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Abstract

We consider a class of three-player queuing games where players independently choose

when to arrive at a bottleneck facility that serves only one at a time. Players are

impatient for service but cannot arrive before the facility opens and they dislike time

spent in queue. We derive the equilibrium arrivals under the first-in-first-out (FIFO),

last-in-first-out (LIFO), and service-in-random-order (SIRO) queue disciplines and

compare these equilibrium predictions to outcomes from a laboratory experiment.

LIFO provides higher equilibrium welfare than FIFO and SIRO since the players arrive

such that lower congestion is induced. Experimental evidence confirms that employing

different queue disciplines indeed affects the strategic behavior of players and thereby

the level of congestion. The experimental participants do not, however, behave as

prescribed by the equilibrium predictions. They obtain significantly higher welfare

than prescribed by equilibrium under all queue disciplines. Our results moreover

suggest that people perceive LIFO as the most unfair of the three disciplines although

the theoretical results suggest that it is welfare optimal.
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1 Introduction

In many everyday situations, we spend time in a queue waiting to be served. Examples

range from small-scale situations, such as patients showing up at a walk-in clinic after

opening time where pre-booking appointments is not possible, to large-scale situations,

such as American citizens applying for ObamaCare (the Affordable Care Act) through the

federal online marketplace. The inefficiencies brought about by such bottlenecks where

agents fail to coordinate their time of arrivals often create congestion and therefore time

spent queuing.

This paper considers a discrete queuing game, where players choose when to arrive for

service after the opening of a bottleneck facility. The players want to be served as early

as possible and spend minimal time in the queue. With limited service capacity at the

bottleneck, the optimal arrival strategy depends on the arrival of the other players since

congestion causes service delays and therefore longer queuing time. The strategic behavior

within queuing games is often analyzed by their resulting equilibrium arrival pattern.

However, from the perspective of social welfare maximization, these equilibrium arrivals

may not provide the welfare optimal solution (viz., no queuing time) since players seek to

maximize their own utility without regard for the others’ welfare (see Hassin and Haviv,

2003 for an excellent review of a sizeable part of this literature). Thus, social planners

should take such behavior into consideration and design queuing systems such that their

procedural characteristics induce optimal strategic behavior.

The existing literature has mostly focused on the first-in-first-out (FIFO) queue dis-

cipline in games with strategic arrivals (e.g., Vickrey, 1969; Glazer and Hassin, 1983;

Arnott et al., 1999; Hassin and Kleiner, 2011 and references therein). However, while

FIFO is intuitively fair and acceptable to most players, it may not be the optimal way of

settling a queue (Hassin, 1985). As queue disciplines govern the service priority of arrived

players, they influence the strategic incentives for arrival. In recent years, the role of the

queue discipline has received increasing attention in the literature. de Palma and Fosgerau

(2013) consider a bottleneck model with a continuum of risk-averse agents and show that

all stochastic disciplines that give priority to early arrivals (to a vanishing degree) pro-

vide the same equilibrium welfare. Platz and Østerdal (2012) study a class of queuing

games with a continuum of players and no possibility of queuing before opening time, and

show that the FIFO discipline induces the worst Nash equilibrium in terms of equilibrium

welfare while the last-in-first-out (LIFO) queue discipline induces the best.

Motivated by these findings, we theoretically and experimentally analyze the strate-

gic behavior of players, social welfare, and the players’ fairness perceptions in a discrete

queuing game using three different queue disciplines. Specifically, to create a theoreti-

cal benchmark for our experimental analysis, we first derive pure and (symmetric) mixed

strategy Nash equilibrium arrivals in a three-player, discrete-time queuing game under

three well-known queue disciplines: FIFO, LIFO, and service-in-random-order (SIRO),

and compare the quantitative differences between the corresponding equilibrium welfare
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levels. In our theoretical analysis we establish results for general values of the model

parameters. Subsequently, we experimentally test our behavioral predictions and welfare

properties for specific parameter values. We restrict our attention to three-player queuing

games to enforce computational simplicity in establishing the general equilibrium arrivals,

and to obtain more experimental game repetitions for a given pool of participants.

A first glance at the results: First, our experimental analysis shows that queue disci-

plines affect strategic behavior differently. That is, the arrival patterns differ substantially

between the queue disciplines. Secondly, independent of the queue discipline, subjects

largely do not behave in accordance with what is predicted by our theoretical equilibrium

analysis. For all queue disciplines, the arrival distributions differ significantly from the pre-

dicted equilibrium distributions. Third, despite the fact that LIFO theoretically provides

the highest welfare given the specific parameters used in the experiment, the welfare pro-

vided by LIFO in our experiment is not significantly different from that provided by FIFO

and SIRO. Lastly, notwithstanding deviations from individual optimizing behavior, across

all queue disciplines subjects’ expected payoffs are higher in our experiment compared to

our theoretical equilibrium predictions. The reason why subjects successfully outperform

the equilibrium in regards to expected payoff is that they reduced the expected queuing

time by leveling out their arrivals. Compared to the equilibrium predictions, subjects

arrived later and thereby reduced congestion.

The paper is organized as follows: Section 2 presents related literature. Section 3

introduces the queuing game and model assumptions. Section 4 establishes and compares

the equilibrium arrivals under each queue discipline. Section 5 introduces the experimental

design and hypothesis for testing. Section 6 presents the experimental results. Section 7

interprets and discusses the results. The supplement contains proofs and other technical

material.

2 Related Literature

Queuing problems have been analyzed by economists and operations researchers for decades

and explored for various types of queuing systems (see e.g. Hall, 1991, and Hillier, 1990,

for surveys on operations research literature and Small and Verhoef, 2007 for urban trans-

portation literature).

Our model setup is related to the classical bottleneck model of Vickrey (1969) that

models congestion arising at a bottleneck in the context of morning commute and trip tim-

ing. The model assumes that a single bottleneck, open at all times, serves a non-atomic set

of commuters. Delay occurs when the traffic flow exceeds the capacity of the bottleneck.

Each commuter has a preferred time to pass the bottleneck. There is a cost for arriving ear-

lier than desired, and a cost for a late arrival. The original model was further analyzed and

extended by Arnott et al. (1993), Ostubo and Rapoport (2008), de Palma and Fosgerau

(2013) and others (see, e.g. references within de Palma and Fosgerau, 2011).

The model and experimental design presented in this paper have not been studied
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in this specific form; however, it draws similarities to previous studies. Rapoport et al.

(2004) considered a closely related discrete-time model of a queuing system with pre-

specified opening and closing times, a fixed number of players, fixed service time, service

through FIFO, and no early arrivals. The authors assume that when an agent arrives

for service he must stay in the queue until either the service is completed or the facility

closes, whichever comes first. They define a payoff structure with a common reward

for completing the service and a common cost that increases in proportion to the time of

waiting. The paper contains numerical mixed strategy solutions for the equilibrium arrival

pattern under two selected sets of parameters, which differ in capacity of service for the

facility. They report the results of an experimental study with 20 players for a fixed set

of parameter values. They find strong support for mixed strategy equilibrium play on the

aggregate but not individual level. A companion paper, Seale et al. (2005), studies the

same queuing model but allows for early arrivals. The paper computes mixed strategy

equilibrium solutions for two selected sets of parameters and verifies them experimentally.

The experimental results indicate convergence to equilibrium with experience in playing

the game.

This paper differs in a number of important dimensions. First, we explore the welfare

implications when employing different queue disciplines within a similar queuing game,

while the aforementioned studies establish the strategic behavior and efficiency under

FIFO. Second, we consider player utility influenced by two cost factors: impatience for

service and queuing time. While the mentioned experimental studies only consider costs

of queuing time, other theoretical studies have considered similar cost factors as our paper

(e.g. Jain et al., 2011 and Juneja and Shimkin, 2013). Third, we motivate our choice of

experimental parameter values based on general predictions of both pure and symmetric

mixed strategy equilibrium solutions under all parameter values. Finally, we address

fairness perceptions associated with assigned queue disciplines.

3 The Queuing Game

The queuing game consists of three players N = {A,B,C} who must be served by a

single service facility. The facility is open for arrivals within a finite set of periods T =

{0, 1, 2, ..., k} where 0 denotes the opening period and k > 2 the latest possible arrival

period. The facility is only able to serve one player at each period t ∈ T . Regardless of

when the players will arrive, they are admitted to the queue and the facility will complete

their service as quickly as possible. Note that the earliest feasible period by which all

players can be served is period 2.

Arrival Strategies. Each player i ∈ N must simultaneously and independently choose

a (mixed) arrival strategy αi ∈ ∆(T ) where ∆(T ) is the set of probability distributions

over the service periods T . For clarity, we will refer to ai ∈ T as a pure strategy arrival of

player i. Let αi(ai) denote the probability that arrival strategy αi assigns to ai ∈ T and
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define the support of αi to be the set of pure strategy arrivals for which αi(ai) > 0. We

refer to α = (αj)j∈N as a mixed strategy arrival profile where α ∈ ×j∈N∆(T ). Moreover,

let α−i denote the list (αj)j∈N\{i} of arrivals in profile α for all players except i. Of course,

any pure strategy arrival ai can be considered as a mixed strategy that assigns probability

1 to ai and probability 0 to all other strategies. Let e(ai) denote such a degenerate mixed

strategy. We refer to a = (aj)j∈N ∈ ×j∈NT as a pure strategy profile.

For analytical convenience, we apply additional notation to describe the arrival char-

acteristics within a strategy profile. First, let an arrival distribution describe a realized

arrival periods of a strategy profile α. We define the arrival distribution as the number

of arriving players at each period from the opening at period 0 until the last player has

arrived. For example, [2, 1] denotes an arrival distribution with two realized arrivals at

period 0 while one at period 1, and similarly, [0, 1, 0, 2] denotes an arrival distribution with

one realized arrival at period 1 while two at period 3. Note that one arrival distribution

can be induced by multiple strategy profiles. Second, for any (symmetric) mixed strategy

profile, we sometimes explicitly indicate every pure strategy in support of the profile. For

example, if α′ assigns positive probabilities to period 0 and 2, we denote the profile by

α{0,2}, whereas if α′′ assigns positive probabilities to period 0, 1, and 2, we denote the

profile by α{0,1,2}.

