
Determinacy of Equilibrium in Outcome Game Forms 

 

by 

 

Cristian Litan, 

Francisco Marhuenda 

and 

Peter Sudhölter 

 

 

 

 

 

 

 

Discussion Papers on Business and Economics 

No. 17/2014 
 

 

 

 
 
 

 

 

 

  
 

 
 

 

 

FURTHER INFORMATION 

Department of Business and Economics 

Faculty of Business and Social Sciences 

University of Southern Denmark 

Campusvej 55 

DK-5230 Odense M 

Denmark 

 

Tel.: +45 6550 3271 

Fax: +45 6550 3237 

E-mail: lho@sam.sdu.dk 

    http://www.sdu.dk/ivoe 



Determinacy of Equilibrium in Outcome Game Forms∗
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Abstract

We show the generic finiteness of the number of probability distributions on outcomes induced
by Nash equilibria for two-person game forms such that either (i) one of the players has no more
than two strategies or (ii) both of the players have three strategies, and (iii) for outcome game forms
with three players, each with at most two strategies. Finally, we exhibit an example of a game form
with three outcomes and three players for which the Nash equilibria of the associated game induce a
continuum of payoffs for an open non-empty set of utility profiles.

Keywords: Outcome game form · Completely mixed Nash equilibrium · Generic finiteness

JEL Classification: C72

1 Introduction

In normal form games with an arbitrary number of players the payoffs of which may be perturbed
independently Rosenmüller (1971) and Wilson (1971) simultaneously proved (see also Harsanyi 1973)
that generically there is a finite number of equilibria. This result was extended to extensive form games
by Kreps and Wilson (1982). On the other hand, Govindan and McLennan (2001) and Kukushkin,
Litan, and Marhuenda (2008) show that the situation for outcome game forms is entirely different.
These authors construct some game forms for which there is a continuum of probability distributions on
outcomes induced by the Nash equilibria of the associated games for an open non-empty set of utility
profiles.

A natural question that arises is to try to determine which outcome game forms admit a finite number
of probability distributions on outcomes induced by Nash equilibria. For example, Mas-Colell (2010)
proved that for two player game forms the equilibrium payoffs are generically finite, and Govindan and
McLennan (2001) proved that for game forms with two outcomes and any number of players the number
of equilibrium distributions is generically finite. Similar results are obtained for game forms with two
players and three outcomes (González-Pimienta 2010) and sender-receiver cheap-talk games (Park 1997).
Using semi–algebraic geometry techniques Govindan and McLennan (1998) showed in an unpublished
manuscript the generic finiteness of the number of equilibrium distributions on outcomes, when the
associated game is either a two player zero sum or a common interest game. This result is also proved
by Litan and Marhuenda (2012) using elementary linear algebra.
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In this paper we prove the generic finiteness of the number of probability distributions on outcomes
induced by Nash equilibria for two-person outcome game forms in which one of the players has no
more than two strategies or both of the players have three strategies. The results of González-Pimienta
(2010) and Govindan and McLennan (2001) imply that for two-person outcome game forms with at most
three outcomes the number of equilibrium distributions is generically finite. We provide an example
of an outcome game form with three outcomes and three players for which the Nash equilibria of the
associated games induce a continuum of probability distributions on outcomes for an open non-empty set
of utility profiles. Finally, we show that for outcome game forms with three players, each with at most
two strategies, generic finiteness of the number of probability distributions on outcomes induced by Nash
equilibria is obtained.

2 Outcome game forms

A (finite, pure) L-person outcome game form (on Ω) is defined by Govindan and McLennan (2001) as a
tuple (S1, . . . , SL, φ) such that, for all i ∈ {1, . . . , L}, Si is a finite nonempty set, and φ : S → Ω, where
Ω is a finite nonempty set (the set of outcomes) and S = S1 × · · · × SL. A profile u = (u1, . . . , uL) ∈
RΩ×· · ·×RΩ defines the associated finite L-person game gφu = (S1, . . . , SL, u1 ◦φ, . . . , uL ◦φ), where “◦”
denotes “composition”. Recall that a Nash equilibrium (NE) (x1, . . . , xL) of gφu is a completely mixed NE
(CMNE) if xi ∈ ∆+(Si) for all i = 1, . . . , L, where ∆+(Si) denotes the set of strictly positive probability
measures on Si.

