 > 1). Assume

now that (4) is already proven whenever ` < r for some r ∈ N. If ` = r, then let j1 = maxL and

ε = min{f(j1, i0)−g(j1, i0), ρ}. Let h result from f by the diminishing transfer from (j1, i0) to (j1, i0−1) of

size ε. Then h �LO g and either ρ(h) = 0 (if ε = ρ(f)) or |L(h)| < |L(f)|. As
∑j

t=1

(
f(t, i0)−g(t, i0)

)
> 0

for all j ∈ {j1, . . . , n} by construction, (6) is still satisfied by (1) for all i ∈ {i0, . . . ,m} so that the proof

is finished by an inductive argument. q.e.d.

Lemma 3.4 has the following important corollary.

Corollary 3.5 Let n,m ∈ N and f, g ∈ F(n,m) such that f �LO g. Then there exists h ∈ F(n,m) that

arises from f by finitely many diminishing transfers such that h �LO g and for all i ∈ {1, . . . ,m} and all

i ∈ {1, . . . ,m},
h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i),

h̃(n, i) = g̃(n, i) and

h̃(j,m) = g̃(j,m)

Proof: The mapping f satisfies the conditions of Lemma 3.4 for i0 = m. Hence, applying the aforemen-

tioned lemma successively to i0 = m, . . . , 1 yields a mapping h that arises from f by a finite number of

diminishing transfers with h �LO g such that, by (3),

h̃(j,m)− h̃(j, i) > g̃(j,m)− g̃(j, i) ∀j ∈ {j, . . . , n− 1}, i ∈ {0, . . . ,m}.

Hence, applied to i = 0, we receive h̃(j,m) = g̃(j,m) for all j ∈ {1, . . . , n}, and, by (2), h̃(n, i) = g̃(n, i)

for all i ∈ {1, . . . ,m}. q.e.d.
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So far we have shown that if f �LO g we can obtain a function h from f by finitely many diminishing

transfers that still satisfies h �LO g and, additionally, has the same marginal distributions as g. Tchen

(1980) shows that g can be obtained from an arbitrary h by correlation increasing switches if and only

if g and h have coinciding marginal distributions and h �LO g. We have included a shorter proof below

that proceeds by induction on m and may be illustrated as follows. We construct correlation increasing

switches that successively create a new function h �LO g such that h(j, 1) = g(j, 1) for all j ∈ {1, . . . , n} so

that we may delete the first row and apply an inductive argument. Within this row we proceed recursively

by first selecting the maximal j with f(j, 1) < g(j, 1) which we denote by j0 and secondly selecting the

minimal j > j0 (denoted by j1) such that when we subtract the aggregate weights of {j0, . . . , j} of g

from f this is nonnegative. We then move the difference of the aggregate weights of {j0, . . . , j1 − 1} via

correlation increasing switches from (j1, 1) to elements (j, 1) with j0 6 j < j1 so that either j0 or j1
become smaller. For the precise definition of these correlation increasing switches the proof is referred

to.

The following notation is useful. For f ∈ F denote

Ff = {g ∈ F | f �LO g, g̃(j,m) = f̃(j,m), g̃(n, i) = f̃(n, i)∀i ∈ {1, . . . ,m}, j ∈ {1, . . . , n}}.

This means that Ff contains all distributions having marginal distributions coinciding with the marginal

distributions of f . Let g ∈ Ff and f � h. Then h � g if and only if h arises from f by a sequence of

finitely many correlation increasing switches and g ∈ Fh. Moreover, denote

j0(f, g) = j0 = max{j ∈ {1, . . . , n} | f(j, 1) < g(j, 1)},

where max ∅ = 0 is used in this context, and

j1(f, g) = j1 = min

j ∈ {j0 + 1, . . . , n}

∣∣∣∣∣∣
j∑

t=j0

(
f(t, 1)− g(t, 1)

)
> 0

 .

Note that j1 exists because g̃(j0− 1, 1) > f̃(j0− 1, 1) and g̃(n, 1) = f̃(n, 1). Also note that if j0 = 0, then

f(j, 1) = g(j, 1) for all j ∈ {1, . . . , n}. The following technical lemma is useful.