Queue Discipline. Suppose for some period t that more players arrive at the facility

than can be handled. In this case, congestion arises and some players will have to wait

until service capacity becomes available.

A queue discipline governs the service priority of the players within the queue. In

this paper we consider three disciplines: FIFO, LIFO, and SIRO. We refer to these as

the classical queue disciplines. The disciplines are characterized by assigning different

priorities to service order: FIFO prioritizes service to players in order of first arrivals,

LIFO prioritizes players in order of latest arrivals, while SIRO services players randomly

with no regard to order of arrivals. As players choose arrivals in discrete time, the queuing

game allows for simultaneous arrivals of players (also referred to as ties). In this case,

the players are served with equal probability in accordance to the priority of the queue

discipline. For example under FIFO, those who arrive simultaneously are served uniformly

over a number of periods until all are served. Under LIFO, however, the players are served

uniformly as long as there are no later arrivals. If later arrivals do occur, these arrivals are

prioritized for service and the earlier arriving players will not be served before capacity

becomes available. Lastly, under SIRO, players are served randomly independent of arrival.

The classical queue disciplines are all work-conserving.1

Each queue discipline induces a probability mass function, Sit, which measures the

probability that player i is served at period t given an arrival distribution.

1A queue discipline is work-conserving if the server is never idle when the queue is not empty (see
Hassin and Haviv, 2003).
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Player Preferences We assume that the players have identical preferences. Each player

wishes to be served as early as possible, while minimizing the time spent waiting in the

queue. Specifically, we let each player have an initial utility endowment γ, an impatience

cost ωt for being served at period t, and a queuing cost δ(t− ai) for waiting in the queue

since arrival ai. To capture such preferences, we define a player’s utility ui as:

ui = γ − ωt− δ(t− ai) (1)

where γ, ω, δ > 0 are positive constants. Let θ = δ/ω denote the relative queuing cost.

As the service period is (generally) stochastic, we assume that each player aims to

maximize her expected utility of (1) with respect to the arrival strategy αi. Let the

expected utility of player i under profile α be denoted EUi [Sit(α)]. Given the players’

preferences specified in (1), the expected utility can be characterized as EUi [Sit(α)] =∑
ai∈T αi(ai)EU [Sit (e(ai), α−i)] =

∑
ai∈T αi(ai)E[γ−ωt−δ(t−ai)] which can be rewritten

as

EUi [Sit(α)] =
∑
ai∈T

αi(ai) (γ − ωE [t]− δE [t− ai]) (2)

where E [t] denotes the expected service time and E [t− ai] the expected queuing time for

player i which are induced by the probability mass function Sit(α).

Equilibrium Arrivals. We analyze how specific queue disciplines provide different ar-

rival incentives by comparing their corresponding Nash equilibrium solutions. For any

queue discipline, let a Nash equilibrium profile be an arrival profile α∗ = (α∗i , α
∗
−i) with

the property that for every i ∈ N we have

EUi
[
Sit(α

∗
i , α
∗
−i)
]
≥ EUi

[
Sit(αi, α

∗
−i)
]

for all αi ∈ ∆(T ) (3)

Thus, no player can (strictly) improve his expected utility by a unilateral arrival deviation.

Let Φα∗ =
∑

iEUi denote the expected equilibrium welfare of any Nash equilibrium profile.

Moreover, we refer to an arrival distribution induced by a pure strategy Nash equilibrium

profile as an equilibrium arrival distribution.

Lastly, let player i’s best response function Bi(α−i) be the set of best arrivals given α−i,

thus Bi(α−i) = {αi ∈ ∆(T ) : EUi [Sit(αi, α−i)] ≥ EUi [Sit(α
′
i, α−i)] for all α′i ∈ ∆(T )}. A

Nash equilibrium arrival is an arrival profile α∗ for which α∗i ∈ Bi(α∗−i) for all i ∈ N .

The maximum welfare is the arrival profile that provides no queuing time for any

player, i.e. the profiles providing the arrival distribution [1, 1, 1]. However, as players are

interested in maximizing their own utility, the equilibrium profile might provide longer

queuing times than the optimal as shown in the next section. Let C =
∑

iEi [t− ai]
denote the total queuing time which measures the sum of expected queuing times for all

players under any pure strategy profile. Intuitively, C measures how the efficiency of a

system degrades due to the selfish behavior of its players and coordination issues.
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4 Equilibrium Analysis

This section presents the pure and mixed strategy Nash equilibrium arrivals under each

of the classical queue disciplines and compares their corresponding equilibrium welfare

properties. Section 4.1 describes the analytical method for finding the Nash equilibrium

arrivals. Section 4.2 presents the existing equilibrium arrival profiles, their corresponding

equilibrium welfare, and the conditions under which they are unique.

4.1 Method

We determine the equilibrium arrivals by exploring the players’ best responses and estab-

lish properties that any equilibrium profile must satisfy (both generally and specific to the

queue discipline). Subsequently, we find arrival profiles that satisfy these properties and

prove for which relative queuing costs, θ, every such profile is a Nash equilibrium. In the

pure strategy analysis, we establish equilibrium arrival distributions rather than individ-

ual equilibrium profiles. This is done to conjoin similar welfare outcomes since an arrival

distribution provides the same equilibrium welfare as each of its underlying arrival profile

permutations. For the mixed strategy analysis, we consider symmetric equilibrium profiles

and restrict the analysis only to consider profiles where each player at most randomizes

over period 0, 1, and 2. Appendices A.1 and A.2 contain the detailed analysis and proofs

used to determine the pure and mixed strategy equilibrium profiles, respectively.

4.2 Results

The queuing game provides various equilibrium profiles depending on θ. We outline the

existence and uniqueness of pure and symmetric mixed strategy equilibrium profiles and

establish the welfare properties across the queue disciplines.

Existence: Table 1 reports the Nash equilibrium profiles under each queue discipline

given the relative queuing cost. The equilibrium profiles are illustrated by rows and

intervals of θ by columns. A queue discipline is stated at the intersection in which the

equilibrium profile exists. All pure strategy equilibrium profiles are represented by arrival

distributions (rows 1-5) while the symmetric mixed strategy profiles by their supported

periods (rows 6-8). Table 1 shows that all queue disciplines provide at least one pure or

symmetric mixed equilibrium profile for any θ. LIFO is the only discipline that provides

both a pure and a mixed equilibrium profile for all θ. There exist no non-degenerated

symmetric mixed equilibrium under FIFO and SIRO for θ < 1 due to strategic dominance

of the pure strategy equilibrium profile [3]. Likewise, FIFO and SIRO provide no pure

strategy equilibrium for 1 < θ < 3 and 1 < θ < 5
3 , respectively.

Uniqueness: Comparing the coexistence of pure and symmetric strategy equilibrium

profiles, Table 1 shows that LIFO do not provide a unique equilibrium profile since there,

at least, exists both a pure and symmetric mixed equilibrium for any θ > 0. Conversely,

FIFO and SIRO provides the unique pure strategy equilibrium profile [3] for any θ ∈ [0, 1)

7



Relative queuing cost θ
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[2, 0, 1]
FIFO
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LIFO
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[3]
FIFO FIFO
SIRO SIRO

α{0,1} LIFO LIFO LIFO

α{0,2} FIFO FIFO FIFO FIFO FIFO

α{0,1,2} SIRO
SIRO SIRO SIRO

SIRO

LIFO LIFO LIFO
LIFO
FIFO

Table 1: Equilibrium Profiles under FIFO, LIFO, and SIRO

E
q
u

il
ib

ri
u

m
p

ro
fi

le
s

while it provides multiple equilibria for θ ≥ 1.

Welfare properties: With the existence of multiple equilibrium profiles, we cannot es-

tablish a coherent welfare ordering of the queue disciplines for all values of θ. Nevertheless,

we obtain insights into the welfare ordering by analyzing the best and worst case equi-

librium welfares of the existing equilibrium profiles. That is, comparing the equilibrium

profiles under each discipline that provide the highest and the lowest expected welfare, re-

spectively. Figure 1 depicts the best and worst case equilibrium welfare under each queue

discipline given the relative queuing cost θ. The equilibrium welfare Φa∗ is indexed and

thus illustrates the rank-orders of the queue disciplines for any set of parameter values.

The best case equilibrium welfare under LIFO is induced by [2, 1] for θ ∈ [0, 1) and

[1, 1, 1] for θ ≥ 1, whereas the worst case is induced by α{0,1} for θ ∈ [0,
√

2] and α{0,1,2}

for θ >
√

2. Under FIFO, the best case is induced by [3] for θ ∈ [0, 1), [2, 0, 1] for θ = 1,

α{0,2} for θ ∈ (1, 3), and [1, 1, 1] for θ ≥ 3, whereas the worst case is induced by [3] for

θ ∈ [0, 1), α{0,2} for θ ∈ [1, 1 + 2
√

2], and α{0,1,2} for θ > 1 + 2
√

2. Lastly under SIRO,

0 1 2 3 4 5 6 θ

Φα∗

LIFO (best)

LIFO (worst)

SIRO (best)

SIRO (worst)

FIFO (best)

FIFO (worst)

Figure 1: Best and Worst Case Equilibrium Welfare across queue disciplines
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the best case is induced by [3] for θ ∈ [0, 1), [2, 0, 1] for θ = 1, α{0,1,2} for θ ∈ (1, 5
3), and

[1, 1, 1] for θ ≥ 5
3 , whereas the worst case is induced by [3] for θ ∈ [0, 1) and α{0,1,2} for

θ ≥ 1.

Figure 1 shows that both LIFO’s best and worst case equilibrium welfare are strictly

higher than FIFO and SIRO’s best case equilibrium welfare for θ ∈ [0, 1)∪ (1, 5
3), whereas

they are strictly higher than FIFO’s for θ ∈ [0, 1) ∪ (1, 3). Moreover, SIRO’s best and

worst case equilibrium welfare is strictly higher than FIFO’s for θ ∈ (1, 3). Lastly, for

all θ, LIFO’s worst case equilibrium is strictly higher than FIFO and SIRO’s worst case

equilibrium, whereas LIFO’s best case equilibrium is at least as high as FIFO and SIRO’s

best case equilibrium.

