

Solving the Selective Multi-Category

Parallel-Servicing Problem

by

Troels Martin Range,

Richard Martin Lusby

and

Jesper Larsen

Discussion Papers on Business and Economics
No. 5/2013

FURTHER INFORMATION
Department of Business and Economics

Faculty of Social Sciences
University of Southern Denmark

Campusvej 55
DK-5230 Odense M

Denmark

Tel.: +45 6550 3271
Fax: +45 6550 3237

E-mail: lho@sam.sdu.dk
ISBN 978-87-91657-83-2 http://www.sdu.dk/ivoe

Solving the Selective Multi-Category Parallel-Servicing

Problem

Troels Martin Range

Department of Business and Economics, COHERE, University of Southern Denmark,
Campusvej 55, 5230 Odense M, Denmark,

tra@sam.sdu.dk

Richard Martin Lusby

Department of Engineering Management, Technical University of Denmark
Produktionstorvet, building 426, 2800 Kgs. Lyngby, Denmark,

rmlu@dtu.dk

Jesper Larsen

Department of Engineering Management, Technical University of Denmark
Produktionstorvet, building 426, 2800 Kgs. Lyngby, Denmark,

jesla@dtu.dk

March 1, 2013

Abstract

In this paper we present a new scheduling problem and describe a shortest path
based heuristic as well as a dynamic programming based exact optimization algorithm
to solve it. The Selective Multi-Category Parallel-Servicing Problem (SMCPSP) arises
when a set of jobs has to be scheduled on a server (machine) with limited capacity. Each
job requests service in a prespecified time window and belongs to a certain category.
Jobs may be serviced partially, incurring a penalty; however, only jobs of the same
category can be processed simultaneously. One must identify the best subset of jobs
to process in each time interval of a given planning horizon while respecting the server
capacity and scheduling requirements. We compare the proposed solution methods
with a MILP formulation and show that the dynamic programming approach is faster
when the number of categories is large, whereas the MILP can be solved faster when
the number of categories is small.

Keywords: Machine scheduling, dynamic programming, node-disjoint shortest-path prob-
lem, preprocessing.

JEL Code: C61, MSC Code: 90B35, 90C35

1

1 Introduction

Given a set of possible jobs which can be undertaken in the future, one would like to select
a subset of these jobs which maximizes the total profit, and this must be done within
the bounds of the available resources. Such a problem is referred to as a selection problem.
Selection problems often arise as pricing problems when using column generation. Examples
are Gilmore and Gomory [1961], who use a knapsack problem as the pricing problem in
column generation for solving the cutting stock problem, and Desrochers et al. [1992], who
solve the vehicle routing problem with time windows by decomposing the problem into a set
partitioning problem as the master problem and a shortest path problem with time windows.
Chen and Powell [1999] apply column generation to the parallel machine scheduling problem
where the pricing problem selects a sequence of jobs to schedule on a single machine.

In this paper we describe and develop methods for a specific selection problem, which
we have termed the Selective Multi-Category Parallel-Servicing Problem (SMCPSP). This
problem has a set of jobs, where each job belongs to a category and has a prespecified service
time interval during which it requests service. It is only possible to service jobs from the
same category simultaneously, and it is only possible to service a limited number of jobs
at the same time. The planning period is split into atomic time intervals, and servicing
each job in an atomic period yields a direct profit. However, it is possible to service only a
fraction of a job, but doing this will add a penalty cost. The problem is then to identify the
most profitable subset of jobs to service in each atomic period for the full planning period
such that only jobs from the same category are serviced in the same period and such that
the limited capacity of the server is not violated. Note that in this paper the term server is
synonymous with machine. Instead of maximizing profit, we prefer to minimize the penalty
cost, where a positive profit corresponds to a negative penalty cost.

To illustrate this, we provide a solution to an instance of the problem in Figure 1. The
instance has 500 potential jobs divided into 16 categories, 25 periods, and a server capacity
of four. The periods are given horizontally, whereas the positions within the server are
illustrated vertically. The jobs undertaken are shown as blocks. If a block has either a gray
start or end, then it is partially serviced.

One particular application of the SMCPSP is the pricing problem for a room based
decomposition of the Patient Admission Scheduling problem (PAS) introduced by Demeester
et al. [2010]. This decomposition was proposed by Range et al. [2013]. The PAS is the
problem of assigning patients to rooms during a planning period such that patients are
assigned to hospital rooms in the best possible manner, while being transferred in and
out of rooms as little as possible. In this problem patients correspond to jobs, while the
categories correspond to the genders of the patients (which cannot be mixed). One can
identify rooms as servers, where each room has a certain capacity (i.e. the number of beds).
In the PAS problem, since a patient may be transferred in and out of rooms during their
admission, he/she can be viewed as a job which can be partially serviced by any of his/her
compatible rooms. While it is possible to admit a patient to a room for a fraction of their
stay, it is not possible to admit a patient to the hospital for fewer days than the patient
requests. Thus, if a patient is assigned to a room for part of their stay, they must be
admitted to at least one other room for the remainder of their stay to complete the service.

This paper is organized as follows. Initially, Section 2 provides a more formal definition of
the problem and presents a mathematical model thereof. Given that this is a new problem,
we review related literature in Section 3 to help place this new scheduling problem. Section 4
introduces two underlying networks for the problem and discusses several shortest path based

2

1 2 4 5 6 7 8 9 10 11 123 13 14 15 16 17 18 19 20 21 22 23 24 25

Category 15 Category 9 Category 4

Figure 1: Solution to instance 14 with 16 categories and a server capacity of four.

methods for generating lower and upper bounds on the SMCPSP. To reduce the problem
size, we describe efficient preprocessing strategies in Section 5. We exploit the preprocessed
problem to construct an exact dynamic programming algorithm in Section 6. Computational
results are presented in Section 7, while concluding remarks are given in Section 8.

2 Problem Description

A server can process Q jobs of the same category simultaneously. A set of possible jobs,
J = {1, . . . , J}, is given where each job requests service in a predefined period. Time is
discretized into atomic periods, T = {1, . . . , T }. Hence, each job, j ∈ J , has a starting
period, aj ≥ 1, and an ending period, bj ≤ T , and we define the set of service periods
for job j as Tj = {aj , . . . , bj}. We denote the set of all jobs which may be serviced in
period t as J per

t = {j ∈ J |t ∈ Tj}. Processing job j in period t has a penalty (or cost) of
pjt ∈ R ∪ {∞}, where pjt = ∞ for t /∈ Tj . If the penalty is negative, then we interpret the
penalty as a profit. A set of categories, C = {1, . . . , C}, is given, and cj ∈ C is the category
of job j ∈ J . Furthermore, we let Jc = {j ∈ J |cj = c} be the subset of jobs belonging to
category c ∈ C. As it is allowed to partially service a full job, we define two penalties. The
first penalty, πs, is a penalty for starting (or restarting) a job later than aj . The second
penalty, πe, is for prematurely ending the service of a job, i.e. stop processing an already
started job before period bj. These penalties are equal for all jobs and all periods. To ease
the notation, we define the set W = {(j, t) ∈ J × T |t ∈ Tj} as the set of feasible job-period
combinations. Furthermore, we let the set Jct = J cat

c ∩J per
t be the jobs of category c which

can be undertaken in period t. The server can only process jobs from the same category in
a single period, i.e. two jobs, i, j ∈ J with cj 6= ci, cannot be processed in the same period.
We let the set K = {(j, i) ∈ J ×J |cj 6= ci} be the pairs of jobs which are incompatible with
each other.