Lemma 3.6 Let g ∈ Ff such that j0(f, g) > 0. Then there exists f � h such that h �LO g and

j0(h, g) < j0(f, g).

Proof: Let j0 = j0(f, g), j1 = j1(f, g), and denote

X ′(f, g) = X ′ = {(j, i) ∈ X | j0 6 j < j1, i > 1, f(j, i) > g(j, i)}.

Thus X ′(f, g) contains all (j, i) ∈ X in the interval between j0 and j1 where it is feasible to move mass

into, since f has more mass here than g.

Let ε =
∑j1−1

t=j0

(
g(t, 1) − f(t, 1)

)
. Hence, f(j1, 1) − g(j1, 1) > ε. As f̃(j,m) = g̃(j,m) in particular for

j = j0 − 1 and j = j1 − 1, the equations

f̃(j1 − 1,m) = f̃(j0 − 1,m) +
∑j1−1

j=j0
f(j, 1) +

∑m
i=2

∑j1−1
j=j0

f(j, i) and

g̃(j1 − 1,m) = g̃(j0 − 1,m) +
∑j1−1

j=j0
g(j, 1) +

∑m
i=2

∑j1−1
j=j0

g(j, i),

imply that
∑m

i=2

∑j1−1
j=j0

(
f(j, i)− g(j, i)

)
= ε, hence X ′(f, g) 6= ∅.

By a recursive argument is suffices to construct h such that f � h �LO g and either j0(h, g) < j0 or

7



(j0(h, g) = j0 and j1(h, g) < j1) or (j0(h, g) = j0, j1(h, g) = j1, and |X ′(h, g)| < |X ′|). For this purpose

let i′ ∈ {2, . . . ,m} be minimal such that there exists (j, i′) ∈ X ′. Moreover let j′ ∈ {j0, . . . , j1 − 1}
be maximal such that (j′, i′) ∈ X ′. Now we define ε′ = min{ε, f(j′, i′) − g(j′, i′)} and consider h =

f
(j1,1)�(j′,i′)
ε′ and verify that h �LO g. If ε′ = ε, then we have moved ε to the element (j′, 1) so that∑j1−1
j=j0

h(j, 1) =
∑j1−1

j=j0
f(j, 1) + ε =

∑j1−1
j=j0

g(j, 1). If j′ = j0 and ε = g(j0, 1) − f(j0, 1), we have

j0(h, g) < j0. If j′ 6= j0 or ε < g(j0, 1) − f(j0, 1), we have j0(h, g) = j0 and j1(h, g) < j1. Finally, if

ε′ < ε, then we have j0(h, g) = j0, j1(h, g) = j1, and X ′(h, g) = X ′(f, g) \ {(j′, i′)} so that the proof is

complete. q.e.d.

We are now able to finish the proof.

Proof of Proposition 3.3: By Corollary 3.5 we may assume that g ∈ Ff . Successively applying Lemma

3.6 if necessary we may also assume that j0(f, g) = 0, i.e., f(j, 1) = g(j, 1) for all j ∈ {1, . . . , n} so that

the proof is finished by induction on m. q.e.d.

Proof of Theorem 3.1: By combining Proposition 3.2 and Proposition 3.3 the proof of our main result

follows. q.e.d.

As mentioned earlier our constructive proof yields an algorithm. We need to follow each step in the proof,

this means we have to make sets and define variables as described in the proof. There is only one place

where the proof does not give us unique transfers, this is in the first step in the diminishing transfer

part. Here we can decide in the algorithm in which order transfers should be made. One possibility is to

choose the lexicographical order like we have done in the example below. When we follow the algorithm

it is possible to track every transfer made.

4 Example

To illustrate the algorithm we give an example in the 4x4-case. Let f and g be given by Figures 4.5 and

4.6.

0 0 0 0

0.1 0 0.1 0.1

0.1 0 0 0.2

0.1 0.1 0.1 0.1m

n

0 0 0 0

0.1 0.1 0.2 0.3

0.2 0.2 0.3 0.6

0.3 0.4 0.6 1m

n

Figure 4.5: The probability mass function f left and f̃ right.