To summarize, the queue discipline affects the incentives of arrival and thus the corre-

sponding equilibrium welfare. For lower relative queuing costs
(
θ ∈ [0, 1) ∪ (1, 5

3)
)
, LIFO

generally provides the strictly highest equilibrium welfare among the classical disciplines.

Intuitively, LIFO gives players an incentive to smoothen arrivals since the later arrival is

prioritized. Conversely, FIFO provides players the incentive to arrive immediately and

therefore causes higher congestion, hence lower welfare. For some relative queuing costs

(θ ∈ (1, 3)), SIRO provides strictly higher welfare than FIFO and thus provides more

smoothing incentives than FIFO (however, still less so than LIFO). To some extent, these

welfare properties draw similarities to those of Platz and Østerdal (2012) for a continuum

of players.

5 Experimental Design

We construct an experimental environment mirroring the theoretical queuing game pre-

sented above to evaluate whether the behavior of subjects in our experiment adheres

to the theoretical predictions. Specifically, we concentrate on whether people’s behavior

corresponds to our equilibrium predictions and analyze the causes of observed deviations.

5.1 Experimental Procedures

Our experimental setup consists of groups of three subjects that need to be served through

a single service facility. The facility becomes active for service at period 0 and can only

serve one subject per period. In the experiment, each subject must simultaneously and

independently choose an arrival period ai ∈ {0, 1, 2, ..., k} given a preannounced use of

queue discipline being FIFO, LIFO or SIRO. When the arrival ai is chosen, each subject

is unable to perform any other actions until they receive service at period t.

The subjects have the same payoff function represented by the utility function (1) and

we let the model parameters be given by γ = 480, ω = 50, and δ = 40. The payoff

function πi for each subject i is thus πi = 480− 50t− 40(t− ai) for arrival ai and service

period t. Given that θ = δ/ω = 4/5, the experimental environment is characterized by

subjects having slightly higher marginal cost of impatience than queuing time. To avoid
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the possibility of negative payoffs, we restrict the choice of arrivals such that k = 6.

Given the stated parameter values, this restriction does not affect the strategic behavior

of subjects since any arrival later than period 6 is strictly dominated by arrivals within

period 0 through 3. Table 2 reports the corresponding predictions prescribed by the pure

and symmetric mixed strategy equilibrium arrivals under the classical queue disciplines

when θ = 4/5. These are represented by FIFO∗, LIFO∗ and SIRO∗.

The arrival distribution [3] is a unique equilibrium prediction under FIFO and SIRO,

while the asymmetric arrival distribution [2, 1] and the symmetric mixed strategy profile

α{0,1} with αi(0) = 2/3 and αi(1) = 1/3 are equilibrium predictions under LIFO.2 The

symmetry of LIFO’s equilibrium predictions thus depends on whether the players’ strategy

for arrival is a supported mixed or degenerate (pure) strategy. Since the subjects choose

their arrivals simultaneously and independently, there are coordination issues associated

with obtaining the asymmetric equilibrium profile [2, 1]. However, by choosing θ = 4/5,

the symmetric mixed strategy equilibrium α{0,1}’s probabilities of period 0 and 1 arrivals

correspond to an individual randomization of the three pure strategy equilibrium profiles

that induce arrival distribution [2, 1]. To some extent, the two equilibrium predictions

are thus compatible when subjects cannot coordinate their arrivals. For the symmetric

equilibrium predictions under each queue discipline, the expected queuing time for each

subject is 1 under FIFO and SIRO, hence an expected payoff of 390, while 19
27 ≈ 0.70 under

LIFO, hence an expected payoff on 400.

Besides aggregate predictions, we also obtain predictions on individual equilibrium be-

havior through beliefs and their corresponding best responses. We say the subjects hold

equilibrium beliefs if they expect the others to arrive in accordance to the equilibrium

profiles. Under FIFO and SIRO, the equilibrium beliefs are given by the others both

arriving at period 0 and thus are unique and deterministic. Under LIFO, however, the

equilibrium beliefs are not unique and may not be deterministic. The theoretical equilib-

rium beliefs under the symmetric mixed strategy arrival predictions are probabilistic and

given by α−i(0) = 2/3 and α−i(1) = 1/3. However, the assumption that subjects are able

to formulate well-defined subjective probabilistic beliefs is questionable empirically as well

Table 2: Equilibrium Predictions for γ = 480, ω = 50, and δ = 40

Equilibrium Best Response Equilibrium Beliefs Queuing Time Payoff
α∗ Bi (a−i) a∗−i E [t− a∗i ] E[πi]

FIFO∗ [3] 0, ∀a−i {0, 0} 1 390

LIFO∗ αi(0) = 2/3 0, for a−i 6= {0, 0} {0, 0} , {0, 1} , {1, 1} 19
27 ≈ 0.70 400

αi(1) = 1/3 1, for a−i = {0, 0}

SIRO∗ [3] 0, ∀a−i {0, 0} 1 390

2For the choice of parameter values, there exists no other symmetric mixed strategy equilibrium profile
than α{0,1} even if profiles where players randomize over more periods than period 0,1, and 2 are considered.
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as normatively (Ellsberg, 1961). This gives compelling reason to believe that behavior

may not be explained by precise probabilistic beliefs, and it may very well make sense to

instead ascribe to players having precise deterministic beliefs about the others.3 We say

that the deterministic equilibrium beliefs under LIFO are given by {0, 0}, {0, 1}, or {1, 1}.
Given the beliefs of the others, each subject has a unique best response arrival. The best

response Bi(a−i) is a singleton under FIFO and SIRO given by period 0 (independent of

the beliefs concerning a−i), while it is either 1 (if a subject believes the others arrive at

period 0) or 0 (for all other beliefs) under LIFO.

The specific parameter values are chosen for several reasons. First, in choosing θ = 4/5,

the experimental environment has a unique equilibrium profile for FIFO and SIRO and

a symmetric mixed strategy equilibrium profile under LIFO. Moreover, the environment

provides a distinct theoretical difference in the queue disciplines’ incentives to arrivals since

the expected payoff is higher under LIFO than under FIFO and SIRO. Lastly, θ = 4/5

ensures compatibility between the pure and symmetric mixed strategy predictions under

LIFO as described above.

The experiment involved 6 session with 24 subjects per session. At the beginning

of each session, subjects randomly drew a PC terminal number. Each subject then sat

down in front of the corresponding terminal and was given printed instructions. After the

instructions were read individually, subjects were encouraged to ask questions. To ensure

full understanding of the experiment, the subjects had to answer five control questions

before the beginning of the actual experiment.

Each session consisted of 3 rounds — one for each of the classical queue disciplines.

For each round, we randomly match the subjects into groups of three and announced

which queue discipline was assigned for the round. In the subsequent rounds, subjects

were randomly rematched into new groups and a new queue discipline was assigned. The

random rematching protocol is chosen to minimize spillover effects between rounds.

We choose to let the same subjects participate under each of the three queue disci-

plines and hereby implement a within-subject experimental design. This design benefits

from not requiring a large pool of subjects and helps reduce errors associated with extra-

neous differences in individual characteristics, as each subject serves as his own baseline.

Consequently, it allows us to compare the strategic behavior for each subject when ex-

posed to different queue disciplines. However, drawbacks of the within-subject design are

its susceptibility to ordering effects. We control for ordering effects by changing the order

in which the different queue disciplines are assigned such that no session has the same

order. We have performed a test for potential ordering effects and find no evidence for the

existence of such. In addition we also test whether the arrivals under each queue discipline

differ significantly across the six session. For each queue discipline, we find no significant

arrival differences across the sessions (p > 0.05). As a final remark, the within-subject

3A pragmatic argument for subjects having precise deterministic beliefs (rather than probabilistic) is
that several experiments finds prevalence of extreme probabilistic beliefs, i.e. degenerate or nearly degen-
erate beliefs (see Palfrey and Wang, 2009 and references therein).
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design causes variable dependency across the rounds since the same subjects serve in more

than one. We will take this dependency into account when statistically comparing the

queue disciplines.

Each round consists of six stages:

(i) Announcement Stage: The assigned queue discipline is announced.

(ii) Ex-ante Fairness Perception: Half of the subjects state their perceived fairness of the

assigned queue discipline by a self-rating scale fante = {strongly fair , fair ,neutral , un-

fair, strongly unfair}.

(iii) Arrival Stage: Subjects are randomly and anonymously matched into groups of

three. Subjects announce their individual period of arrival ai.

(iv) Beliefs Stage: Subjects announce their deterministic belief regarding the arrival pe-

riod of the others a−i.

(v) Payoff Stage: The server computes individual service times and announces the pay-

off πi for each subject without information about the payoffs of others.

(vi) Ex-post Fairness Perception: Subjects that had not participated in Stage (ii) state

their perceived fairness of the queue discipline by fpost = {strongly fair , fair , neutral ,

unfair , strongly unfair}.

Stage (i), (iii), and (v) are the main stages of each round in which subjects receive com-

plete information about the queue system [Stage (i)], process the information to announce

their period of arrival [Stage (iii)], and receive the payoff [Stage (v)]. To limit possible

spillover effects to strategic arrivals in subsequent rounds and fairness perception, we ex-

clude any information about the payoffs of the matched others in Stage (v), and moreover,

inform subjects that monetary payoffs are randomly based on the performance in one of

the three rounds.

In State (iv), subjects state their deterministic beliefs regarding the arrival period

of the others. In order to avoid potential hedging effects we do not incentivize subjects

belief statements (see e.g. Armantier and Treich (2012) for evidence of potential problems

associated with incentivized belief elicitations).