We say that a subset of a Euclidean space is generic if it contains an open and dense subset of this
Euclidean space.

3 Distributions on outcomes and minimality for two-person out-
come game forms

Let (S1, S2, φ) be an outcome game form with two players, where S1 = {1, 2, . . . ,m}, S2 = {1, 2, . . . , n}
and S = S1 × S2. For each outcome ω ∈ Ω the mapping φ defines the m × n matrix φω with values in
{0, 1}, whose (r, s) entry is 1 if φ(r, s) = ω and 0 otherwise. For r ∈ S1, s ∈ S2 denote φrs = φ(r, s) ∈ Ω.
To each u ∈ RΩ we assign the matrix

M(u) =
∑
ω∈Ω

u(ω)φω.

Let u = (u1, u2) ∈ RΩ × RΩ. A pair of strategies (x, y) ∈ ∆(S1) ×∆(S2) is a Nash equilibrium (NE) if
xM(u1)y >Mi·(u

1)y and xM(u2)y > xM·j(u
2) for all i ∈ S1 and j ∈ S2, where throughout, for u ∈ RΩ,

Mi·(u) and M·j(u) denote row i and column j of the matrix M(u), xM(u) and M(u)y are regarded as
elements of Rn and Rm, and the scalar product of z and z′, z, z′ ∈ Rk, is written z · z′ or simply as
zz′. The strategies x ∈ ∆(S1) and y ∈ ∆(S2) of the players induce a probability distribution on Ω that
assigns the probability xφωy to the outcome ω ∈ Ω.

Let θ = (θω)ω∈Ω be the vector of |Ω| variables. Then, M [θ] =
∑
ω∈Ω θωφ

ω is a matrix the rs entry θrs
of which is θφ(r,s). Note that the matrix M [θ] determines the outcome game form φ in a trivial way by
setting φ(r, s) = θrs Hence, we identify the matrix M [θ] with the outcome game form (S1, S2, φ).

Let
V =

{
u ∈ RΩ : |{u(w) : w ∈ Ω}| = |Ω|

}
.

Then V is a generic subset of RΩ.

Kukushkin, Litan, and Marhuenda (2008) provide an example of an outcome game form with two players
in which, for a non-empty open set of utility profiles, there is a continuum of outcome distributions
induced by the Nash equilibria. In that example the first player has three strategies and the second
player has four strategies. The next theorem shows the example is minimal in terms of strategies.
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Theorem 3.1. If (S1, S2, φ) is a 2-person outcome game form such that

min{|S1|, |S2|} 6 2 or |S1| = |S2| = 3,

then there is a generic set W ⊆ RΩ such that for any u1, u2 ∈ W the set of CMNEs of the game gφu
induce finitely many probability distributions on outcomes.

Proof. We may assume that the rows of φ (that is, φr· = (φrs)s∈S2 , r ∈ S1) are pairwise distinct. Indeed,
for any utility profile in RΩ × RΩ the set of distributions on outcomes induced by (completely mixed)
Nash equilibria is not changed if multiple rows are eliminated. A similar assumption refers to the columns
of φ (that is, φ·s = (φrs)r∈S1 , s ∈ S2). Hence, we may assume without loss of generality that

|{φr· : r ∈ S1}| = m, |{φ·s : s ∈ S2}| = n, and m 6 n. (1)

Let (u1, u2) ∈ V × V. For (r, s) ∈ S1 × S2 denote urs = u2(φrs). We distinguish three cases.

Case 1: m = 1

As u2 ∈ V, any Nash equilibrium selects the unique arg maxs2∈S2 u
2(φ1s), and, hence a CMNE can only

exist if n = 1.

Case 2: m = 2

If there are s, s′ ∈ S2, s 6= s′, such that φ1s = φ1s′ , then let (x, y) be a Nash equilibrium. If u2 ∈ V, then
by (1) we may assume that u2(φ2s) < u2(φ2s′) so that ys = 0. Thus, (x, y) is not completely mixed and
there is nothing to prove in this subcase. Similarly, we may proceed if φ2s = φ2s′ . Therefore, we shall
now assume that

n = |{φrs : s ∈ S2}| for r = 1, 2. (2)

If n = 2, let W = {u ∈ V : h(u) 6= 0}, where h(θ) = θ11θ22 − θ12θ21 is a polynomial in |Ω| variables.
Notice that h 6= 0, by (1) and (2). Thus, the set W is generic and there exists at most one completely
mixed Nash equilibrium provided that u1, u2 ∈ W.