The first part of the algorithm employs diminishing transfers to obtain equal marginal distributions. The

computation of sets and values appears from the proof. An overview of the algorithm is also available

in the pseudo code in Appendix A. As an example for i0 = 4 we find the set K as the indices j where

f̃(j, 4)− f̃(j, 3) < g̃(j, 4)− g̃(j, 3). This is only true for j = 1, where f̃(1, 4)− f̃(1, 3) = 0.3−0.2 = 0.1 and

g̃(1, 4)− g̃(1, 3) = 0.4− 0.2 = 0.2. As we only have one element in K this will also be the largest element,

so j0 = 1. Now we know which column we need to move mass to, so now we need to check what row,

i ∈ {i0, . . . ,m}, we can move mass from (j0+1, i), i.e., which row f(j0+1, i) < g(j0+1, i). Since i0 = 4 this
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0.1 0 0.1 0

0.1 0 0 0.1

0 0 0.2 0
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n

0.1 0.1 0.2 0.2

0.2 0.2 0.3 0.4

0.2 0.2 0.5 0.6

0.4 0.4 0.7 1m

n

Figure 4.6: The probability mass function g left and g̃ right.

must be true for i = 4. Now we find ε = g̃(1, 4)− g̃(1, 3)−(f̃(1, 4)− f̃(1, 3)) = 0.4−0.2−(0.3−0.2) = 0.1.

This has to be divided on all elements in A. Since we only have one element in A this is quite simple. If

we have more elements there will might be more ways to move the entire mass. In the example, we move

as much mass as possible for the lowest indices, and stop when the entire ε is moved. This gives us a

diminishing transfer in the horizontal direction. We then check whether transfers in the vertical direction

is necessary, i.e., transfers that ensures that f̃(n, i0 − 1) = g̃(n, i0 − 1) since f̃(4, 3) = 0.6 = g̃(4, 3), no

such transfers are needed. For i0 = 3, K = ∅, however f̃(4, 2) = 0.3 6= 0.4 = g̃(4, 2). This means that

L 6= ∅. We find L as the set of indices j where
∑j

t=1 f(t, i0) >
∑j

t=1 g(t, i0) is true. L = {1, 2, 4) since;

f(1, 3) = 0.1 > 0 = g(1, 3) and
∑2

t=1 f(t, 3) = 0.1 > 0 =
∑2

t=1 g(t, 3) and
∑4

t=1 f(t, 3) = 0.3 > 0.2 =∑4
t=1 g(t, 3). We now find ρ = g̃(4, 2) − f̃(4, 2) = 0.4 − 0.3 = 0.1 and j1 which is the largest index

j where f(j, 3) > g(j, 3) is true, f(4, 3) = 0.2 > 0 = g(4, 3) so j1 = 4. We are then able to compute

ε = min{f(4, 3)−g(4, 3), ρ} = min{0.2, 0.1} = 0.1 and transfer this amount. Now ρ = ρ−ε = 0.1−0.1 = 0.

If ρ > 0 after the transfer we would continue to with a new j1 and find the new ε. In the table the steps

are also shown for i0 = 2 and i0 = 1.

i0 = 4 K = {1}, j0 = 1, A = {4}, ε = 0.1 = ε4 Diminishing transfer of 0.1 from (2, 4) to (1, 4)

L = ∅

i0 = 3 K = ∅

L = {1, 2, 4}, ρ = 0.1, j1 = 4, ε = 0.1 Diminishing transfer of 0.1 from (4, 3) to (4, 2)

i0 = 2 K = ∅

L = {3, 4}, ρ = 0.2, j1 = 4, ε = 0.1 Diminishing transfer of 0.1 from (4, 2) to (4, 1)

L = {3}, ρ = 0.1, j1 = 3, ε = 0.1 Diminishing transfer of 0.1 from (3, 2) to (3, 1)

i0 = 1 K = {3}, j0 = 3, A = {1, 3}, ε = 0.1 = ε1 Diminishing transfer of 0.1 from (4, 1) to (3, 1)