Stage (ii) and (vi) retrieve two separate measures: The perceived fairness ex-ante fante

[Stage (ii)] and ex-post fpost [Stage (vi)] to service. The division of subjects either stating

ex-ante or ex-post perception is randomly chosen before the beginning of the three rounds

such that no subject participate in both. This is done to mitigate possible consistency

effects. Subjects indicate their fairness perception by one of the following statements:

strongly fair, fair, neutral, unfair, or strongly unfair. Each statement corresponds to the

values +2, +1, 0, -1, -2 which are treated on ordinal scale of measurement. The scale

offers the advantage of retrieving quantitative data which is easy to analyze statistically,

however, suffers from possible distortion of issues such as central tendency bias (subjects

avoid using extreme response categories), acquiescence bias (compromise to agree with

statements as presented) or social desirability bias (agree with statements which portray
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themselves in a more favorable light). See e.g. Norman (2010) for a survey on self-rated

scales.

Overall, six independent computerized sessions were conducted in the Laboratory of the

Center for Experimental Economics (CEE) at University of Copenhagen on February

13th and October 9th, 2013. We programmed and conducted the experiment with zTree

(Fischbacher, 2007). All subjects were students from the University of Copenhagen. No

subject was used in more than one session, yielding 144 subjects. Each session lasted

approximately 1.5 hours. Instructions, data and zTree program are available upon request.

5.2 Hypotheses

Given the experimental design above, we analyze to what extent the equilibrium predic-

tions in Table 2 correspond to the behavior observed in the experiment. To do so, we

propose five hypotheses that collectively test whether subjects adhere to aggregate and

individual equilibrium behavior.

Aggregate behavior is examined by comparing the arrival distribution observed in the

experiment with the distribution prescribed by the equilibrium profiles. We form our hy-

pothesis of aggregate behavior based on the predictions in Table 2.

Hypothesis 1. Subjects arrive in accordance to the symmetric equilibrium profiles under

FIFO, SIRO, and LIFO.

Symmetric arrival strategies eliminate coordination issues associated with obtaining the

equilibrium profiles. Following Hypothesis 1, each subject will in equilibrium arrive at

period 0 under FIFO and SIRO, while randomize over period 0 with probability 2/3 and

over period 1 with probability 1/3.

Individual equilibrium behavior requires that the subjects arrive in accordance to their

best response arrivals. We examine this by comparing each subject’s arrival to their cor-

responding best response arrival Bi(a−i) given her deterministic beliefs a−i.

Hypothesis 2. Subjects arrive in accordance to their best response arrivals Bi(a−i).

Hypothesis 2 is based on the assumption that each subject is payoff-maximizing.4 If

evidence favors Hypothesis 2 under FIFO and SIRO, Hypothesis 1 follows immediately

due to the unique and symmetric individual equilibrium behavior. However, this it not

necessarily the case under LIFO since multiple equilibrium beliefs exist. If evidence favors

both Hypothesis 1 and 2 under LIFO, we conclude that subjects are payoff-maximizing

and hold correct beliefs. Conversely, if evidence favors Hypothesis 2 while not Hypothesis

1, we conclude that subjects are payoff-maximizing, however do not have correct beliefs.

In the case that subjects do not adhere to equilibrium behavior under any of the queue

disciplines, we are interested in examining whether the subjects still obtain the shortest

4Indisputably, this assumption has been proven inaccurate in many games (Tversky and Kahnemann,
1974, and experiments Grether and Plott, 1979), however, our experiment was designed to reduce compu-
tational complexity of subjects’ best response arrival; hence, mitigate potential non-maximizing behavior.
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expected queuing time and highest expected payoff under LIFO compared to FIFO and

SIRO as it is predicted by theory.

Hypothesis 3. Subjects arrive such that the expected queuing time is shorter under LIFO

compared to under FIFO and SIRO.

Hypothesis 4. Subjects arrive such that the expected payoff is higher under LIFO com-

pared to under FIFO and SIRO.

Hypotheses 3 and 4 are based on predictions about the strategic behavior under LIFO.

Given the priority of latest arrivals, LIFO provides subjects with stronger incentives to

smoothen arrivals relatively to FIFO and SIRO. Subjects will cause shorter expected

queuing times and thus higher expected payoff if they respond to such strategic incentives.

In addition to testing whether subjects adhere to equilibrium behavior, we examine the

perceived fairness of the classical queue disciplines. In our setup, players’ payoffs do not

include fairness concerns but only consider costs of impatience and queuing time. Con-

sequently, we make an implicit assumption of no fairness differences across the classical

queue disciplines or, at least, that fairness concerns do not influence utility. We test this

assumption by the following hypothesis.

Hypothesis 5. Subjects perceive the queue disciplines to be equally fair.

The result of Hypothesis 5 is important for several reasons. First, if evidence shows

that subjects perceive fairness differently across the queue disciplines, this would call into

question whether (and how) these concerns are taken into consideration in the subject’s

strategic choice of arrival. Second, if fairness perceptions, supposedly, impose (dis)comfort

when participating in queues, it questions whether (and how) to account for such when

measuring welfare.

6 Experimental Results

In this section we test Hypothesis 1 through 5. The statistical analysis follow the conven-

tion that a significance level of 5 percent or less is significant. For all results presented in

the section below, their test statistics can be seen in Appendix A.3, p. 33, Table 3.

6.1 Arrival Distribution

Figure 2 reports the arrival distribution observed in the experiment. The distribution

is illustrated as the proportion of arrivals at period 0 throughout 6 under each queue

discipline. In order to compare the observed arrival distribution to the predicted arrivals

in Table 2, we display the corresponding predicted proportion in equilibrium by the shaded

bars and labeled FIFO∗, LIFO∗ and SIRO∗.

The arrival distributions in Figure 2 show that subjects arrive differently depending on

the queue discipline. There is a high incidence of immediate arrivals at the opening period
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Figure 2: Arrival Distribution Across Queue Disciplines

0 under FIFO and SIRO, while a greater dispersion of arrivals under LIFO. Under FIFO

and SIRO, the proportion of immediate arrivals are 0.79 and 0.71, respectively, and are

followed by low proportions of arrivals in the subsequent periods, while 0.40 under LIFO

are followed by a nearly identical proportion of arrivals at period 1 and 2. In regards to

arrival variance, higher dispersion is observed under LIFO and SIRO since a proportion

of subjects arrive very late. That is, a proportion of 0.06 arrive later than period 3 under

LIFO, while 0.05 arrive later than period 3 under SIRO.5

We use the one-sided Wilcoxon-Mann-Whitney (WMW) test to compare the distribu-

tional differences between the experimental arrivals and the equilibrium predictions where

FIFO∗ and SIRO∗ have all subjects arriving immediately at period 0, while LIFO∗ has 2/3

of the subjects arrive at period 0 and 1/3 in the subsequent period 1. Evidence suggests

that subject do not adhere to the aggregate arrival predictions (p < 0.01) under any of the

classical queue disciplines. We therefore reject Hypothesis 1. However, when comparing

the queue disciplines’ observed arrival distributions to each other, we find that subjects

arrive significant later under LIFO compared to FIFO and SIRO (p < 0.01), whereas there

is no statistical differences in arrivals under FIFO and SIRO (p > 0.05). This is supported

by the one-sided Wilcoxon signed-rank test. To some extent, this strategic behavior leans

towards the theoretical intuition.

6.2 Best Response Arrivals

To test Hypothesis 2, we analyze whether subjects arrive in accordance to their best

response arrival. Recall from Table 2 that the best response under FIFO and SIRO is

5In fact, we recorded five attempts to arrive later than the latest accepted period 6 (three under LIFO
and two under SIRO). As we do not allow for later arrivals than period 6 in the experiment, a programmed
message alert asked the subjects to choose an arrival period earlier than period 6.
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period 0 while 1 or 0 under LIFO. It follows immediately that any arrivals that differ from

0 under FIFO and SIRO, while 0 and 1 under LIFO, cannot be best responses. Figure

3 reports the proportion of subjects that arrive in accordance to the best response under

each queue discipline. The highest proportion of best response arrivals are observed under

FIFO (0.79) and SIRO (0.72), while distinctly lower under LIFO (0.40). However, as the

best response under FIFO and SIRO are independent of beliefs and equal to the opening

period, these observed proportions might be exposed to upwards bias as it potentially

captures non-intentional best response arrivals.

The Fisher exact test is applied to compare the observed proportion of best response

arrivals with the predicted proportion of 100% best responses. Evidence suggests that a

significant proportion of subjects do not adhere to best response arrivals (p < 0.01) under

any of the classical queue disciplines. We therefore reject Hypothesis 2. We apply the one-

sided McNemar change test to compare the relative proportions of best response arrivals

across the queue disciplines. We find no difference in the proportions under FIFO and

SIRO (p > 0.10), whereas LIFO provides a significant lower proportion of best response

arrivals compared to FIFO and SIRO (p < 0.01).

To go one step further, we examine the distance between the observed and correspond-

ing best response arrival. We define the distance by d = |ai − Bi(a−i)| and compute d

across all subjects. Figure 3 reports the distribution of distances under all queue disci-

plines illustrated by the stacked gray toned bars. The distribution of distances follows the

dispersion we observed in Figure 2. Specifically under LIFO and SIRO, the distances span

between 1 and 6 periods yielding a standard deviation on 1.4 (LIFO) and 1.1 (SIRO),

while the distance primarily spans between 1 and 2 periods under FIFO yielding a lower

standard deviation of 0.6. When comparing the average distances across the queue disci-

plines, we find that subject under LIFO arrive with greater distance to the best response
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compared to subjects under FIFO and SIRO.

The final point of interest is to examine whether subjects believe others to behave

according to payoff-maximization and whether coordination issues cause deviations from

aggregate equilibrium behavior. This is done by comparing the subjects’ stated beliefs

to the equilibrium beliefs stated in Table 2. We find that a high proportion of subjects

do not hold equilibrium beliefs: 53% and 47% of subjects had equilibrium beliefs {0, 0}
under FIFO and SIRO, respectively, while 46% under LIFO had equilibrium beliefs {0, 0},
{0, 1}, or {1, 1}. Moreover, 32% of subjects believe others would arrive later than period

2 under LIFO. If we alternatively look at the beliefs of subjects who arrived according

to their best response, the proportions of equilibrium beliefs increase under LIFO (59%),

while barely under FIFO (54%) and SIRO (53%).