We now assume that n > 3. Define the polynomial f in |Ω| variables by

f(θ) = (θ11 − θ12)(θ21 − θ23)− (θ11 − θ13)(θ21 − θ22). (3)

Claim: If f(u2) 6= 0 then the game gφu has no CMNE.

If x is a mixed strategy of 1 such that 2 is indifferent between the payoff columns u·1, u·2, and u·3, then

x ·

 u11 − u12 u11 − u13 1

u21 − u22 u21 − u23 1

 = (0, 0, 1). (4)

We conclude that

det


u11 − u12 u11 − u13 1

u21 − u22 u21 − u23 1

0 0 1

 = 0.

Therefore f(u2) = 0 so that our claim has been proved.

Now the proof in this case can be completed. By (1) there exists s ∈ S2 such that φ1s 6= φ2s. By (2)
there exists s′ ∈ S2 \ {s} such that φ2s′ 6= φ1s so that we may assume without loss of generality that

φ11 6= φ21 and φ11 6= φ22. (5)

By (2) and (5),
φ11 /∈ {φ12, φ13, φ21, φ22}. (6)
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Let ω = φ11, ω ∈ Ω. Let u ∈ V such that f(u) = 0. For ε > 0 let uε ∈ RΩ differ from u only in as much
as uε(ω) = u(ω) + ε. If φ23 6= ω, then f(uε) = f(u) + ε(uε22 − uε23) = ε(u22 − u23) 6= 0. If φ23 = ω, then

f(uε) = ε(u22 + u12 − 2u11)− ε2.

Hence, we conclude that f 6= 0, so that W = {u ∈ V : f(u) 6= 0} is generic. By our claim, W has the
desired properties.

Case 3: m = n = 3

It suffices to describe a suitable generic set of utilities for player 2. We distinguish 2 cases.

(1) There exists i ∈ S1 such that φi1 = φi2 = φi3. We may assume that i = 3. Let u ∈ V. If
x′ is a completely mixed strategy of 1 such that 2 is indifferent between the columns, then let

x =
x′
{1,2}

x1+x2
∈ ∆+({1, 2}) and observe that (4) must hold. Also, we may assume that (2) holds,

because otherwise there exist two payoff columns that differ only in one coordinate so that a
completely mixed Nash equilibrium is ruled out. By (1) there exists ` ∈ S2 such that φ1` 6= φ2` so
that (5) may be assumed and the proof may be finished by literally copying the corresponding part
of the case m = 2.

(2) For any k ∈ S1, |{φk` : ` ∈ S2}| > 2.

Consider again the polynomial f defined in (3). If x is a mixed strategy that makes 2 indifferent
between all columns, then

x ·


u11 − u12 u11 − u13 1

u21 − u22 u21 − u23 1

u31 − u32 u31 − u33 1

 = (0, 0, 1). (7)

Claim: If the system of equations (7) has multiple solutions, then f(u2) = 0 and |{φk` : ` ∈ S2}| =
3, for every k ∈ S1.

As (7) has multiple solutions, the columns of the matrix are not linearly independent. Thus, there
exists z ∈ R3, z 6= 0, such that

u11 − u12 u11 − u13 1

u21 − u22 u21 − u23 1

u31 − u32 u31 − u33 1

 · z = (0, 0, 0).

By (7) we conclude that z3 = 0. Moreover, as u ∈ V, our assumptions imply that z1 6= 0 and,
similarly z2 6= 0. Hence, we may assume (after replacing z by z/z1 if necessary) that z1 = 1. Hence,
with λ = −z2, we have

u11 − u12 = λ(u11 − u13)

u21 − u22 = λ(u21 − u23) and

u31 − u32 = λ(u31 − u33).

Thus, f(u2) = 0. As by our assumption, one of these differences in each row is nonzero, all of them
are nonzero and we conclude that |{φk` : ` ∈ S2}| = 3 for all k ∈ S1 and the claim follows.