A solution to the SMCPSP is a sequence of sets of jobs S = (S1, . . . ,ST), where St ⊆ J .
We say that a solution is feasible for the SMCPSP if the three following conditions are all
satisfied:

1. For all t ∈ T the capacity constraint is satisfied, i.e. |St| ≤ Q.

2. For all t ∈ T the set St ⊆ J
per
t .

3. For all t ∈ T either the set St = ∅ or the set St ⊆ J cat
c for at most one category c ∈ C.

3

The set of all feasible sets in period t ∈ T is denoted Ft. The size of Ft is the set of possible
combinations of jobs in period t, which is given by

∑

c∈C

∑Q

q=0

(

|Jct|
q

)

. This is exponential in

the capacity, Q, as well as in the size, |Jct|, of the possible jobs within the same categories.
We let ft−1,t(S1,S2) be a function counting the number of late starts for the set of jobs

S2 in period t if we have processed the jobs in S1 in period t−1. We can express the function
explicitly as

ft−1,t(S1,S2) =
∣

∣(S2 ∩ J
per
t−1) \ S1

∣

∣ (1)

Similarly, we let gt−1,t(S1,S2) be a function counting the number of prematurely ended jobs
for the set of jobs S2 when we have processed the jobs in S1 in period t− 1. The number of
jobs prematurely ended can be expressed as

gt−1,t(S1,S2) = |(S1 ∩ J
per
t) \ S2| (2)

Then we can express the objective function as

P (S) =
∑

t∈T

∑

j∈St

pjt + πs
∑

t∈T \{1}

ft−1,t (St−1,St) + πe
∑

t∈T \{1}

gt−1,t (St−1,St) (3)

We say that a solution, S, with cost P (S) is minimal if we cannot remove a full job or parts
of a job without changing the cost and if we cannot exchange parts of a job with parts of
another job yielding the same cost but requiring less processing time. The first condition
avoids having jobs in the solution with zero penalty, and the second ensures as many free
periods as possible. In the case where the solution is not minimal, we have alternative
solutions to the problem. The selective multi-category parallel-servicing problem is then
the problem of identifying a feasible solution, S = (S1, . . . ,ST), which minimizes P (S). The
optimal solution value is denoted P ∗.

It should be noted that if πs = πe = 0, then the problem reduces to the problem of
identifying the most profitable job combination in each period and each category as there
would be no cost component connecting the periods. Hence, for each period we could just
select jobs with positive profit in decreasing order in each category and then select the
category which has the highest profit. It is easy to see that this solution would be optimal.

On the other hand if, πs = πe = ∞, then we disallow partially servicing a job and
essentially turn this problem into a unit-weight multiple-choice multiple-knapsack problem
with precedence constraints. The unit weight is because the weight of a job in each of the
capacity constraints is one unit. It is a multiple-knapsack problem because the problem
has a multiple number of knapsack constraints corresponding to the capacity constraints.
For each knapsack constraint we can only choose jobs of the same category, which makes
the problem a multiple choice problem. Finally, if it is not allowed to partially service a
job, once servicing the job has begun, it will continue to be serviced in subsequent periods
(assuming the job has a service time of more than one time period). This gives (possibly
cyclic) precedence constraints.

2.1 A Linear Integer Programming Model

A mathematical model can be constructed for the SMCPSP. We use the following variables.
Let xjt ∈ {0, 1} indicate whether or not job j is undertaken in period t. Furthermore, let
γs
jt indicate that job j is started or restarted in period t, and γe

jt indicate that job j is either
ended or preempted from period t− 1 to period t. To ensure that only a single category is

4

used in each period t, we let yct indicate whether or not a job in category c is undertaken
in period t. A mathematical formulation of the SMCPSP is then

min
∑

(j,t)∈W

(

pjtxjt + πsγi
jt + πeγe

jt

)

(4)

s.t.
∑

j∈J per
t

xjt ≤ Q, ∀ t ∈ T (5)

xjt − xj,t−1 − γi
jt ≤ 0, ∀j ∈ J , ∀t ∈ Tj \ {aj} (6)

xjt − xj,t+1 − γe
jt ≤ 0, ∀j ∈ J , ∀t ∈ Tj \ {bj} (7)

xjt − yct ≤ 0, ∀c ∈ C, ∀j ∈ J cat
c , ∀t ∈ T (8)

∑

c∈C

yct ≤ 1, ∀t ∈ T (9)

xjt ∈ {0, 1}, ∀(j, t) ∈ W (10)

γi
jt, γ

e
jt ≥ 0, ∀(j, t) ∈ W (11)

yct ≥ 0, ∀c ∈ C, ∀t ∈ T (12)

The objective (4) minimizes the total penalty of the solution. Constraints (5) state
that the capacity in each period cannot be exceeded. Constraints (6) and (7) ensure that
the start and end are measured respectively, while constraints (8) state that category c is
used in period t if job j from category c is undertaken in period t. Constraints (9) make
the categories mutually exclusive by only allowing a single category to be active in each
period. Finally, constraints (10)-(12) set the domains of the variables. Note that if the
xjt-variables are all binary, then the remaining variables will also have binary values in an
optimal solution. Hence, these are just standard non-negative continuous variables.

3 Related Literature

The problem considered in this paper requires that a subset of jobs is selected (all of which
belong to the same category) to be serviced on each day of a specified planning horizon
without exceeding the capacity of the server. In this section we briefly review other similar
selection problems and present a brief discussion on job shop scheduling.

Selection problems typically entail finding an optimal subset of items from an extremely
large number of possibilities and are, not surprisingly, widely studied in the operations
research literature. In the vehicle routing problem (VRP), for instance, one has a fleet of
vehicles and must determine which subsets of customers should be visited by which vehicles
to minimize the total driving distance while respecting a number of different constraints
(see e.g. Drexl [2012]). Similarly, in the crew pairing problem faced by airlines, one must
determine an optimal subset of flights to be flown by each crew member (see e.g. Anbil
et al. [1993], Andersson et al. [1998]). Typically, the selection problem for each vehicle/crew
member appears as the subproblem in a column generation framework and is solved as a
resource-constrained shortest-path problem. For a general introduction to this, we refer
the reader to Irnich and Desaulniers [2005]. This problem involves computing a least cost
shortest path that respects a set of resource constraints. It is typically solved using a label
setting algorithm, which implicitly considers all paths in the network and relies on strong

5

dominance criteria to remove unpromising labels and reduce the computation time (see e.g.
Irnich [2008]).

Other similar selection problems include the traveling salesman problem with profits (also
termed the Selective traveling salesman problem), the prize collecting steiner tree problem,
and the prize collecting arc routing problem. The former is a variant of the well-known
traveling Salesman problem in which it is no longer necessary to visit all customers. Instead,
a profit is assigned to each vertex, and one must maximize the collected profit, balanced
with travel cost. A survey on variants of this selection problem as well as techniques for
solving them is given by Feillet et al. [2005]. Similarly, in the prize collecting steiner tree
problem each vertex of a weighted graph is associated with a prize and a cost, and one must
find a spanning tree by using a subset of the nodes that collects a total prize not less than
a certain quota. Haouri et al. [2013] present several compact mixed integer programming
formulations and describe the theoretical properties of each. Near-optimal solutions for
instances containing up to 2500 nodes and 3125 edges are given. In the prize collecting arc
routing problem, a prize is assigned to each edge (in addition to cost) and is collected the first
time the edge is traversed. One must typically construct a tour in the given network that
maximizes the sum of the collected prizes minus the travel cost. The polyhedral structure
of this problem is described in Aráoz et al. [2006], while Black et al. [2013] consider an
extension of the problem in which the arc prizes are time dependent.

The SMCPSP with C = 2 arises as the pricing problem of the decomposition of the
Patient Admission Scheduling (PAS) problem. In PAS the server corresponds to a room
having Q identical beds, and the categories are the genders which in some cases cannot
be mixed. The jobs are given by patients having to occupy a bed during their stay at the
hospital, and the penalties correspond to the contribution to the reduced cost coefficient for
a room schedule. Finally, penalties πs and πe are incurred whenever we transfer a patient
into the room after their admission and transfer a patient out of the room before his/her
discharge. PAS was introduced by Demeester et al. [2010], whereas the decomposition is
described by Range et al. [2013].

Another well-known selection problem is the knapsack problem (see e.g. Pisinger [1995]).
In this problem one is given a set of items, each with an associated weight and profit, and one
must select an optimal subset of items that maximizes the profit while respecting a certain
weight capacity. One can view the SMCPSP as a series of interconnected knapsack problems
where the weight of each item (job) is identical and the capacity of each knapsack is simply
the capacity of the server. In addition to the capacity requirement, one must also ensure
that all items (jobs) placed in the knapsack belong to the same category. Such restrictions
require additional constraints and hence give rise to a multidimensional knapsack. A recent
review of knapsack problem variants and their relative difficulty is provided by Smith-Miles
and Lopes [2012].