6.3 Expected Queuing Times

Having rejected Hypothesis 1 and 2, we are interested in testing whether LIFO still pro-

vides shorter queuing times than FIFO and SIRO. We test Hypothesis 3 by examining

the distribution of expected queuing times across the observed arrivals. In the experi-

ment, subjects are randomly matched into groups of three. The distribution of queuing

times is determined by the arrival distribution within each group and service priority of

the queue discipline. Given that no subject can coordinate nor communicate with their

grouped others, potential miscoordination of arrivals might induce longer queuing times

than otherwise. We adjust for such issues by computing the expected queuing time under

each arrival period. That is, the average queuing time under every possible group match

(given the choice of arrival period), weighted by the probability of each group match’s

occurrence.

Figure 4 reports the distribution of expected queuing times across all queue disciplines

along with the corresponding equilibrium predictions. The distributions are illustrated by

box and whisker plots. The box represents the ranges of the 25th and 75th percentile of

expected queuing times, while the whiskers extend to the upper and lower adjacent values

(within 1.5 times the interquartile range). The circles represent outside values that fall

outside the adjacent values. The bold lines within each box represent the corresponding

median of expected queuing times. FIFO∗, LIFO∗ and SIRO∗ denote the distribution of

queuing times in equilibrium.

Figure 4 shows substantial differences in the distribution of expected queuing times

between both disciplines and equilibrium predictions. First, comparing across the queue

disciplines, the majority of subjects under FIFO obtain longer expected queuing times than

the other disciplines, while subjects under LIFO obtain the lowest. In fact, 123 subjects

have longer expected queuing times under FIFO than under SIRO, while 137 subjects

compared to under LIFO. The median expected queuing time is 0.79 under FIFO, 0.78

under SIRO and 0.29 under FIFO. The one-sided signed-rank test supports the differences

as it rejects the hypothesis of no difference between expected queuing times under all
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Figure 4: Expected Queuing Time Distribution Across Queue Disciplines

queue disciplines (p < 0.01). We therefore accept Hypothesis 3. Second, compared to

the equilibrium predictions, subjects obtain shorter expected queuing times under all

queue disciplines than prescribed by their corresponding equilibrium predictions. This is

supported by the one-sided WMW test.

The observed differences in expected queuing times are unsurprising given the arrival

distribution from Figure 2. The high proportion of immediate arrivals under FIFO and

SIRO cause high level of congestion and thereby longer expected queuing times. As some

subjects arrive later under SIRO compared to FIFO, congestion is reduced within groups

containing these subjects and hence causes an overall reduction in expected queuing times.

Similarly, the high dispersion of arrivals under LIFO cause low congestion within groups

and therefore reduces expected queuing times substantially. Similar arguments explain

the differences in equilibrium queuing times.

6.4 Expected Payoff

What about the distribution of expected payoffs? Recall subjects are obtaining payoffs

depending on the period of service and queuing time. To adjust for potential miscoordi-

nation biases, we compute the expected payoffs for all subjects given their arrival period

and expected queuing times.

Figure 5 reports the distribution of expected payoffs across queue disciplines along with

the corresponding equilibrium predictions. The distributions are illustrated by similar box

and whisker plots as for the queuing time distribution. FIFO∗, LIFO∗ and SIRO∗ denote

the expected payoff distribution prescribed by the equilibrium predictions under each

discipline.

There is clear indication of differences in the variance of expected payoffs across the
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Figure 5: Expected Payoff Distribution Across Queue Disciplines

disciplines. Subjects under LIFO obtain the highest variance, while the lowest under FIFO.

The medians of expected payoffs across disciplines are relatively close being 408.8 under

FIFO, 403.9 under LIFO and 409.8 under SIRO. The one-sided signed-rank test was used

to test the distributional differences in expected payoffs among the queue disciplines. We

find that LIFO obtain the same expected payoff as under the other disciplines (p > 0.05),

whereas subjects obtain significant higher expected payoffs under SIRO compared to under

FIFO (p < 0.01). This results is explained by a combination of higher expected payoffs for

period 0 arrivals under SIRO (409.8) than under FIFO (408.8) and similar high proportions

of period 0 arrivals (FIFO: 0.79, SIRO: 0.71). Consequently, 113 subjects under SIRO have

higher expected payoffs than under FIFO; hence the statistical significance. Following

these findings, we reject Hypothesis 4.

Similarly to the three analyses above, the expected payoff distributions do not cor-

respond to the equilibrium predictions. The WMW test was used to compare the dis-

tributional differences between the expected payoffs observed and those in equilibrium.

Evidence suggests that subjects obtain significant higher expected payoffs in the experi-

ment compared to those in equilibrium (p < 0.01) under all classical queue disciplines. In

fact, 114 subjects under FIFO, 92 under LIFO, and 129 under SIRO have higher expected

payoffs compared to the equilibrium predictions. The reason why subjects successfully out-

perform the equilibrium in regards to expected payoff is that they reduced the expected

queuing time by leveling out their arrivals. Instead of immediate arrival as prescribed by

the equilibrium solution, subjects arrived later and thereby reduced congestion. On the

flip side, these late arrivals are also what caused subjects under LIFO not to yield higher

expected payoffs than under FIFO and SIRO, as they arrived ”too” late such that the

impatience cost exceeded the gain in payoff from significantly shorter queuing times.
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6.5 Fairness Perceptions

Beyond analyzing adherence to equilibrium behavior, we also examine how subjects per-

ceive the fairness of each queue discipline. As we will show below, the analysis suggests

that subjects do indeed perceive the disciplines significantly different in regards to fairness.

Specifically, FIFO is perceived to be most fair, while LIFO the least fair.

In the experiment, subjects announce their fairness perception either ex-ante to service,

fante, or ex-post, fpost. Figure 6 reports the announced perceptions across the queue

disciplines. For ex-ante perceptions [Figure 6 (a)], most subjects perceive FIFO to be

within the fair categories, while LIFO and SIRO within the unfair categories. Specifically,

the average fairness perception of FIFO is between fair and strongly fair (numerical 1.4),

around unfair (-0.7) for SIRO, and lastly between unfair and strongly unfair (-1.4) for

LIFO. In addition Figure 6 (a) shows that subjects have higher dispersion in fairness

perception under SIRO and LIFO than under FIFO. For ex-post perceptions [Figure 6 (a)],

subject reveal similar distribution of fairness perception as ex-post, however, the average

fairness perceptions of SIRO and LIFO are relatively more fair, whereas approximately

the same for FIFO.

The one-sided signed-rank test was used to test the distributional differences in per-

ceived fairness among the queue disciplines when measured either ex-ante and ex-post,
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Figure 6: Fairness Perception across Queue Disciplines
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respectively. Evidence suggests that subjects perceive FIFO as the most fair queue dis-

cipline, while LIFO the least fair (p < 0.01). This is consistent under both ex-ante and

ex-post perceptions. We therefore reject Hypothesis 5. In addition we test whether the

fairness perceptions of a specific queue discipline differs across ex-ante and ex-post per-

ceptions. Differently from the previous tests, the samples are independent as we asked

different subjects to announce either ex-ante or ex-post perception. Given the indepen-

dence of samples, we apply the WMW test under the null that the distribution of ex-ante

and ex-post fairness perceptions are the same under each queue discipline. We find find

that under LIFO and SIRO there exists a difference between ex-ante and ex-post per-

ceptions, while we cannot reject that the fairness perceptions under FIFO are the same

ex-post and ex-ante. The perceived fairness of LIFO and SIRO is higher when measured

ex-post compared to ex-ante.

7 Interpretation and Discussion

Queuing theory and mechanism design widely recognizes the economic imperative of de-

signing queuing systems such that their procedural characteristics induce optimal strategic

behavior. In this paper, we present experimental evidence suggesting that the use of spe-

cific queue disciplines affects the strategic behavior of the players and hereby the level of

congestion within a queuing game. We find that subjects arrive for service with greater

dispersion when participating under the LIFO discipline, whereas they tend to arrive im-

mediately under FIFO and SIRO. As a consequence, lower levels of congestion are obtained

under LIFO as compared to FIFO and SIRO. To some extent, this strategic behavior is

consistent with our theoretical intuition. However, the experimental arrivals do not comply

with the behavioral predictions prescribed by the Nash equilibrium as a significant pro-

portion of the subjects do not behave according to individual payoff maximization. This

non-optimal behavior is observed under all queue disciplines but seems to be particularly

strong under LIFO. While the observed behavior under LIFO causes lower congestion, the

subjects do not obtain higher expected payoffs because higher costs of impatience from

arriving ”too” late exceed the gains of shorter expected queuing times. The theoretical

prediction of higher welfare under LIFO is thus not recovered experimentally. Interest-

ingly, however, subjects obtain higher median expected payoffs in the experiment than

that prescribed by equilibrium. The reason is that the proportion of (later) non-optimal

arrivals causes lower levels of congestion; hence higher expected payoffs for subjects.

In addition this paper also studied the perceived fairness of the queue disciplines. We

find that subjects perceive the fairness of queue disciplines significantly different, i.e. FIFO

is perceived the most fair while LIFO the most unfair. These perceptions are consistent

whether stated ex-ante or ex-post to the receipt of payoffs. While LIFO provides shorter

queuing times and not significantly different payoffs than FIFO and SIRO, surprisingly

perhaps, subjects still perceive LIFO to be less fair. This result could have profound

implications for the accuracy of our theoretical predictions as player utilities do not include
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fairness concerns. That is, if fairness concerns are highly important in queues (sometimes

more important than the duration of queuing time, cf. Rafaeli et al., 2002, 2005), then the

perceived unfairness of the LIFO discipline might affect the individual utilities negatively

and thus lower the welfare compared to FIFO and SIRO. A social planner must therefore

take fairness concerns into account when choosing the welfare optimal queue discipline.