Now the proof can be completed. If, for any u ∈ V, (7) has one or no solution, then W = V has
the desired properties. In the other case, let u ∈ V such that (7) has multiple solutions. Hence,
|{φk` : ` ∈ S2}| = 3 for all k ∈ S1. By (1) we conclude that {φ1` : ` = 1, 2, 3} 6= {φ2` : ` = 1, 2, 3}
so that we may assume that φ11 6= φ2`, ` = 1, 2, 3. Let ε > 0 be small enough such that ũ ∈ U ,
where ũ is the utility function that differs from u only inasmuch as ũ(φ11) = u(φ11) + ε. Then
f(ũ) = f(u) +ε(u22−u23) 6= 0 so that f is not the zero polynomial. Thus, W = {u ∈ V : f(u) 6= 0}
is a generic set with the desired properties.
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4 Outcome game forms with three players

The first example of an outcome game form in which there is a continuum of distributions on outcomes
induced by the Nash equilibria of the associated games for an open non-empty set of utility profiles was
provided by Govindan and McLennan (2001). Their example had three players and six outcomes. On the
other hand, for any outcome game form with two outcomes they prove generic finiteness of the number of
Nash equilibrium outcome distributions, and González-Pimienta (2010) shows this generic finiteness for
two-person game forms with three outcomes. Finally, Kukushkin, Litan, and Marhuenda (2008) provide
an example of an outcome game form with two players and four outcomes in which there is a continuum
of outcome distributions induced by the Nash equilibria of the associated games for an open non-empty
set of utility profiles. Thus, it is natural to ask if four is the minimum number of outcomes needed to
construct outcome game forms which do not generically have finitely many distributions on Ω induced by
Nash equilibria. However, the next example shows that the results in González-Pimienta (2010) cannot
be extended to three players. That is, a three-person game form with three outcomes a, b, and c may
allow a continuum of outcome distributions induced by Nash equilibria for an open non-empty set of
utility profiles.

In Section 4.2 we show the generic finiteness for outcome game forms with three players, each with at
most two strategies.

4.1 An example with three players and three outcomes

Let Ω = {a, b, c}, S1 = {N,E, S,W}, S2 = {L,R} and S3 = {U,D}. We use the notation of Section 3 of
Govindan and McLennan (2001) and consider the game form

U D

L R L R

N

E

S

W


a a

b b

a c

b a


N

E

S

W


c c

a a

a c

b a


so that player 1 selects the row, player 2 the column, and player 3 the matrix. Moreover, for i ∈ {1, 2, 3},
ai = ui(a), bi = ui(b), and ci = ui(c). If ai > max{bi, ci} for all i ∈ {1, 2, 3}, then we may define, for any
p with 0 6 p 6 t := a3−b3

2a3−b3−c3 , the strategy profile X(p) = ((p, q, r, s), (y, 1− y), (z, 1− z)) by

z =
a1 − c1

2a1 − b1 − c1
= y; (8)

q =
a3 − c3
a3 − b3

p; (9)

r =

(
1−

(
2a3 − b3 − c3
a3 − b3

)
p

)
a2 − b2

2a2 − b2 − c2
; (10)

s =
a2 − c2
a2 − b2

r. (11)

It is straightforward to show that X(p) is a Nash equilibrium that induces the payoff
a21−b1c1

2a1−b1−c1 for the
row player. Let π2(p) denote the payoff of the column player. We may easily compute

π2(0) =
a2

2 − b2c2
2a2 − b2 − c2

and

π2(t) =
(a3 − b3)((a1 − c1)a2 + (a1 − b1)c2) + (a3 − c3)((a1 − c1)b2 + (a1 − b1)a2)

(2a3 − b3 − c3)(2a1 − b1 − c1)

5



so that π2(0) 6= π2(t) for a nonempty open subset of utility profiles. Moreover, if π2(0) 6= π2(t), then
by continuity of π2 : [0, t] → R, there is a continuum of payoffs of the column player induced by the
completely mixed Nash equilibria X(p), 0 < p < t. A similar statement is valid for the matrix player.

On the other hand, we show in Section 4.2 that if each of the players has at most two strategies, generically
the number of probability distributions on outcomes induced by the Nash equilibria of the game is finite.