Since this problem entails assigning jobs to a machine, this section would not be complete
without a short discussion of the SMCPSP’s relation to job-shop scheduling. In job-shop
scheduling problems one is given a set of jobs where each job requires a certain processing
time on a set of machines that can host one job at a time. Typically, one must schedule the
jobs in a way that minimizes the total time required to complete the jobs, the tardiness of
the jobs, or the idle time of the machines. Often no preemption is permitted. That is, one
cannot end a job prematurely once it has begun. There are several differences between the
job-shop scheduling problem and the SMCPSP. In the latter, all jobs require servicing by
one machine, jobs cannot be processed outside their service window, the time to complete
all jobs is known a priori, the server can host more than one job at a time, and preemption

6

is possible. An introduction to job-shop scheduling and its complexity is given in Garey
[1976].

In the case where the problem only has a single category, the problem can be solved as a
Q node-disjoint shortest-path problem, i.e. identifying Q paths having no nodes in common
such that the total sum of the penalties obtained is minimized. The network required for this
is described in Section 4.2. Bang-Jensen and Gutin [2001] include a chapter on identification
of disjoint paths in digraphs along with a description of the relevant literature. In our case,
however, Q node-disjoint paths always exist, but we are interested in the least total penalty
instead. Tholey [2005] develops a polynomial algorithm for finding two node disjoint paths
in a directed acyclic graph. Suurballe and Tarjan [1984] construct a dynamic programming
algorithm for identifying minimum total cost pairs of paths which are edge disjoint in a
graph with non-negative costs. The emphasis in our case is somewhat different as we are
trying to identify node-disjoint paths in a graph having possibly negative costs.

4 Underlying networks

Before solving the problem, we discuss two networks which are closely related to the problem.
The first network is a small network representing whether or not a single job is processed
in each of the time periods. We will refer to this network as the single job network and
it is described in Section 4.1. The single job network is primarily used for preprocessing
(see Section 5.1) and as reference notation. The second network is a full representation of
a single stream of jobs, i.e. given that we have a server with a capacity of one job in each
period, the network gives the possible sequences of (partial) jobs which can be undertaken
in each period. This network can be used to identify upper and lower bounds of an optimal
solution (see Section 4.3). We refer to this network as the full period-job network and it is
described in Section 4.2. We finish this section with a few comments on solving shortest
path problems in acyclic graphs (see Section 4.4) since our networks are acyclic due to the
temporal nature of the scheduling environment.

4.1 Single job network

Given a job, j ∈ J , we will only include the full job or part of the job in an optimal solution
if it reduces the objective. This is because it is allowed to exclude part of or the full job in
the solution without incurring a penalty. To exploit this, we set up a directed graph which
can be used to calculate the smallest possible penalty for a job.

0 1 2 3 4 5 6 7 8

Figure 2: Single job graph for T = {1, . . . , 7}

The graph is illustrated in Figure 2. It has two nodes for each t ∈ T , where the first
node corresponds to the job being processed in period t, while the second node corresponds

7

to the job not being processed in period t. We let V = {vt|t ∈ T } be the set of nodes for
jobs being processed (the white nodes) and U = {ut|t ∈ T ∪ {0, T +1}} be the set of nodes
for the job not being processed (the gray nodes). Additionally, we have a source node, u0,
and a sink node, uT+1, as a part of U since these correspond to the case where the job is not
being processed prior to the planning horizon or after the planning horizon. In all, we have
the node set N = V ∪ U . The graph has an arc from each node corresponding to period
t to each node corresponding to period t + 1 for t = 0, . . . , T . An arc (ut, vt+1) between
a node from ut ∈ U to a node from vt+1 ∈ V indicates that the job is started in period
t + 1. Likewise, an arc (vt, ut+1) indicates that the job is discontinued after period t. We
denote the set of arcs A. This is the underlying graph for any job in the problem. The only
difference between the jobs is how the penalties are set on the arcs in the graph. Thus, we
will set up an individual cost matrix for each of the jobs. We will denote this cost matrix
as cj for job j, and it can be specified as follows:

cjhk =







































pj,t+1, (h, k) = (vt, vt+1)
0, (h, k) = (ut, ut+1)

pj,t+1 + πs, (h, k) = (ut, vt+1), t+ 1 > aj
pj,t+1, (h, k) = (ut, vt+1), t+ 1 ≤ aj

πe, (h, k) = (vt, ut+1), t < bj
0, (h, k) = (vt, ut+1), t ≥ bj
∞, (h, k) /∈ A

(13)

The single job graph for job j is then denoted Gj(N,A, cj).
A path through this graph corresponds to a schedule for processing the job. Such a

schedule can be divided into subsequences of periods where each subsequence either processes
the job for the entire subsequence or does not process the job for the entire subsequence. In
the following discussion we denote a subpath (ut, vt+1, . . . , vs−1, us) for a processing sequence
for t < s − 1. Similarly, we denote the subpath (ut, ut+1, . . . , us−1, us) as a non-processing
sequence for t < s. The cost of using a non-processing sequence is always zero. Any
path can be composed of a sequence of processing sequences and non-processing sequences
having identical start and end nodes. Let αjts be the cost of traversing this processing
sequence in the graph for job j. If αjts ≥ 0, then the processing sequence will yield a non-
negative penalty, and it is therefore better to leave the job unprocessed. In other words,
if αjts ≥ 0, then it is better to use the non-processing sequence (ut, ut+1, . . . , us−1, us)
instead of the path (ut, vt+1, . . . , vs−1, us) as it makes it possible to process another job, i,
for the processing sequence which may have negative αits. Likewise, a partial processing
sequence is a subpath (vt, vt+1, . . . , vs−1, us) starting with a processing node and having
only a non-processing node as the last node. For a given job j ∈ J , we let βjts be the
penalty for the partial processing sequence starting in node vt and ending in node us. Note
that βjts + cjut−1,vt

= αj,t−1,s. Figure 3 schematically shows this. The full black path
represents the processing sequence (u2, . . . , u7) with length αj,2,7, while the dashed path
indicates the partial processing sequence (v2, . . . , u7) with length βj,2,7. Obviously, if we
extend the dashed path by the dotted arc (u1, v2) with cost cju1,v2

, we would obtain the
processing sequence (u1, . . . , u7) with length αj,1,7.

For two nodes, n1, n2 ∈ N , corresponding to job j for the graph Gj(N,A, cj), we let
δj(n1, n2) be the value of the shortest path from n1 to n2. If no path exists from n1 to n2,
then we define δj(n1, n2) =∞. In the case where a path exists between two non-processing
nodes, ut, us ∈ U with t < s, a trivial upper bound on the shortest path is obtained by
using the path (ut, . . . , us) which has value 0, i.e. for each pair ut, us with t < s we have

8

0 1 2 3 4 5 6 7 8

Figure 3: Relationship between αjts and βjts

that δj(ut, us) ≤ 0 for all j ∈ J . Next, for a processing node vt, the value δj(vt, us) is the
best possible value for finishing job j before period s if it is being processed in period t.

Given that there are two (sub-)paths in the single job network, we can compare these
in at least two ways. One way is to compare the cost of the two paths – the one with the
lowest cost is deemed better than the other path. The second way of comparing the paths is
on the utilization of the server. Intuitively, if one path utilizes the server less than the other
path, then the first path is considered to be better, as it allows for other paths to utilize
the server more. To be more precise, let P = (wt, . . . , ws) and P ′ = (w′

t, . . . , w
′
s) be two

paths, with t < s, and where wt = w′
t and ws = w′

s. We say that P is more flexible than P ′

if {w ∈ P ′|w ∈ U} ⊂ {w ∈ P|w ∈ U}. A more flexible path does not utilize the server in
periods where the less flexible path does not utilize the server. Furthermore, the more flexible
path has some periods where it does not utilize the server but where the less flexible path
does. Hence, the more flexible path allows other paths to utilize the server in these periods.
Note that the processing sequence (ut, vt+1, . . . , vs−1, us) is the least flexible (ut, us)-path,
i.e. any other (ut, us)-path in the graph will be more flexible than the processing sequence.
On the other hand, the non-processing sequence (ut, ut+1, . . . , us−1, us) is the most flexible
(ut, us)-path. This is an important feature of the processing sequences and non-processing
sequences, which we will exploit in Propositions 3-5.