Existing literature partly supports our finding of discrepancies between theoretical

predictions and experimentally observed outcomes. For a wide range of games unspecific

to queuing, experimental participants do not consistently behave in accordance to payoff-

maximizing behavior as prescribed by the Nash equilibrium (see e.g. Fudenberg and Levine,

1998 for theoretical studies and Camerer (2003) for experimental). Specific to queuing

games, however, a closely related paper by Rapoport et al. (2004) finds no support for

equilibrium play on the individual level whereas the aggregate behavior corresponds to

their mixed strategy equilibrium predictions. While the non-optimal individual behavior

corresponds to our results, the accuracy of predicted aggregate behavior differs. This dis-

crepancy is surprising since our theoretical predictions under FIFO involve a symmetric

and unique pure strategy Nash equilibrium with strategic dominance as opposed to the

relatively more complex mixed strategy equilibrium in Rapoport et al.’s experiment. In-

deed, it may be argued that repeating our game would allow for belief learning and thereby

have aggregate behavior converge to the equilibrium predictions. While such learning ef-

fects would be interesting to explore in future research, we think it is interesting that the

observed social outcome is still better than the equilibrium predictions in a one-shot game,

despite the fact that many subjects fail to arrive in accordance to best responses (some

even quite far from it).

The complexity of modeling cognitive and emotional determinants on agent’s strategic

decisions leaves economic literature with insufficient evidence for explaining why agents

fail to consistently behave according to payoff-maximization. A possible explanation (un-

specific to queuing) is suggested by Conlisk (1996), who argues that bounded rationality

can cause systematic mistakes by using “heuristic” decision-making, or rule of thumb,

which fails to capture the full logic of a decision. In continuation of this idea, Camerer

(2003) surveys expected utility models that describe human decision-making better than

the standard model. In particular, he claims that two major systematic deviations from

expected payoff maximization are consistently observed in people: risk aversion (where

players dislike risk and avoid outcomes where risk relative to expected gains are over-

weighed) and non-linear decision weights (where prospects are not directly weighted by

their probability of occurring, but rather by some non-linear decision weight instead). In

regards to risk aversion, we examine whether the existence of such would alter the equilib-

rium predictions for our experiment. To do so, we respecify the players’ utility function (1)

as a concave function and thereafter recalculate the corresponding equilibrium predictions.

We consider the concave utility function ũi = (ui)
k where k ∈ [0, 1] denotes the degree

of risk aversion, i.e. low values of k indicate high risk aversion and vice versa. Given the

chosen experimental parameters (γ = 480, ω = 50, δ = 40), we find that [3] is a unique
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equilibrium arrival distribution under FIFO and SIRO for any k ∈ [0, 1]. Thus, no degree

of risk aversion will alter the experimental equilibrium predictions. Similarly, the arrival

distribution [2, 1] is a unique equilibrium for any k > 0.05 under LIFO, however, for the

special case of excessive risk aversion (0 < k ≤ 0.05), players will deviate from the [2, 1]

and no equilibrium exists. Given the restricted interval in which no equilibrium exists,

it is reasonable to conclude that risk aversion does not alter the equilibrium predictions

within our experiment, and thus cannot account for the observed equilibrium deviations.

Future studies could extend the research on strategic queuing games by testing similar

systematic behavioral deviations and test their accuracy in predicting strategic arrivals.

We also provide some reflections on the observed fairness results. The analysis iden-

tifies two major characteristics: First, the fairness perception differs significantly across

queue disciplines, and second, ex-ante and ex-post fairness perception differs significantly

within each queue discipline. The two results suggest that perceived fairness depends

on determinants which differ in ex-ante and ex-post perception. We believe that ex-ante

fairness perceptions are solely based on procedural characteristics of the queue discipline,

whereas ex-post perceptions are adjustments to the ex-ante perceptions after individual

payoff realizations. In regards to ex-ante perception, many studies have suggested proce-

dural fairness determinants associated with a queue discipline (see Avi-Itzhak et al., 2011

for an excellent survey and references therein). Moreover, empirical evidence on the im-

portance of fairness in queues is provided by Rafaeli et al. (2002, 2005) who shows that

fairness is highly important for customers waiting under various queuing and scheduling

policies. Highly related to the present queuing game, Avi-Itzhak and Levy (2004) propose

a fairness measure that ranks the fairness of various queue disciplines when players are ho-

mogenous and have identical service times. The paper assumes several elementary axioms

on fairness and shows, in steady state, that the waiting time variance under each queue

discipline can serve as a surrogate for its unfairness measure. The measure thus implies

that the most fair queue discipline is FIFO while the most unfair is LIFO.6

The same fairness order is observed in our experimental results. While fairness de-

terminants for ex-ante perception are well-recognized and seem to support our findings,

the determinants for ex-post perception have received limited attention. We believe self-

centered inequity aversion (Fehr and Schmidt, 1999), and/or disappointment (Bell, 1985)

could be possible behavioral characteristics that explain the ex-post adjustment in fair-

ness perception. The argument is that subjects have psychological reactions to an payoff

outcome (or distribution) that does not match up to expectations. This reaction may

well influence the ex-post fairness perception of the queue discipline. The validity of such

ex-post fairness determinants remains a behavioral issue for future research.

6The fairness property follows from Kingman (1962) who shows that FIFO minimizes the variance of
waiting time among all work-conserving and uninterrupted queue disciplines while LIFO maximizes the
variance.
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A Appendix

A.1 Pure strategy equilibrium analysis

This section presents the pure strategy Nash equilibrium arrival profiles under each of the

classical queue disciplines and establish their corresponding equilibrium welfare.

Auxiliary Results

We first make some observations about a pure strategy equilibrium profile that apply for

all queue disciplines:

Lemma 1. Let profile a∗ be a pure strategy Nash equilibrium under any queue discipline.

Then a∗ has all players served at period 2

Proof. We prove by contradiction. Let rt denote the number of players arriving at period t.

Suppose that an arrival profile a′ is characterized by
∑t′

t=0 rt < t+1 for some t′ ∈ {0, 1, 2},
i.e. no player is served at t′ despite available capacity at the facility. This implies that

at least one player i ∈ N is served at some later period t′′ > 2. With available service

capacity at t′, the player served at t′′ could instead arrive at t′ and be served immediately

without queuing time. Given strictly increasing impatience costs with δ > 0, it follows

that the player obtains higher expected utility by arriving at t′. Conclusively, a Nash

equilibrium profile must have
∑

t rt ≥ t + 1 for every t ∈ T , such that the last player is

served at period 2. �

Lemma 2. Let profile a∗ be a pure strategy Nash equilibrium characterized by the total

queuing time C∗ and another equilibrium profile a′ characterized by C ′. It follows that any

difference between the equilibrium welfare Φa∗ and Φa′ is caused by differences in C∗ and

C ′. Thus, if C∗ = C ′ then Φa∗ = Φa′, while if C∗ < C ′ then Φa∗ > Φa′.

Proof. Let profile a = (ai, a−i) be a Nash equilibrium. Given identical preferences of

players, we may write the expected equilibrium welfare Φa as

Φa∗ =
∑

i
EU [Sit(ai, a−i)]

=
∑

i
(γ − ωE [t]− δE [t− ai])

=
∑

i
γ − ω

∑
i
E [t]− δ

∑
i
E [t− ai]︸ ︷︷ ︸
=C

where γ, ω, δ are constants,
∑

iE [t] denotes the aggregated expected service time, and C

the total queuing time.

We prove that only C can cause differences in expected welfare between two equilib-

rium profiles since
∑

iE [t] is constant under any equilibrium profile. This is proven by the

following two observations: First, it follows by Lemma 1 that any equilibrium profile has

the last player served at period 2, thus the facility uses its full service capacity within the

periods {0, 1, 2}. Consequently, in equilibrium, the probability that one player is served
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at each period t ∈ {0, 1, 2} equals 1, thus
∑

i Sit = 1. Second, given E [t] =
∑

t (t · Sit),
we may write the aggregated expected service time as∑

i
E [t] =

∑
i

∑
t
(t · Sit)

=
∑

t

[∑
i
Sit ·

∑
i
t
]

(∗)
=
∑

t
t = 3

where operation (∗) applies
∑

i Sit = 1 and that t is independent of each player, i.e.∑
i t = t. Conclusively, the aggregated expected service time is constant and therefore

independent of any Nash equilibrium profile. That is, only a difference in C can provide

welfare differences between two Nash equilibrium profiles.

Let profile a∗ be a Nash equilibrium characterized by the total queuing time C∗ and pro-

file a′ another equilibrium characterized by C ′, it then follows immediately that Φa∗ = Φa′

when C∗ = C ′ and Φa∗ > Φa′ when C∗ < C ′. �

In the following, we examine the pure strategy arrival profiles for each of the classical

queue disciplines.

First-In First-Out (FIFO)

We make some observations about a pure strategy Nash equilibrium profile under FIFO.

Lemma 3. Let a∗ be a Nash equilibrium under FIFO. Then it follows for a∗ that

(i) The number of arriving players never exceeds the service capacity for any period

t > 0.

(ii) If all players do not arrive at period 0, then the last player arrives at period 2 and

is served immediately without queuing time.

Proof. Part (i) and (ii) are proven separately.

First for part (i) we prove by contradiction: Suppose an equilibrium profile a′ has the

number of arrivals exceeding the service capacity (i.e. rt′ > 1) for some t′ > 0. Excluding

all profiles that do not satisfy Lemma 1, only one profile has rt′ > 1 for some t′ > 0; namely

[1, 2]. With strictly increasing impatience cost over t, one of the players arriving at period

1 could increase her expected utility by arriving at period 0 instead, since she would obtain

an earlier expected service time for the same expected queuing time. Consequently, any

equilibrium profile under FIFO must have rt ≤ 1 for all t > 0.

Secondly for part (ii): Let profile a′ be a Nash equilibrium characterized by Lemma 1,

Lemma 3 part (i), and r0 < 3. Moreover, let β = min {t |
∑

t rt = 3} denote the earliest

period where all players have arrived under a′. Suppose that a′ has β = 1 such that the

last player arrives at period 1. Given the service capacity of one player per period, at

least one player is served at period 2 with queuing time since period β. Lemma 3 part

(i), it follows that the number of arrivals at t > 0 never exceeds the service capacity,

which leaves only one possible profile with β = 1; namely [2, 1]. Given the priority of
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first arrivals under FIFO and positive queuing costs, the player arriving at period 1 could

increase her expected utility by instead arriving at period 2 as she obtains lower expected

queuing time for the same expected service time. Consequently, under a Nash equilibrium

profile with r0 < 3, the last player arrives at period 2 and is served immediately without

queuing time. �

The only arrival profiles that satisfies Lemma 1 and 3 are those with the arrival distribu-

tion [3], [1, 1, 1], or [2, 0, 1]. We next examine for which relative queuing costs, θ, these

profiles are a Nash equilibrium.