After diminishing transfers f looks like Figure 4.7. When we have secured that the marginal distri-

butions are equal we will continue with the second part where we employ correlation increasing switches

in order to obtain identical probability mass functions. Here i0 = i means that the row i from the

full probability mass functions is the bottom row in the present step. This means that in our 4x4-

example having i0 = 4 indeed means that we only consider the uppermost row from the full prob-

ability mass functions, because the rest are already identical. We start with i0 = 1. Here we find

j0 = max{j ∈ {1, . . . , n}|f(j, 1) < g(j, 1)}. We have that f(1, 1) = 0 < 0.1 = g(1, 1), f(2, 1) = 0 = g(2, 1),

f(3, 1) = 0.2 > 0.1 = g(3, 1) and f(4, 1) = 0 = g(4, 1), which means that j0 = 1. Then we find
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Figure 4.7: The new probability mass function f left and f̃ right.

j1 = min{j ∈ {j0 + 1, . . . , n}|
∑j

t=j0

(
f(t, 1) − g(t, 1)

)
≥ 0}, since

∑2
t=1

(
f(t, 1) − g(t, 1)

)
= −0.1 and∑3

t=1

(
f(t, 1)− g(t, 1)

)
= 0 we have that j1 = 3. We have to compute the set X ′ = {(j, i) ∈ X|j0 ≤ j <

j1, i > i0, f(j, i) > g(j, i)} this gives us X ′ = {(1, 3)}. This means that when we have to chose i′ minimal

such that (j, i′) ∈ X ′ and j′ maximal such that (j′, i′) ∈ X ′ we will have (j′, i′) = (3, 1). We can compute

ε =
∑j1−1

t=j0

(
g(t, i0) − f(t, i0)

)
= (g(1, 1) − f(1, 1)) + (g(2, 1) − f(2, 1)) = (0.1 − 0) + (0 − 0) = 0.1 and

ε′ = min{ε, f(j′, i′) − g(j′, i′)} = min{ε, f(1, 3) − g(1, 3)} = min{0.1, 0.1 − 0} = 0.1. So now we have

identified a correlation increasing switch. Since the row i = 1 is identical in f and g we are done with

this row. So we can discard it from the algorithm and look on the remaining rows. In the table the

rows i0 = 2 and i0 = 4 are blank, this is because these rows are already similar, which means it is not

necessary to employ any correlation increasing switches.

i0 = 1 j0 = 1, j1 = 3, i′ = 3, j′ = 1, ε = 0.1, ε′ = 0.1

Correlation increasing switch of 0.1 from (3, 1) to (1, 1) and from (1, 3) to (3, 3)

i0 = 2

i0 = 3 j0 = 3, j1 = 4, i′ = 4, j′ = 3, ε = 0.1, ε′ = 0.1

Correlation increasing switch of 0.1 from (4, 3) to (3, 3) and from (3, 4) to (4, 4)

i0 = 4

5 Discussion

As mentioned earlier, Theorem 3.1 was recently proven by Meyer and Strulovici (2015) and Müller (2013).

However, our approach is different. It particular, our proof is constructive and yields an algorithm. This

algorithm is useful in several ways. The most important feature is that it allows us to decompose domi-

nation into diminishing transfers and correlation increasing switches. In order words, we can disentangle

domination into welfare deteriorations and inequality increases. We can for example measure how much

mass is moved, e.g., the amount of mass moved times the distance it is moved, using `1 norm as distance.