4.2 Full Period-Job Network

In each period we can either undertake jobs or have no jobs being serviced. Let E = {et|t ∈
T } be the set of nodes indicating that no job is undertaken in the period t ∈ T . For
each job-time combination in W , a node is added and we refer to an element of this set as
wjt ∈ W . Finally, a source node, o, and a sink node, d, are used. This gives the node set
N =W ∪ E ∪ {o, d}.

The graph is layered and has a layer for each period t ∈ T as well as a layer for the source
node and a layer for the sink node. We label the layer for the source node as 0 and label the
layer for the sink node as T + 1. An arc exists for each pair of nodes in adjacent layers in
the direction of increasing layers. The cost of an arc (h, k) depends on three factors: (1) if
k = wj,t+1 ∈ W , then we put cpenhk = pj,t+1, otherwise we put cpenhk = 0; (2) if h = wjt ∈ W
with t < bj and k 6= wj,t+1 ∈ W , then job j is finished prematurely and we put couthk = πe,
otherwise we put couthk = 0; and (3) if k = wj,t+1 ∈ W with t + 1 > aj and h 6= wjt ∈ W ,
then job j is started late and we put cinhk = πs, otherwise we put cinhk = 0. The cost of arc
(h, k) is then chk = cpenhk + couthk + cinhk.

9

4.3 Shortest Path Based Bounds

It is possible to identify simple bounds on the problem by observing that a path through
the full period-job network described in Section 4.2 yields a single stream of jobs to be
executed. Hence, solving a shortest (o, d)-path problem in the full period-job network yields
a least cost sequence of nodes having one node for each layer and where the nodes either
correspond to a job being processed in the period or the server being idle for a single stream
in the period. If Q = 1, then this is clearly an optimal solution for the SMCPSP. However,
this is not the case for Q ≥ 2, but we can use the graph to obtain upper and lower bounds
on the optimal solution value for SMCPSP.

Let z(M) be the value of the shortest (o, d)-path in the subgraph induced by M ⊆ N
where o, d ∈ M . We let (o, v1, . . . , vT , d) be a path through the induced subgraph. It is
clear that it is not possible to find a better (o, d)-path in the graph than one with value
z(N), thus duplicating this path Q times will yield a lower bound solution i.e. we have that
Qz(N) ≤ P ∗.

An upper bound can be obtained by iteratively removing nodes from the graph. The
method begins with M1 = N and iteration counter i := 1. The shortest (o, d)-path problem
on the subgraph induced by Mi is solved to obtain the path (o, vi1, . . . , v

i
T , d). If vit =

wjt ∈ W , then remove vit as well as all nodes wht with (j, h) ∈ K from Mi to obtain
Mi+1. We repeat this process if i ≤ Q, otherwise we terminate with an upper bound value
z(M1) + . . .+ z(MQ). This is indeed an upper bound as we only construct paths which are
compatible with the previously obtained paths. That is, by construction we have that

Qz(N) ≤ P ∗ ≤ z(M1) + . . .+ z(MQ)

if the sequence M1, . . . ,MQ is obtained using the method described above. Note that
we do not exclude any nodes from E, and it is therefore always possible to use the path
(o, e1, . . . , eT , d) having the cost of zero. Consequently, the heuristic construction will be
trivially upper bounded by zero.

4.4 Comments on Shortest Path algorithms in Acyclic Graphs

In the following sections we use shortest path algorithms extensively, and a few comments
are needed prior to this discussion. First of all, recall that the networks in this paper are
all acyclic networks which make the algorithms for solving shortest path problems efficient
(polynomial worst case time complexity in the number of arcs). Now, suppose that the
acyclic graph is given by G(N,A), where N is the set of nodes and A is the set of arcs. The
shortest path problem can be solved easily by first sorting the nodes in topological order,
and then identifying the shortest path to each of the nodes in this order. See Cormen et al.
[2001] or Ahuja et al. [1993] for introductions to solving shortest path problems. We will
refer to this approach as a forward pass where we identify the shortest (o, v)-path for v ∈ N .
In later sections we use the shortest (v, d)-path for any v ∈ N . This is also easy to identify
as we simply have to identify the shortest (d, v)-path for the nodes in a reverse topological
order, i.e. we start with d and then extend to the immediate predecessors of d to get their
shortest paths. For each of these nodes we would then extend to their predecessors and so
forth.

10

5 Problem Size Reduction

The SMCPSP is highly structured, and we can exploit this structure to assist the exact
solution procedure. We provide two ways of simplifying the problem. The first way is to use
the single job network to identify jobs that will never be started nor ended in some periods.
This is described in Section 5.1. In the second approach, which is described in Section 5.2,
we use the single job network for different jobs to compare these and identify which jobs are
better than others.

5.1 Single Job Preprocessing

A (u0, uT+1)-path in the single job network described in Section 4.1 gives which periods
the job j should be processed. The value δj(u0, uT+1) of a least cost (u0, uT+1)-path in
this graph is the best possible contribution of job j. The path from u0 to uT+1 using only
nodes from U will have cost zero, and if the least cost (u0, uT+1)-path has value zero then
we will never include job j in the optimal solution of the SMCPSP. The reason is that we
are indifferent to whether or not to include the job penalty wise. But if we include the job
j, then it might use server capacity which is better used for jobs yielding negative penalties.
In general, we will always remove paths yielding a zero penalty.

The above argument will be used repeatedly to remove paths – thereby removing the
corresponding (partial) jobs – which yield a zero penalty, as they may use server capacity
that can be better used for other jobs. Note that we may in some cases be able to include
the job without pushing other jobs out of the solution. In that case, we have alternative
optimal solutions, where we select the one that excludes jobs yielding a zero total penalty.
Thus the preprocessing below aims at identifying a solution excluding as many zero total
penalty jobs as possible.

In the case where the least cost (u0, uT+1)-path is negative it may be prudent to include
either the full job or parts of the job in the solution. We can, however, identify periods for
which we will never start, finish, or continue the job.

Given an arc (n,m), where either n ∈ V or m ∈ V with cost cjnm, it is easy to find a least
cost (u0, n)-path as well as a least cost (m,uT+1)-path. Let the values of these least cost
paths be δj(u0, n) and δj(m,uT+1), respectively. The value of the least cost path including
the arc (n,m) must then be δj(u0, n) + cjnm + δj(m,uT+1) and if this value is non-negative,
then the arc will never be used in the optimal SMCPSP solution we are seeking. However,
we can do better than this, as we can eliminate certain arcs which may be on paths yielding
negative costs. This elimination is described in the following two propositions.

Proposition 1. Let j ∈ J and suppose that for some t : aj < t ≤ bj the penalty pjt > 0.
Then it will never optimal to start job j in period t.

Proof. If we have to start the job in period t, then the path in the graph has to pass
through the node ut−1. From this node two paths exist to node ut+1, one passing through
vt, and one passing through ut. Comparing the costs of these two paths, we have that
cut−1,ut

+cut,ut+1
= 0 < cut−1,vt+cvt,ut+1

= πs+pjt+πe for pjt > 0. Hence, it is not optimal
to pass through vt on the path from ut−1 to ut+1. Next, from the node ut−1 two paths to
vt+1 exist, one passing through ut, and one passing through vt. Again comparing the two
paths costs we have cut−1,ut

+ cut,vt+1
= πs + pj,t+1 < πs + pjt + pj,t+1 = cut−1,vt + cvt,vt+1

,
and it will again not be optimal to pass through vt if pjt > 0.