Proposition 1. Let a∗ denote a Nash equilibrium under FIFO and Φa∗ the correspond-

ing equilibrium welfare. Given θ, we then have the following

θ < 1 Profile a∗ is uniquely given by the arrival distribution [3] and provides the wel-

fare Φ[3] with C = 3.

θ = 1 Multiple equilibrium profiles exist which induce the arrival distributions [2, 0, 1]

and [3]. As [2, 0, 1] provides C = 1, it follows that Φ[2,0,1] > Φ[3].

θ ≥ 3 Multiple equilibrium profiles exist which induce the unique arrival distribution

[1, 1, 1] and provide the maximum welfare Φ[1,1,1] with C = 0.

There exist no pure strategy equilibrium profiles for 1 < θ < 3, thus no welfare properties

are established.

Proof. We prove that [3], [2, 0, 1], and [1, 1, 1] are equilibrium arrival distributions under

FIFO for different values of θ. In what follows, let EU (ai | a) describe the expected utility

for player i when arriving at ai under profile a. For example, EU (1 | [1, 2]) describes the

expected utility for the player arriving at period 0 under the arrival distribution [1, 2].

[3] is an equilibrium arrival distribution if: (1) EU (0 | [3]) ≥ EU (2 | [2, 0, 1]) which is

true for all θ ≤ 1; and (2) EU (0 | [3]) ≥ EU (1 | [2, 1]) which is true for all ω ≥ 0. Given

that θ ≤ 1 is the binding condition for both (1) and (2), we conclude that [3] is a Nash

equilibrium distribution for all θ ≤ 1. The arrival distribution imply that two players have

to queue from period 0 to 1, and in addition one player from period 1 to 2. Consequently,

the arrival distribution [3] has C = 3 and provides welfare Φ[3]. Note that Φ[3] is the

minimal welfare for any possible pure strategy Nash equilibrium.

[2,0,1] is an equilibrium arrival distribution if: (1) EU (0 | [2, 0, 1]) ≥ EU (1 | [1, 1, 1])

which is true for θ ≤ 1; and (2) EU (2 | [2, 0, 1]) ≥ EU (0 | [3]) which is true for θ ≥ 1.

Given that θ = 1 is the only binding condition for both (1) and (2), we conclude that

[2, 0, 1] is an equilibrium arrival distribution for θ = 1. It follows immediately that C = 1

and thus provides welfare Φ[2,0,1].

[1,1,1] is an equilibrium arrival distribution if: (1) EU (2 | [1, 1, 1]) ≥ EU (0 | [2, 1])

which is true for θ ≥ 3; and (2) EU (1 | [1, 1, 1]) ≥ EU (0 | [2, 0, 1]) which is true for θ ≥ 1.

Given that θ ≥ 3 is the binding condition, we conclude that [1, 1, 1] is a Nash equilibrium
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profile for θ ≥ 3. It follows immediately that C = 0 and thus provides the maximum

welfare Φ[1,1,1].

The welfare ordering across the different equilibrium arrival distributions is: Φ[3] <

Φ[2,0,1] < Φ[1,1,1]. �

Last-In First-Out (LIFO)

We make some observations about a pure strategy Nash equilibrium profile under LIFO.

Lemma 4. Let a∗ be a Nash equilibrium under LIFO, then

(i) For any t < 2 where
∑

t rt < 3, the subsequent period t + 1 must have a non-zero

number of arrivals independent of prior arrivals.

(ii) All players do not arrive immediately, i.e. r0 < 3.

Proof. Part (i) and (ii) are proven separately.

First, for part (i) we prove by contradiction: Let profile a′ be a Nash equilibrium for

which some period t′ < 2 has
∑t′

t=0 rt < 3. Suppose that the subsequent period t′ + 1

has no arrivals, i.e. rt′+1 = 0. In this case, any player arriving later than t′ + 1 could

increase his expected utility by arriving instead at t′+1 and be serviced immediately, since

LIFO prioritizes later arrivals. Consequently, any Nash equilibrium profile under LIFO

has arrivals in all subsequent periods after opening until the last player has arrived.

Secondly for part (ii): Suppose that r0 = 3 such that all players arrive immediately

at the opening period 0. The probability of being served immediately at period 0 with-

out any queuing time is then given by 1
3 . Accordingly, the probability of being served

later than period 0 with queuing time is uniformly distributed with probability 1
3 for each

subsequent period. All players have the opportunity to postpone their arrival to period 0

and be served immediately without any queuing time, due to LIFO’s priority of latest ar-

rivals. Consequently, if the probability of being served immediately at period 0 is strictly

lower than the aggregated probability of being served later with queuing time. Since
1
3 < 2

3 , it follows that the expected utility of arriving at period 0 is strictly lower than

arriving at period 1. Conclusively, any Nash equilibrium profile under LIFO has r0 < 3. �

The only arrival profiles that satisfies Lemma 1 and 4 are those inducing the arrival distri-

butions [1, 1, 1], [1, 2], and [2, 1]. Similarly to FIFO, we examine for which relative queuing

costs these profiles are Nash equilibrium profiles. The findings are stated in the following

proposition.

Proposition 2. Let a∗ denote a Nash equilibrium under FIFO and Φa∗ the correspond-

ing equilibrium welfare. Given θ, we then have the following

θ < 1 Multiple equilibrium profiles exist which induce the unique arrival distribution

[2, 1] and provide the equilibrium welfare Φ[2,1] with C = 2.

θ = 1 Multiple equilibrium profiles exist which induce the arrival distributions [1, 1, 1],

[1, 2], or [2, 1]. As [1, 2] provides C = 1, it follows that Φ[1,1,1] > Φ[1,2] > Φ[2,1].
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θ > 1 Multiple equilibrium profiles exist which induce the unique arrival distribution

[1, 1, 1] and provide the maximum welfare Φ[1,1,1] with C = 0.

Proof. We apply similar notation as in the proof of Proposition 1 and prove that [1, 1, 1],

[1, 2], and [2, 1] are equilibrium arrival distributions under LIFO for different values of θ.

[1, 1, 1] is an equilibrium arrival distribution if: (1) EU (2 | [1, 1, 1]) ≥ EU (0 | [2, 1])

which is true for all θ ≥ 1; (2) EU (1 | [1, 1, 1]) ≥ EU (0 | [2, 0, 1]) which is true for all

θ ≥ 1; and (3) EU (2 | [1, 1, 1]) ≥ EU (1 | [1, 2]) which is true for all θ ≥ 1. Given all con-

ditions are identical, we conclude that [1, 1, 1] is an equilibrium arrival distribution under

LIFO for all θ ≥ 1. The distribution provides C = 0 and thus the maximum welfare Φ[1,1,1].

[1, 2] is an equilibrium arrival distribution if: (1) EU (1 | [1, 2]) ≥ EU (0 | [2, 1]) which

is true for all θ ≥ 1; and (2) EU (1 | [1, 2]) ≥ EU (2 | [1, 1, 1]) which is true for all θ ≤ 1.

Given that θ = 1 is the only binding condition for both (1) and (2), we conclude that [1, 2]

is an equilibrium arrival distribution under LIFO for θ = 1. The distribution provides

C = 1 and thus welfare Φ[1,2].

[2, 1] is an equilibrium arrival distribution if: (1) EU (1 | [2, 1]) ≥ EU (0 | [3]) which

is true for all δ > 0; and (2) EU (0 | [2, 1]) ≥ EU (2 | [1, 1, 1]) which is true for all θ ≤
1. Given that δ > 0 per construction, we conclude that [2, 1] is an equilibrium arrival

distribution under LIFO for all θ ≤ 1. The distribution provides C = 2 and thus welfare

Φ[2,1].

The welfare ordering across the different equilibrium arrival distributions is: Φ[2,1] <

Φ[1,2] < Φ[1,1,1]. �

Service In Random Order (SIRO)

Unlike under FIFO and LIFO, there are no further additions to Lemma 1 for which we

can exclude other arrival profiles to be Nash equilibria under SIRO. We therefore immedi-

ately turn to examining when the arrival profiles are Nash equilibrium given the relative

queuing cost.

Proposition 3. Let a∗ denote a Nash equilibrium under FIFO and Φa∗ the correspond-

ing equilibrium welfare. Given θ, we then have the following

θ < 1 Profile a∗ is uniquely given by the arrival distribution [3] and provides the equi-

librium welfare Φ[3] with C = 3.

θ = 1 Multiple equilibrium profiles exist which induce the arrival distributions [2, 0, 1],

[2, 1], or [3]. As [2, 0, 1] provides C = 1 and [2, 1] provides C = 2, it follows

that Φ[2,0,1] > Φ[2,1] > Φ[3].

θ > 5
3 Multiple equilibrium profiles exist which induce the unique arrival distribution

[1, 1, 1] and provide the maximum welfare Φ[1,1,1] with C = 0.

For 1 < θ < 5
3 there exist no equilibrium profiles and therefore no welfare characteristics

can be determined.
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Proof. We apply similar notation as in the proof of Proposition 1 and prove that [1, 1, 1],

[1, 2], [2, 1], [2, 0, 1], and [3] are equilibrium arrival distributions under SIRO.

[1, 1, 1] is an equilibrium arrival distribution if: (1) EU (2 | [1, 1, 1]) ≥ EU (0 | [2, 1])

which is true for all θ ≥ 5
3 ; (2) EU (1 | [1, 1, 1]) ≥ EU (0 | [2, 0, 1]) which is true for all

θ ≥ 1; and (3) EU (2 | [1, 1, 1]) ≥ EU (1 | [1, 2]) which is true for all θ ≥ 1. Given that

θ ≥ 5
3 is the binding condition for (1) through (3), we conclude that [1, 1, 1] is an equilib-

rium arrival distribution under SIRO for all θ ≥ 5
3 with the maximum welfare Φ[1,1,1].