4.2 Outcome game forms with three players and two strategies each

Let Ω be the finite non-empty set of outcomes. We consider an outcome game form (S1, S2, S3, φ)
with three players and two strategies each, i.e., we assume that S1 = S2 = S3 = {1, 2}. Let (θω)ω∈Ω

be the vector of |Ω| variables and (θ`ω)(ω∈Ω,`∈{1,2,3}) be the vector of 3|Ω| variables. We denote by

θijk = θφ(i,j,k), θ
`
ijk = θ`φ(i,j,k). Let R[(θω)ω∈Ω] denote the ring of real polynomials in the |Ω| variables

and let R[(θ`ω)ω∈Ω,`∈{1,2,3}] denote the ring of real polynomials in 3|Ω| variables.

For any finite F ⊆ R[(θ`ω)ω∈Ω,`∈{1,2,3}], let UF be defined by

UF = {u ∈ RΩ × RΩ × RΩ : f(u) 6= 0 ∀f ∈ F \ {0}}.

Note that UF is an open and dense subset of (RΩ)3.

Now we are able to prove the following main result of this section.

Theorem 4.1. For any three-person pure outcome game form (S1, S2, S3, φ) with S1 = S2 = S3 = {1, 2}
there is a generic set U of utility profiles such that, for any u = (u1, u2, u3) ∈ U , the set of CMNEs of
the game gφu induce finitely many probability distributions on outcomes.

Proof. We may assume that the number of CMNEs is not generically finite. Also, by Theorem 3.1, we
may assume that none of the players i = 1, 2, 3 is a dummy, where i is dummy if φ is invariant under
any permutation of Si. Hence, by renaming the players if necessary, we assume that, for each utility
profile u = (u1, u2, u3) in an open and nonempty subset Y of RΩ × RΩ × RΩ, there are infinitely many
completely mixed strategies for player 1 that may be extended to CMNEs by suitably chosen strategies
of the remaining players.

It suffices to show that there exists a finite F ⊆ R[(θ`ω)ω∈Ω,`∈{1,2,3}] such that, for any u ∈ UF ∩ Y, the
set of probability measures on Ω induced by CMNEs is finite.

Let u = (u1, u2, u3) ∈ RΩ×RΩ×RΩ and let ((x1, x2), (y1, y2), (z1, z2)) be a CMNE. Define the polynomial
H ∈ R[(θω)ω∈Ω] by

H =

2∑
i,j,k=1

θijkxiyjzk.

The probability of each outcome is its coefficient in the polynomial H. Let x = x1, x2 = 1 − x, y =
y1, y2 = 1− y, z = z1, z2 = 1− z. The polynomial H may be written as

H = Axyz +Bxy + Cxz +Dyz − Ex− Fy −Gz + θ222.

where A, . . . , G ∈ R[(θω)ω∈Ω] are defined by

A = θ111 − θ121 − θ112 + θ122 − θ211 + θ221 + θ212 − θ222,

B = θ112 − θ122 − θ212 + θ222,

C = θ121 − θ122 − θ221 + θ222,

D = θ211 − θ212 − θ221 + θ222,

E = θ222 − θ122,

F = θ222 − θ212,

G = θ222 − θ221.

(12)
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Note that A, . . . , G are polynomials in R[(θω)ω∈Ω] with coefficients x(u), y(u), z(u) which depend on
u1, u2, u3. For i ∈ {1, 2, 3}, each of the polynomials A, . . . , G may be identified with a polynomial Ai in
R[(θiω)ω∈Ω] by formally replacing the variable θω with the variable θiω. Note that with this identification,
Ai 6= Aj for i 6= j, since Ai and Aj are defined on a different sets of variables. Defining ai = A(ui), . . . , gi =
G(ui) we have the equations

a1yz + b1y + c1z = e1; (13)

a2xz + b2x+ d2z = f2; (14)

a3xy + c3x+ d3y = g3. (15)

By (13) and (15),
y(a1z + b1) = e1 − c1z and y(a3x+ d3) = g3 − c3x

so that
(e1 − c1z)(a3x+ d3) = (a1z + b1)(g3 − c3x). (16)

By (14), z(a2x+ d2) = f2 − b2x and, by (16),

z(x(a3c1 − a1c3) + a1g3 + c1d3) = x(a3e1 + b1c3) + d3e1 − b1g3.