11

The consequence of Proposition 1 is that if we start a job late, it will always be better
to delay starting the job until the penalty is non-positive, and we can therefore eliminate
the possibility of using the arc (ut−1, vt). As we can eliminate the possibility of starting a
job late in a period, we can also eliminate the possibility of prematurely ending a job in a
period. This is what the next proposition states:

Proposition 2. Let j ∈ J and suppose for some t : aj ≤ t < bj the penalty pjt > 0. Then
it will never be optimal to end job j between period t and period t+ 1.

Proof. Two partial paths exist which end job j from period t to period t+1. These paths are
vt−1 → vt → ut+1 and ut−1 → vt → ut+1. Now, observe that the first path is worse than the
path vt−1 → ut → ut+1 because cvt−1,ut

+ cut,ut+1
= πe < pjt + πe = cvt−1,vt + cvt,ut+1

, and
the second path is worse than ut−1 → ut → ut+1 as cut−1,ut

+ cut,ut+1
= 0 < πs+ pjt+πe =

cut−1,vt + cvt,ut+1
.

As a consequence of Proposition 2, it will be better to end the job earlier than time t or
not to end it between time t and time t+ 1 than to end it between the periods t and t+ 1.
Thus, we will never use the arc (vt, ut+1) and it can be eliminated.

When eliminating arcs, we reset their cost values to infinity, i.e. if we eliminate arc
(n,m) for job j, we put cjnm =∞. We will use this to distinguish between the arcs that are
usable and the arcs which are not usable in the dynamic programming procedure, which is
described in Section 6.

The elimination of arcs described above will tend to become stronger as the penalties of
the individual job-time combinations on average get larger. Furthermore, if the penalties
πs and πe increase, the elimination of arcs will also become stronger, as more shortest
paths using arcs having these penalties will become non-negative. This is verified by the
computational experiments discussed in Section 7.2.

5.2 Job Ranking and Elimination

The capacity in each period is limited by Q, and it will not be optimal to undertake jobs for
which Q better jobs exist. In this section we describe how to rank the jobs such that a job
guaranteeing to yield a worse solution if it is undertaken without undertaking another better
job will be ranked worse than the other job. Intuitively, given two jobs i, j ∈ J cat

c , job i is
better than job j if for any way of processing job j we can identify a way of processing job
i which is at least as flexible and has no larger cost than the way of processing job j. We
will exploit the fact that processing sequences are the least flexible ways of processing a job
in a specific period. This allows us to make direct comparisons on cost as all other paths
are no less flexible than the processing sequences. We formalize the job ranking below.

In this section we only compare jobs within the same category. This is due to the fact
that even though a job from one category is better than a job in another category, it may
happen that the second category overall has better jobs than the first category. Hence, if
we first rank jobs across categories and later eliminate jobs based on this ranking, we may
end with a non-optimal solution.

Given a (ut, us)-processing sequence for job j ∈ J cat
c , then if another job i ∈ J cat

c exists
with αjts > δi(ut, us), it is better to use the shortest path yielding the value δi(ut, us) for
i than to use the (ut, us)-processing sequence for job j. Not only is the cost of using the
shortest path for job i less than the cost of using the (ut, us)-processing sequence for job
j, but it may also be more flexible than the (ut, us)-processing sequence, because it may

12

have more elements from U than the processing sequence. Furthermore, if αjts = δi(ut, us)
and i < j, then for tiebreaking we say that it is better to use the path yielding δi(ut, us)
for job i than using the (ut, us)-processing sequence for job j. Finally, if αjts = δi(ut, us)
and a (ut, w

i
t+1, . . . , w

i
s−1, us) exists having value δi(ut, us) with wi

r ∈ U for some r ∈
{t + 1, . . . , s − 1}, then the path (ut, w

i
t+1, . . . , w

i
s−1, us) has the same value for job i as

the (ut, us)-processing sequence while being more flexible, as it has more elements from
U than the processing sequence. As a consequence, the path (ut, w

i
t+1, . . . , w

i
s−1, us) gives

the possibility of including another job with negative penalty in period r. Observe that if
αjts ≥ 0, then we can exploit the first and the last conditions, as any other job will have
δi(ut, us) ≤ 0. If δi(ut, us) < 0, then we have found a sequence which has a strictly lower
cost. On the other hand, if δi(ut, us) = 0, then we know that the non-processing sequence
(ut, ut+1, . . . , us) using only nodes from U will have cost 0, which satisfies the last condition.
Hence, we are only interested in the situations where αjts < 0.

In order to exploit the fact that one job can be considered better than another job, we
define three sets of jobs which are regarded as better than job j if we only observe the period
from t to s. First we define the set of strictly better jobs as

D1
jts = {i ∈ J

cat
c |αjts > δi(ut, us)}

Next, the set of jobs that are only being more flexible, but which have the same cost as job
j, is given by

D2
jts = {i ∈ J

cat
c |αjts = δi(ut, us), ∃r : t < r < s ∧ wi

r ∈ U}

where wi
r is a part of a path (ut, w

i
t+1, . . . w

i
s, us) that has a cost equal to δi(ut, us) for job i.

Finally, the set of jobs that have the same cost, but which have smaller indices, is defined
as

D3
jts = {i ∈ J

cat
c |αjts = δi(ut, us), i < j}

The latter set is used for tie breaking. Now, the set of jobs which are better than the
(ut, us)-processing sequence for job j is the union of the three sets above

Djts = D1
jts ∪D2

jts ∪D3
jts (14)

When the size of the set Djts increases, there are more jobs which are better than job j for
the period pair t, s. Intuitively, if the size of Djts is sufficiently large for all pairs of t, s,
then it is less likely that job j will be included in an optimal solution for the SMCPSP. This
gives rise to the following proposition for eliminating jobs:

Proposition 3. Let j ∈ J cat
c for category c ∈ C and let Djts be defined as in (14). If

|Djts| ≥ Q for all pairs t, s ∈ T with aj − 1 ≤ t < s ≤ bj + 1 and αjts < 0, then an optimal
solution for SMCPSP exists which does not include job j.

Proof. Suppose that j ∈ J cat
c for c ∈ C and for one pair t, s with aj − 1 ≤ t < s ≤ bj + 1

the processing sequence (ut, vt+1, . . . , vs−1, us) for job j is a part of the optimal solution
S∗ = (S∗1 , . . . ,S

∗
T). As argued above, if αjts ≥ 0, then the processing sequence can be

replaced by the sequence (ut, ut+1, . . . , us−1, us) having the same or better cost than the
processing sequence for job j. Hence, assume that αjts < 0 and assume that |Djts| ≥ Q.
Then at least one i ∈ Djts must exist which is not part of the optimal solution. This job i
can be in one or more of the sets D1

jts, D
2
jts, and D3

jts. If i ∈ D1
jts, then we can replace the

processing sequence by a better sequence for job i, and the solution would therefore not be

13

optimal. On the other hand, if i ∈ D2
jts∪D

3
jts, then a feasible sequence for job i exists which

yields the same cost, and we can therefore replace the processing sequence for job j with
the sequence for job i. Hence, in any case we can replace the processing sequence for job j
with a sequence for job i, which is no worse. As this is true for any solution including the
processing sequence for job j, it is also true for an optimal solution including the processing
sequence for job j. Hence, we can identify an alternative solution excluding job j.

Proposition 3 enables us to eliminate all jobs satisfying the condition before solving the
actual problem, thus reducing the size of the problem. However, one must exercise caution
when using Proposition 3. This is due to elimination based on the set D2

jts, which may
result in two jobs both being deemed better than the other, hence risking the possibility of
eliminating both jobs. As a consequence, we apply the simpler version where we limit Djts

to the union of D1
jts and D3

jts and thereby avoid the problem altogether.
The remaining jobs are then included when solving the problem. These jobs can be

ranked depending on the period, i.e. identifying which jobs are best to start in a period
and which jobs are best to end in a period. Hence, in a given period, we first rank the jobs
which can be started in the period (see Proposition 4) and then we rank the jobs which can
be ended in a period (see Proposition 5). This is done by comparing (partial) processing
sequences beginning in the period for one job j with the corresponding shortest path value
for another job i. We may thereby show the existence of better paths, both cost wise and
flexibility wise, for job i for each of the (partial) processing sequences for the first job j.