[1, 2] is an equilibrium arrival distribution if: (1) EU (1 | [1, 2]) ≥ EU (0 | [2, 1]) which

is true for all θ ≥ 3; and (2) EU (1 | [1, 2]) ≥ EU (2 | [1, 1, 1]) which is true for all θ ≤ 1.

It follows that the conditions for (1) and (2) are conflicting and no relative queuing costs

supports [1, 2] as an equilibrium arrival distribution under SIRO.

[2, 1] is an equilibrium distribution if: (1) EU (1 | [2, 1]) ≥ EU (0 | [3]) which is true

for all θ ≥ 1; (2) EU (0 | [2, 1]) ≥ EU (2 | [1, 1, 1]) which is true for all θ ≤ 5
3 ; and (3)

EU (1 | [2, 1]) ≥ EU (2 | [2, 0, 1]) which is true for all θ ≤ 1. Given that θ = 1 is the

only binding condition for (1) through (3), we conclude that [2, 1] is an equilibrium arrival

distribution under SIRO for θ = 1 with welfare Φ[2,1].

[2, 0, 1] is an equilibrium distribution if: (1) EU (2 | [2, 0, 1]) ≥ EU (0 | [3]) which is true

for all θ ≥ 1; (2) EU (0 | [2, 0, 1]) ≥ EU (1 | [1, 1, 1]) which is true for all θ ≤ 1; and (3)

EU (2 | [2, 0, 1]) ≥ EU (1 | [2, 1]) which is true for all θ ≥ 1. Given that the only binding

for (1) through (3) is θ = 1, we conclude that [2, 0, 1] is an equilibrium arrival distribution

under SIRO for θ = 1 with welfare Φ[2,0,1].

[3] is an equilibrium distribution if: (1) EU (0 | [3]) ≥ EU (1 | [2, 1]) which is true for all

θ ≤ 1; and (2) EU (0 | [3]) ≥ EU (2 | [2, 0, 1]) which is true for all θ ≤ 1. Given identical

conditions, we conclude that [3] is an equilibrium arrival distribution under SIRO for all

θ ≤ 1 with the minimum welfare Φ[3].

The welfare ordering across the different equilibrium arrival distributions is: Φ[3] <

Φ[2,1] < Φ[2,0,1] = Φ[1,2] < Φ[1,1,1]. �

A.2 Mixed strategy equilibrium analysis

This section presents the symmetric mixed strategy Nash equilibrium (SMNE) profiles

under each classical queue discipline and establishes their corresponding equilibrium wel-

fare for all θ. We restrict the analysis only to consider SMNE in which players at most

randomize over the period 0, 1, and 2. This is motivated by the choice of experimental

parameters for which only this support domain is relevant.

Let T̄ = {0, 1, 2} denote the restricted set of arrival strategies, and moreover, let a

SMNE be the list of symmetric mixed strategies α̂ = (α̂j)j∈N where α̂i = α̂j for all i, j ∈ N .

The support of a SMNE, α̂, is the set of pure strategies ai ∈ T̄ which are played with

positive probability. Formally, we denote the support of α̂ by S(α̂) = {ai : α̂i(ai) > 0} ∈ T̄ .
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In a SMNE, all players choose an identical mixed strategy profile α̂i and no player can

(strictly) improve his expected utility by a unilateral arrival deviation since all potential

deviations yield at most the same expected payoff.

In order to determine any SMNE, we need to compute the players’ expected pay-

offs for all potential deviations. To do so, we define a probability vector P which is

induced by a α̂ with support S(α̂) and probabilities α̂i(ai) , ∀ai ∈ S(α̂). The vec-

tor P contains the accumulated probability for all possible combinations of realized ar-

rivals that two players can form. For example, if α̂ has the support S(α̂) = {0, 1} then

P contains the accumulated probability of the two players arriving either at period 0

or 1, i.e. P =
(
α̂j(0)2 α̂j(1)2 2α̂j(0)α̂j(1)

)
. In other words, P is a vectorization

of the terms generated by a binomial expansion with a number of variables equal to

the cardinality of support S(α̂).7 For each P, we define a corresponding payoff vector

Uai that contains the payoffs under each possible combination of arrival realizations if

player i arrive at ai ∈ S(α̂). For example, if α̂ has the support S(α̂) = {0, 1} then

Uai =
(
EUi[Sit(ai, {0, 0})] EUi[Sit(ai, {1, 1})] EUi[Sit(ai, {0, 1})]

)
for each ai ∈ S(α̂).

Of course, the position of each payoff in vector Uai is matched with the position of its

probability of occurrence in P.

In a SMNE, all arrivals ai ∈ S(α̂) must yield the same expected payoff, whereas all

other arrivals outside the support domain a¬i ∈ T̄ \ {S(α̂)} must yield at most the same

payoff. We therefore have the following equilibrium conditions for any SMNE:

PU′ai = PU′a′i
∀ai, a′i ∈ S(α̂) (4)

PU′ai ≥ PU′a¬i ∀ai ∈ S(α̂),∀a¬i ∈ T̄ \ {S(α̂)} (5)

To find a SMNE, we solve for α̂ the system of equations in (4) which contains a number

of equations equal to the cardinality of S(α̂). To find all SMNE, we apply the following

algorithm

1. Determine a support domain S(α̂) ∈ T̄ .

2. Compute P and Uai for all ai ∈ S(α̂) and try to solve condition (4) for α̂ under the

constraints that 0 ≤ αi(ai) ≤ 1 and θ ≥ 0 (note that this is done analytically).

3. Check condition (5) for any arrival a¬i ∈ T̄ \ {S(α̂)}.

4. Check that solution of α̂ is unique.

5. For the unique solution α̂, compute its values for all θ.

6. Pick another support for α̂ and repeat the algorithm.

7For example, if α̂ has support S(α̂) = {0, 1} with the set cardinality |S(α̂)| = 2, then the vector ele-
ments are the terms generated by the binomial expansion (α̂j(0) + α̂j(1))2 = α̂j(0)2+α̂j(1)2+2α̂j(0)α̂j(1).
Similarly, if if α̂ has support S(α̂) = {0, 1, 2} with the set cardinality |S(α̂)| = 3, then the vec-
tor elements are the terms generated by the binomial expansion (α̂j(0) + α̂j(1) + α̂j(2))2, i.e. P =(
α̂j(0)2 α̂j(1)2 α̂j(2)2 2α̂j(0)α̂j(1) 2α̂j(0)α̂j(2) 2α̂j(1)α̂j(2)

)
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Figure 7 presents the SMNE solutions under the classical queue disciplines for every θ ∈
[0, 6]. Figure (a) presents the probabilities αi(ai) for each ai ∈ T̄ , while (b) presents the

corresponding (indexed) equilibrium welfare. The solutions for each queue discipline are

presented in separate figures. There exists a (non-degenerate) symmetric mixed strategy

equilibrium for any θ > 0 under LIFO, while for θ > 1 under FIFO and SIRO due

to strategic dominance of period 0 arrivals for θ < 1. Depending on θ and the queue

discipline, the symmetric mixed strategy equilibria exists for different support sets S(α).

Under LIFO, the mixed strategy equilibrium profile is α{0,1} for 0 < θ ≤
√

2, while α{0,1,2}

for θ >
√

2. Under FIFO, α{0,2} for 0 < θ ≤ 1 + 2
√

2, while α{0,1,2} for θ > 1 + 2
√

2.

Lastly under SIRO, α{0,1,2} for all θ > 1. In terms of SMNE welfare, LIFO provides the

strictly highest equilibrium welfare for any relative queuing cost, while FIFO provides the

lowest.
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Figure 7: Symmetric Mixed Strategy Equilibria under FIFO, LIFO, and SIRO
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A.3 Statistics

Table 3: Test Statistics for Experimental Results

Panel A: Arrival Distribution

Arrivals (ai) Equilibrium difference Differences

Disciplines Mean Std. H1 p-value H1 p-value

FIFO 0.27 0.58 FIFO > FIFO∗ 0.000** FIFO < LIFO 0.000**

LIFO 1.22 1.39 LIFO > LIFO∗ 0.000** SIRO < LIFO 0.000**

SIRO 0.52 1.13 SIRO > SIRO∗ 0.000** FIFO < SIRO 0.080

Panel B: Best Response Arrivals

Best Response differences Arrival deviations

Discipline Share H1 p-value Obs. Mean Std.

FIFO 0.79 FIFO > LIFO 0.000** 30 0.27 0.58

LIFO 0.40 SIRO > LIFO 0.000** 86 1.22 1.39

SIRO 0.71 FIFO > SIRO 0.101 41 0.52 1.13

Panel C: Expected Queuing Times

Equilibrium difference Differences

Queue Discipline H1 p-value H1 p-value

FIFO FIFO < FIFO∗ 0.000** FIFO > LIFO 0.000**

LIFO LIFO < LIFO∗ 0.000** SIRO > LIFO 0.000**

SIRO SIRO < SIRO∗ 0.000** FIFO > SIRO 0.000**

Panel D: Expected Payoff

Equilibrium difference Differences

Queue Discipline H1 p-value H1 p-value

FIFO FIFO > FIFO∗ 0.000** FIFO < LIFO 0.304

LIFO LIFO > LIFO∗ 0.000** SIRO < LIFO 0.283

SIRO SIRO > SIRO∗ 0.000** FIFO < SIRO 0.001**

Panel E: Fairness

Ex-ante differences Ex-post differences Ex-ante vs. Ex-post

H1 p-value H1 p-value H1 p-value

LIFO < FIFO 0.000** LIFO < FIFO 0.000** FIFOante 6= FIFOpost 0.241

LIFO < SIRO 0.000** LIFO < SIRO 0.001** LIFOante 6= LIFOpost 0.000**

SIRO < FIFO 0.000** SIRO < FIFO 0.000** SIROante 6= SIROpost 0.083

Note: Significant at: * 5-percent level and ** 1-percent level.
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