We conclude that

(x(a3c1 − a1c3) + a1g3 + c1d3)(f2 − b2x) = (x(a3e1 + b1c3) + d3e1 − b1g3)(a2x+ d2)

so that, with

r = a1b2c3 − a3b2c1 − a2a3e1 − a2b1c3,

p = a3c1f2 + a2b1g3 − a1c3f2 − a1b2g3 − b2c1d3 − a3d2e1 − b1c3d2 − a2d3e1,

q = a1f2g3 + c1d3f2 + b1d2g3 − d2d3e1,

(17)

we have
rx2 + px+ q = 0. (18)

Let P,Q,R ∈ R[(θ`ω)ω∈Ω,`∈{1,2,3}] be the polynomials that correspond to p, q, r, that is,

R = A1B2C3 −A3B2C1 −A2A3E1 −A2B1C3,

P = A3C1F2 +A2B1G3 −A1C3F2 −A1B2G3 −B2C1D3 −A3D2E1 −B1C3D2 −A2D3E1,

Q = A1G3F2 + C1D3F2 +B1D2G3 −D2D3E1.

(19)

We now define the set F ⊆ R[(θ`ω)ω∈Ω,`∈{1,2,3}] as follows: F consists of all polynomials of the form

P,Q,R, αi, αiβj ± αjβi, α1β2γ3 + α2β3γ1 with α, β, γ ∈ {A, . . . , G} and i, j ∈ {1, 2, 3}, i 6= j.

Note that F is finite and it contains all polynomials that are explicitly used in the present proof.

We now assume that u = (u1, u2, u3) ∈ UF ∩ Y so that there are infinitely many, hence at least three,
values of x that can be extended to a CMNE. By (18), p = q = r = 0. Therefore P,Q,R ∈ F implies
that P = Q = R = 0. We distinguish the following cases:

Case 1: A = 0. The system of equations (13), (14) and (15) is linear. The determinant of the associated
matrix is b1c3d2 + b2c1d3. There is more than one solution if and only if this determinant vanishes. As
B1C3D2 +B2C1D3 ∈ F , we conclude that B1C3D2 +B2C1D3 = 0 so that, in particular, BCD+BCD =
2BCD = 0. As the cases C = 0 and D = 0 can be treated similarly, we only consider the case B = 0.
Then the system (13) – (15) becomes

c1z = e1;

d2z = f2;

c3x+ d3y = g3.
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If C = 0, then E1 ∈ F implies that E1 = 0. As A = 0, player 1 would be a dummy which was excluded.
Similarly, if D = 0, F2 ∈ F implies that F2 = 0, i.e., player 2 would be a dummy which was also excluded.
Hence, C 6= 0 6= D. As z > 0, the first two equations together with C1, E1, D2, F2, E1D2 − C1F2 ∈ F
imply that E1, F2 6= 0 and E1D2 − C1F2 = 0. From this, it follows that

f2

d2
=
e1

c1
= k

and so F = kD and E = kC. Thus, we have z = k so that z is uniquely determined. The polynomial
H becomes H = Cxz + Dyz − Ex− Fy −Gz + θ222 = θ222 −Gz = θ222 −GE/C, and the distribution
induced on outcomes is unique.

Case 2: A 6= 0. If B = 0 or C = 0, then E = 0 as well because R = 0 and A2, A3, E1 ∈ F . By (13), the
case B = C = 0 cannot occur because A1 ∈ F .

(1) We first consider the subcase B = E = 0. As z > 0, y 6= 0, and A1 ∈ R, (13) implies that
a1y + c1 = 0 so that C 6= 0 and y is uniquely determined. As P = 0, (A3C1 − A1C3)F2 = 0, and,
as Q = 0, (A1G3 +C1D3)F2 = 0. If F = 0, then, by (14), a2x+ d2 = 0 (because z 6= 0) so that x is
uniquely determined which was excluded. Hence, A3C1 = A1C3 and A1G3 +C1D3 = 0. As C 6= 0,
there exists k ∈ R \ {0} such that A = kC. Moreover, we have that D = −kG.