We begin with the start ranking for a period. If a job j is started in period t, then a
(ut−1, us)-processing sequence has to be undertaken for job j for some s > t. However, if
we have another job i which can also be started in period t and for which we can construct
a path for arbitrary s > t including the arc (ut−1, vt) that has a cost no larger than using
the (ut−1, us)-processing sequence for job j but may be more flexible than the (ut−1, us)-
processing sequence, then we would start job i instead of job j. Hence, if we start job j in
period t, then we have to ensure that job i is also started in period t or has been started in
a previous period. This is the main idea in Proposition 4.

Proposition 4. Let j ∈ J cat
c for category c ∈ C, and for each i ∈ J cat

c let (vt, w
i
t+1, . . . , w

i
s−1, us)

for vt ∈ V and us ∈ U be a path having value δi(vt, us). If

αj,t−1,s ≥ δi(vt, us) + ciut−1,vt
(15)

for all t < s ≤ bj + 1 with αj,t−1,s > δi(vt, us) + ciut−1,vt
for some s, then it will never be

better to start job j in period t without either starting job i in period t or processing job i
in both the periods t− 1 and t.

Proof. Suppose that jobs i, j ∈ J cat
c and suppose that (15) holds for all t < s ≤ bj + 1.

In the case where job i is not being processed in period t − 1 and period t, we have the
following: If we start job j, then regardless of which time s we end job j we can identify a
sequence for job i which yields no more penalty than job j. Hence it will not be better to
start job j without starting job i. If job i is being processed in the periods t− 1 and t, then
it will take up a position and only Q − 1 positions are left for job j, in which case we can
freely start job j because the better job i is already started.

Proposition 4 can be used to rank the jobs for starting. If (15) holds as an equality for all
t < s ≤ bj , then the two jobs can be viewed as equally good, and we then rank on the job
index, i.e. we say that it is better to start job i than job j if i < j. Now let j ∈ J cat

c and

14

let Rs
jt ⊆ J

per
t ∩J cat

c be the set of jobs i satisfying Proposition 4 as well as the jobs with a
lower index satisfying (15) with equality for all t < s ≤ bj, i.e. it is better to start each job
i ∈ Rs

jt in period t than starting job j in period t. Clearly, we have that if |Rs
jt| ≥ Q, then

we will never start job j in period t.
Now we turn to the ranking of jobs which can be ended in a period. The idea is that if

we have (at least) two jobs, i, j, receiving service from the previous period and we are trying
to end one of the jobs, say job j, prematurely, then if job i can obtain a better cost than
job j while being more flexible in the upcoming periods, we will rather end job j than job
i. Hence, we would either end both jobs, end job j, or continue both jobs. This is basically
what Proposition 5 states.

Proposition 5. Let j ∈ J cat
c for category c ∈ C and for each i ∈ J cat

c let (vt, w
i
t+1, . . . , w

i
s−1, us)

for vt ∈ V and us ∈ U be a path having value δi(vt, us) with bi ≤ bj. If

βj,t−1,s ≥ δi(vt, us) + civt−1,vt
(16)

for all t < s ≤ bj + 1 with βj,t−1,s > δi(vt, us) + civt−1,vt
for some s, then it will never be

better to continue job j instead of job i in period t without continuing job i in period t.

Proof. Suppose that S∗ = (S∗1 , . . . ,S
∗
T) is an optimal solution and i, j ∈ S∗t−1 are included

in the optimal solution in period t. Furthermore, suppose that jobs i, j are defined as in
Proposition 5. If we continue job j and discontinue job i from period t − 1 to period t,
we incur the penalty βj,t−1,s for some future period s where job j is discontinued. How-
ever, for this period we could use (vt−1, vt, w

i
t+1, . . . , w

i
s−1, us) for job i, which yields a cost

δi(vt, us) + civt−1,vt
that is no larger than job βj,t−1,s. Thus, we can always exchange the

partial processing sequence (vt, . . . , vs−1, us) for job j with the corresponding best path for
job i and thereby get a solution which is no worse.

As for the insertions we can establish the set of jobs which are better to end after period t−1
compared to a given job j. We denote as Re

jt the set of all the jobs i satisfying Proposition 5
as well as the jobs i < j satisfying (16) with equality for all t < s ≤ bj + 1. Note that we
cannot use the relation |Re

jt| ≥ Q to state that we will never end job j in period t. This is
due to the fact that not all elements of Re

jt may be present in the set St−1, and therefore it
may still be of interest to end job j after period t− 1.

As mentioned in the beginning of this section, the ranking and elimination of jobs is only
feasible for jobs within the same category. As a consequence, we have that if the number
of categories increases while the number of jobs and the capacity remain the same, then
ranking and elimination become weaker as we do not have as many jobs in each category to
use for the ranking.

6 A Dynamic Programming Approach

The SMCPSP has a structure which lends itself to dynamic programming. In each period
we have to identify a combination of at most Q, compatible jobs and we can construct
this combination without any restrictions except the cost, which is calculated based on the
combination of jobs in the surrounding periods. In terms of dynamic programming we can
use the periods as stages and the possible combinations of the jobs in each of the periods as
the states. In this section we will use the terms stage and period interchangeably.

15

The dynamic programming is based on the construction of feasible combinations of jobs,
S ∈ Ft, in increasing periods, t. If necessary, we use subscript t for St to explicitly state
that the set St is from Ft. We term a feasible combination of jobs S, indicating a state set.
In this section we will use the following:

• Pt(S) is the minimal cost of obtaining S in stage t using any sequence of sets (S1, . . . ,St−1) ∈
F1 × . . .×Ft−1.

• Lt(S) = (Pt(S),S) is the state corresponding to state set S at stage t, where S ∈ Ft.

• St = St ∩ J
per
t+1 is the set of jobs included in St in stage t which are not required to

finish between period t and period t+1, i.e. bj > t for j ∈ St and bj = t for j ∈ St\St.
We will refer to the set St as the reduced state set.

• Λt is the set of efficient states in stage t. A state is efficient if it is not dominated
by any other state in the stage. Sufficient criteria for dominance are described in
Section 6.1.

• J s
t = {j ∈ J |cjut−1,vt

<∞} is set of jobs which can be started in period t.

• J e
t = {j ∈ J |cjvt−1,ut

< ∞} is the set of jobs which can be discontinued after period
t− 1.

We elaborate on some of these elements in what follows. To identify the smallest possible
value of the objective function for a state set S, we reformulate the objective (3) as a
recursion

Pt(S) =















∑

j∈S

pjt, t = 1

∑

j∈S

pjt + min
S′∈Ft−1

{

Pt−1(S
′) + π

s
ft−1,t(S

′
,S) + π

e
gt−1,t(S

′
,S)

}

t > 1
(17)

where the value of state S is calculated as the direct penalty received for the state and the
minimum penalty of shifting from a set of jobs in the previous period t− 1 to the set of jobs
S in period t.

Proposition 6. Let St ∈ Ft be a feasible combination of jobs in period t ∈ T . Then Pt(St)
derived by recursion (17) yields the minimum penalty for obtaining St for any sequence
(S1, . . . ,St) ∈ F1 × . . .×Ft.

Proof. For t = 1,
∑

j∈S1
pj1 is exactly the cost of using set S1 in period 1. Now sup-

pose that t = 2 and we have found P1(S1) for all S1 ∈ F1. Let S2 ∈ F2, and suppose
that P2(S2) is not the minimum penalty value for S2. Then an S1 ∈ F1 must exist
such that minS′∈F1

{P1(S ′) + πsf1,2(S ′,S2) + πeg1,2(S ′,S2)} > P1(S1) + πsf1,2(S1,S2) +
πeg1,2(S1,S2). But this is in contradiction to the left-hand side being minimal. The same
argument is valid for t > 2, and we thereby have that recursion (17) will give the minimum
penalty for obtaining any state St ∈ Ft for any t ∈ T .

Proposition 7. min{PT (S)|S ∈ FT } is the optimal value for SMCPSP.