Then the algorithm tells us how much the distributions differ, and, in particular, we can decompose the

domination, to see how much mass is moved by diminishing transfers and how much mass is moved by

correlation increasing switches. Although the system of diminishing transfers and correlation increasing

switches leading from one distribution to another is generally not uniquely determined, it is important

to notice that the mass we have to move with diminishing transfers to obtain the same marginal distri-
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butions, is always the same.7 Thus, in terms of the measure of distance of mass displacement through

diminishing transfers, the welfare differences are uniquely determined and hence meaningfully measured

for comparison purposes
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A Pseudo code

Data: Two probability mass functions f and g
Result: If there is dominance a series of diminishing transfers and correlation increasing switches is

returned
1 Diminishing bilateral transfers:
2 for i0 = m to 1 do
3 Step 1:

4 K = {{j ∈ {1, . . . , n}} | f̃(j,m)− f̃(j, i0 − 1) < g̃(j,m)− g̃(j, i0 − 1)}
5 j0=maxK;
6 if j0 = n then
7 Print ”There is no dominance”;
8 exit;

9 end
10 while K 6= ∅ do
11 A = {i ∈ {i0, . . . ,m} | f(j0 + 1, i) > g(j0 + 1, i)};
12 ε = g̃(j0,m)− g̃(j0, i0 − 1)− (f̃(j0,m)− f̃(j0, i0 − 1));
13 for i = 1 to m do
14 εi = min{f(j0 + 1, i)− g(j0 + 1, i), ε−

∑m
t=i0

εi};
15 end
16 foreach i ∈ A do
17 Transfer εi from (j0 + 1, i) to (j0, i);
18 end
19 Remove j0 from K;

20 end

21 Step 2:

22 ρ = g̃(n, i0 − 1)− h̃(n, i0 − 1);

23 L = {j ∈ {1, . . . , n} |
∑j

t=1 f(t, i0) >
∑j

t=1 g(t, i0)};
24 while L 6= ∅ do
25 j1 = max{j ∈ L | f(j, i0) > g(j, i0)};
26 ε = min{f(j1, i0)− g(j1, i0), ρ};
27 Transfer ε from (j1, i0) to (j1, i0 − 1);
28 ρ = ρ− ε;
29 end

30 end

31 Correlation increasing switches:
32 for i0 = 1 to m− 1 do
33 while f(j, io) 6= g(j, io)∀j ∈ {1, . . . , n} do
34 j0 = max{j ∈ {1, . . . , n} | f(j, i0) < g(j, i0)};
35 j1 = min

{
j ∈ {j0 + 1, . . . , n} |

∑j
t=j0

(
f(t, i0)− g(t, i0)

)
≥ 0
}

;

36 if j1 does not exist then
37 Print ”There is no dominance”;
38 exit;

39 end

40 ε =
∑j1−1

t=j0

(
g(t, i0)− f(t, i0)

)
;

41 while ε > 0 do
42 X ′ = {j, i} ∈ X | j0 ≤ j < j1, i > i0, f(j, i) > g(j, i)};
43 i′ = min{i ∈ {i0 + 1, . . . ,m} | ∃(j, i′) ∈ X ′};
44 j′ = max{j ∈ {j0, . . . , j1 − 1} | ∃(j′, i′) ∈ X ′};
45 ε′ = min{ε, f(j′, i′)− g(j′, i′)};
46 Transfer ε′ from (j1, i0) to (j′, i0) and ε′ from (j′, i′) to (j1, i

′);
47 ε = ε− ε′;
48 end

49 end

50 end
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The algorithm described in the pseudo code is slightly different from the algorithm that can be derived

from the proof. The main difference is that the algorithm, which the proof yields, only takes two functions

where dominance is present as input. The algorithm in the pseudo code will take any two functions and

return a series of diminishing transfers and correlation increasing switches if lower orthant dominance

occur. If there is no dominance the algorithm will terminate with the message of no dominance. The first

place, where we insert this stop-message is in line 6-9 in the pseudo code. Here we check whether j0 = n

if this is the case there will be no dominance, because then the conditions for lower orthant dominance

is not fulfilled. The second place where the stop-message is needed is in line 36-38, we check whether j1
exists, if this is not the case the conditions for lower orthant dominance will not be fulfilled.

It is simple to introduce variables that accumulate mass moved by diminishing mass transfers and cor-

relation increasing switches respectively. Furthermore it is done in constant time, thus it will not affect

the complexity. The complexity of the diminishing transfer part of the algorithm is O(n log n m) and the

complexity of the correlation increasing switch part is O(n2m2). The complexity of the entire algorithm

will thus be O(n2m2). This may be improved by effective implementation.
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