Now, from (13), we have that 0 = a1y + c1 = (ky + 1)c1. Since c1 6= 0, we obtain ky + 1 = 0.
Using that A = kC, it follows that Ay = kyC = −C. Substituting in (15), we obtain G = yD.
The polynomial that determines the probabilities on outcomes becomes H = Axyz+Cxz+Dyz−
Fy −Gz + θ222 = −Cxz + Cxz +Gz − Fy −Gz + θ222 = θ222 − Fy and the distribution induced
on outcomes is unique.

(2) The case C = E = 0 may be treated analogously to the former case.

(3) BC 6= 0. We first claim that either A = kB or A = kC, for some k ∈ R. Since R = 0, we have that
B2(A1C3 − A3C1) = A2(A3E1 + B1C3). If A1C3 − A3C1 = 0 we conclude that A = kC for some
k ∈ R, and the claim follows. Otherwise, we have that

A2 = B2
a1c3 − a3c1
a3e1 + b1c3

and it follows that A = kB for some k ∈ R. By our claim the following cases might occur:

(3.1) There exists k 6= 0 such that A = kB. Substituting this expression into B2(A1C3 − A3C1) =
A2(A3E1 +B1C3) we obtain C1 = −kE1. Hence, C = −kE. From (12) we may conclude that
k ∈ {−1,−2}. Then,

P = k(kF2 +D2)(B1E3 −B3E1),

Q = (kF2 +D2)(B1G3 −D3E1),

and the following subcases may occur:

i. kF2 +D2 = 0: Then kF +D = 0. Equations (13) and (14) become

b1y(1 + kz) = e1(1 + kz);

b2x(1 + kz) = f2(1 + kz).

If b2x = f2, then x is unique. Thus, from equation (14), we obtain that 1 + kz = 0. It
follows that Az = kBz = −B and

H = −Bxy +Bxy − kExz − kFyz − Ex− Fy −Gz + θ222 = θ222 −Gz.

ii. kF2 + D2 6= 0: Then B1E3 − B3E1 = 0 and B1G3 −D3E1 = 0. From B 6= 0 we obtain
that E = mB. We consider the following subcases:
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A. D = 0. Then, from B1G3−D3E1 = 0 and B 6= 0, we obtain that G = 0. Equation (15)
becomes x(b3y − e3) = 0 and since 0 < x < 1 we get b3y = e3, that is, b3y = mb3, i.e.
y = m. Then, H = mkBxz +mBx−mkBxz −mBx−mF + θ222 = θ222 −mF .

B. D 6= 0. As B1G3 − D3E1 = 0 there exists ` ∈ R such that E = `B and G = `D.
Hence, ` = m. Moreover, Equation (13) becomes y(1+kz) = m(1+kz). If 1+kz 6= 0,
then m = y. Therefore,

H = kmBxz +mBx− kmBxz +mDz −mBx− Fm−mDz + θ222 = θ222 − Fm

so that the distribution is unique. If 1 + kz = 0, then k = −2 because k ∈ {−1,−2}
and 0 < z < 1. Hence, z = 1/2 and (15) becomes 2xb3(m − y) = d3(m − y). Now,
C = 2E 6= 0 implies that ω := θ222 = θ121 6= θ122 = θ221 =: ω′. We conclude that
B = E or B = 2E, i.e., m = 1 or m = 1/2, and claim that B = E cannot occur.
Assume, on the contrary, that B = E. Then ω′′ := θ112 = θ212. As m = 1, D = G
implies that θ211 = θ212 = ω′′. As A = −2B, we conclude that

A+B = θ111 − ω − ω′′ + ω = −B = ω′ + ω′′ − ω′′ − ω

so that θ111 = ω′′. Therefore F = D and, hence (13) becomes d2/2 = d2. As D 6= 0
and D ∈ F , the desired contradiction has been obtained.
If B = 2E, then θ112 = ω and θ212 = ω′. Moreover, A = −2B implies θ211 = ω and
θ111 = ω′. Therefore we also have that D = 2F . Hence,

H = −Bxy +Bxy +mBx+ Fy −mBx− Fy − G

2
+ θ222 = θ222 −

G

2
,

and the distribution is unique.

(3.2) The case that A = kC may be treated similarly.
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