Proof. By proposition 1 we know that PT (S) is the minimum value for obtaining state
S ∈ FT . Then selecting the minimum value feasible end state, S∗, must be the optimal
solution. If it is not, then another solution must exist such that S ′ ∈ FT yielding a better
end state solution, but this is in contradiction with S∗ having minimal value.

16

From this recursion a dynamic programming algorithm can be derived, where we iterate
through each stage and generate the possible combinations based on the states from the
previous stage. We will elaborate further on the dynamic programming algorithm in Sec-
tion 6.2.

6.1 State Dominance

A vital part of a dynamic programming algorithm is the dominance used to reduce the
number of possible, efficient states. Given two states in the same stage, we say that the
first state dominates the second state if we can prove that for any extension of the second
state to the end stage an extension of the first state to the end stage exists such that the
extension of the first state will have no larger cost than the extension of the second state. In
the SMCPSP it is not possible to dominate directly on the cost component as the future cost
is dependent on the jobs in the current state. In this section we will present two sufficient
conditions for dominance.

The first type of dominance assumes that for each reduced state set S we know a lower
bound on the value on any extension of S to the end stage as well as an upper bound
on the best feasible extension of S. We denote these two bounds as LBt(S) and UBt(S),
respectively. Now we have the following dominance rule:

Dominance 1. If S1,S2 ∈ Ft then L(S
1) dominates L(S2) if

Pt(S
1) + UBt(S

1
) ≤ Pt(S

2) + LBt(S
2
)

which is true because the left-hand side is the value of a feasible extension of S1, whereas
the right-hand side is a lower bound on the value of any possible extension of S2.

The lower bound of the extension of state S
2
is easily obtained by using the full period-

job network by solving a shortest (d, n)-path problem in the reverse full period-job network
for any node n in layer t. Let this shortest path value be γn. Then a lower bound on the
value of any extension is obtained as

LBt(S
2
) = (Q− |S

2
|)γet +

∑

j∈S
2

γwjt

which is the sum of the shortest path values from d to each node corresponding to job j ∈ S
2

and the shortest path value from d to the empty server node et in layer t for each of the
unused positions after period t.

An upper bound on the extension of S
1
can be derived by any feasible extension of S

1
to

the end stage. We could modify the approach described in Section 4.3 and not start at the

origin node but instead use elements of S
1
as the initial nodes for the shortest paths. This

may, however, be time consuming as we have to do this for each individual reduced state set.
Instead, we rely on a global upper bound for the full problem. If an upper bound solution
of value zub has been found for the full problem, then this bound along with dominance
criterion 1 can be used to eliminate states. If a state set S has zub ≤ Pt(S) + LBt(S), then
it is never possible to reach a solution with lower value than zub by extending S, and we
can therefore eliminate state Lt(S). Thus, it is of interest to have as tight an upper bound
as possible. This approach has the advantage that we do not need to compare every state
with every other state, but only with the known upper bound. Hence, the running time is
significantly faster; however, we may not eliminate all states that can be removed.

17

As noted earlier, all state sets in a stage have the same set of feasible extensions. The
direct penalty, pjt, of processing a job j in a stage t is independent of the jobs processed
in the earlier stages. This is, however, not the case for the late-start penalty πs and the
early-end penalty πe, where we need to consider the immediate predecessor states. The idea
of the next dominance criterion is that we remove all jobs from one state set and instead
insert all the jobs from the other state set in the upcoming stage. The extensions of the two
state sets will be the same state set. Now, if the first modified state set has a lower penalty
than that of the second, unmodified state set, then the second state set will be dominated
by the first state set. This is due to the fact that any extension of the second state set can
be obtained more cheaply by a similar extension of the modified first state set.

Observe that it is only necessary to take the reduced state sets into consideration because
all modifications are done in the next stage. Suppose that we have the two reduced state

sets S
1
,S

2
derived from two state sets S1,S2. To obtain S

2
from S

1
we have to remove the

elements of S
1
\ S

2
from S

1
and insert the elements of S

2
\ S

1
into S

1
. In the first case we

incur an additional penalty of πe|S
1
\ S

2
|, and in the second case we incur an additional

penalty of πs|S
2
\ S

1
|. As we obtain the same state in the next state, the penalties of the

individual elements cancel out. Note that in the case where S
2
is extended in such a way

that elements of S
2
are prematurely ended or elements not already in S

2
are started, we

have that this can be done with no larger penalty (and in some cases with strictly lower

penalty) for S
1
. This gives the following dominance criterion:

Dominance 2. If S1,S2 ∈ Ft, then Lt(S1) dominates Lt(S2) if

Pt(S
1) + πe|S

1
\ S

2
|+ πs|S

2
\ S

1
| ≤ Pt(S

2)

This criterion has the following implications. First, if πs = πe = 0, then it is only necessary
to do the following comparison Pt(S

1) ≤ Pt(S
2), which makes the problem very easy.1

However, the larger the values of πs and πe are, the more difficult it is to use this dominance
criterion for dominance. Secondly, an important special case of dominance criterion 2 is

when S1 and S2 have S
1
= S

2
; the dominance reduces to comparing the cost of obtaining

the states, i.e. Lt(S1) dominates Lt(S2) if Pt(S1) ≤ Pt(S2) and S
1
= S

2
. Finally, this

dominance criterion gives a maximum difference between two efficient states as |S
1
\S

2
| ≤ Q

and |S
2
\ S

1
| ≤ Q, i.e. we have that Pt(S2)−Pt(S1) < Q(πs + πe). Hence, if we keep track

of the minimum value of any state obtained in a stage, then we can simplify the dominance
check but at the expense of not dominating all possible states. If Pmin

t = min{Pt(S)|S ∈
Ft}, we can eliminate S2 if Pt(S2) ≥ Q(πs + πe) + Pmin

t . We apply this version of the
dominance check in our dynamic programming algorithm.

6.2 Algorithm

The dynamic programming algorithm is based on the extension of efficient states from one
stage to the next. In the following discussion we will assume that we have identified a set
of non-dominated states for period t− 1 (and therefore know the set Λt−1) and that we are
going to construct the set Λt.

1In fact, in the case where πs = πe = 0 we would not solve the dynamic programming, but rather use
the approach described in section 2.

18

Let L(St−1) ∈ Λt−1 and St ∈ Ft be a feasible state set for the period t. If St is an
extension of St−1, then St is composed of the jobs carried on from period t− 1 to period t
and jobs newly inserted in period t. We put Ot = St−1 ∩ St ⊆ J

per
t to be the set of (old)

jobs staying in the state set and It = St \ St−1 ⊆ J
per
t to be the set of newly inserted jobs

in the state set. Hence, St = Ot ∪ It is partitioned into the set of old jobs and the set of
new jobs. We say that Ot and It are compatible if Ot ∪ It ∈ Ft and Ot ∩ It = ∅. The
requirement of Ot and It being disjoint is to avoid counting the penalty of the intersection
of these sets twice. If this penalty is negative, then it would be prudent to add the element
in the intersection twice, which should not be possible. Note that any efficient state set in
Ft can be obtained using this partition. The cost of the partition for the continued jobs is
given by

dot (S,O) = Pt−1(S) +
∑

j∈O

pjt + |(S ∩ J
per
t) \ O|πe (18)

where dot (S,O) is the penalty incurred when extending S ∈ Ft−1 while only keeping the
jobs O ⊆ S in the new state. Observe that the set O can be obtained from any state set S
containing O, and we can therefore get many different values of dot (S,O) depending on the
state sets S. We are interested only in using the S for which dot (S,O) is minimal, and we
therefore put the cost of O to be

dot (O) = min {dot (S,O)|Lt−1(S) ∈ Λt−1,O ⊆ S} (19)

The cost of the newly inserted jobs is calculated as

dnt (I) =
∑

j∈I

pjt + |I ∩ J
per
t−1 |π

s (20)

where dnt (I) is the penalty of inserting the jobs I into a state in period t. The penalty of
the composite state set dt(O, I) is then upper bounded by dt(O, I) ≤ dot (O) + dnt (I). If no
job has been removed from St−1 and reinserted in It, then this bound holds as an equality
i.e. if (St−1 \ O) ∩ I = ∅ then d(O, I) = dot (O) + dnt (I). It is, however, always possible to
select the partition of O∪I such that we avoid reinsertion of already removed jobs. We can
now rewrite the recursion (17) in terms of the sets O and I as follows:

Pt(St) = min
{

dt(O, I)
∣

∣ St = O ∪ I,O ⊆ S : Lt−1(S) ∈ Λt−1, I ⊆ J
per
t ,O ∩ I = ∅

}

(21)
Hence, it is sufficient to construct the partial state sets O and I and merge these into full
state sets St = O ∪ I. Thus, in our proposed algorithm, we suggest to construct the sets O
and I such that we exploit the information from Proposition 4 and Proposition 5 and then
merge the compatible pairs to form the state sets St. We elaborate on this below.

The sets O are constructed by removing jobs from state sets S with Lt−1(S) ∈ Λt−1. It is
only allowed to have elements from S in the set O. Hence the number of newly constructed

O-sets is at most 2|S|. As we have proven that it is never optimal to discontinue some jobs
after period t−1, we only consider the jobs from S∩J e

t for removal. The number of possible
sets O can be further reduced if we take Proposition 5 into account, i.e. we only remove a
job j from S if all jobs i having i ∈ Re

jt ∩ S are also removed. We let Γt be the set of all
generated (dot (O),O).

The construction of the sets I is slightly more complicated than the construction of the
O-sets. First of all, we can only construct sets of jobs in which the jobs are compatible.
Hence, in the following, we consider a single category c ∈ C and the jobs in J ′ = Jct ∩ J s

t

19

for which it is feasible to start the job in period t and for which we have not proven that it
will never be optimal to start the job in the period t.

Let (n1, . . . , nk) be a sorted sequence of the jobs from J ′, i.e. for each i = 1, . . . , k the
job ni ∈ J ′. The sequence is sorted such that for 1 ≤ i < j ≤ k the job nj is not ranked
better than job ni, i.e. ni /∈ Rs

njt
. This sorting can be achieved through a topological

sorting of the jobs using the ranking as arcs. Now let {o, n1, . . . , nk, d} be the set of nodes
in a graph having one arc from o to each ni for i = 1, . . . , k and one arc from each ni to each
nj with i < j as well as an arc from each ni to d. Then we have an acyclic graph where an
(o, d)-path containing at most Q nodes from {n1, . . . , nk} corresponds to an insertion set,
I. Identifying all such paths from the graph corresponds to identifying the set of insertion

sets. The number of paths having a length of at most Q is
∑Q

q=0

(

|J ′|
q

)

, which is polynomial
in size for fixed Q, but exponential in size for increasing Q. Hence, it is critical that this
size is reduced. The ranking has to be taken into account, which we do next.

We are interested in exploiting Proposition 4 to limit the number of insertion sets gen-
erated. It states that if job ni is ranked better than job nj then it either has to be started
at the same time as job nj or it has to have been started in an earlier period. Hence, if we
include job nj in I, then a position for job ni has to be reserved in O∪I. Consequently, as
we have sorted the jobs according to rank, a path visiting node nj either has to have visited
node ni as well, or any extension of the path has to include at most Q − 1 of the nodes in
J ′. The first case is where job ni is in I, while the latter case corresponds to requiring that
node ni is in the set O. In general we must reserve positions for all ni ∈ Rs

njt
which are not

a part of the path prior to visiting node nj . This reservation of positions effectively reduces
the number of I-sets constructed. We denote the set of generated pairs as (dnt (I), I) for
Θtc.

After constructing the sets Γt and Θtc it is necessary to merge the elements into states,
i.e. to construct (Pt(S),S) where S = O ∪ I for O ∈ Γt and I ∈ Θtc for c ∈ C such that
S ∈ F . The first requirement is that the number of jobs in O and I does not exceed Q.
The second requirement is that either O = ∅ or I = ∅ or all jobs in O and I have to be
of the same category. The third requirement is that I ∩ O = ∅, i.e. the sets do not have
any jobs in common. Finally, the fourth requirement is that for each job j ∈ I the set
Rs

jt ⊂ O∪I, i.e. each of the jobs which are better to insert in period t has to be included in
the state set. If any of the four requirements is not satisfied, then the state set S = O∪I is
discarded. On the other hand, if all the requirements are satisfied, then the state set yields
a new possible state with cost dot (O) + dnt (I). Clearly, there can be several different ways
to construct the same state set S by merging different elements from Γt and Θtc, and we
choose only the state with the least cost. If more than one merging attains this least cost,
we choose arbitrarily. In practice, we have a duplicate check based on a key value of the
state. This can be implemented using a hashtable.

The dynamic programming procedure is summarized in Algorithm 1. An initial set of
efficient states for period 0 is initialized to be a dummy state (0, ∅). The algorithm then
iterates through the stages. In each stage t the set of Γt is constructed by identifying the
O-sets from the efficient states in the previous stage. For each category the set of possible
new insertions is then constructed by setting up the graph structure described above. After
constructing Θtc the algorithm merges this with the elements from Γt. The algorithm prunes
inefficient states from Λt once all categories have been considered. This is done by applying
the dominance relations which are described in Section 6.1. The algorithm has the following
time bound:

20

1 Λ0 ← {(0, ∅)};
2 for t← 1 to T do

3 Γt ← Construct O sets (Λt−1,t);
4 foreach c ∈ C do

5 Θtc ← Construct I sets (t,c);
6 Λt ← Λt∪ Merge (Γt,Θtc);

7 end

8 Λt ← Eff (Λt);

9 end

Algorithm 1: SMCPSP dynamic programming

Proposition 8. The time complexity of algorithm 1 is O(CTmQ), where m = max{|Jct||c ∈
C, t ∈ T }.

Proof. The algorithm runs T iterations and we will bound each iteration. Each iteration
can be subdivided into C iterations – one for each category. Hence, we limit our attention
to finding the complexity of an iteration for a single period and a single category, and
afterwards this complexity has to be multiplied by CT . Consequently, we have to show that
each such iteration has complexity O(mQ).

The largest number of unique state sets which can be generated for any category in any
period is

∑Q

q=0

(

m

q

)

, where m = max{|Jct||c ∈ C, t ∈ T }. Now note that
(

m

q

)

≤ mq

q! , and we
therefore use the upper bound on the binomial coefficient instead of the binomial coefficient
itself.

Generating the O-sets is bounded by O(mQ), which can be realized as follows: The

number of state sets of the same category from the previous iteration is
∑Q

q=0
mq

q! and from
each of these we may generate 2q new O-sets, of which many may be duplicates. Keeping
these in a list or a hashtable makes it possible to replace duplicates in O(q) time, where
the check itself is constant, but the length of the state set is q. It costs q to output the
individual sets. Let ∆ be the constant in the duplicate check, and then the generation of

the O-sets takes
∑Q

q=0
∆q22qmq

q! . Note that q22q

q! ≤ 12 for any q and it is therefore constantly

bounded. The leading term of this expression is mQ. Therefore, generating the O-sets is
bounded by O(mQ).

Generating the I-sets has a complexity equivalent to identifying all paths of length at
most Q in a graph, which can be done in

∑Q

q=0
mq

q! time and each of these sets have to

be returned, in total requiring
∑Q

q=0
qmq

q! iterations. As q

q! ≤ 1 for any q we have that

generating all I-sets is bounded by O(mQ).
We can merge O-sets and I-sets as long as the total number of elements do not exceed

the capacity Q and they do not have any elements in common. An upper bound on the
number of possible merges is

Q
∑

q=0

Q−q
∑

p=0

(

m

q

)(

m

p

)

≤

Q
∑

q=0

Q−q
∑

p=0

1

q!p!
mq+p (22)

The leading terms of this expression are those where p + q = Q and this leading term is
present Q + 1 times in the sum above. Furthermore we have that p!q! ≥ ⌊Q/2⌋!⌈Q/2⌉! for

21

q + p = Q. Each of these generated sets must returned and checked for duplicates, which
can be done in Q2 time per set. We have that

Q2(Q+ 1)

⌊Q/2⌋!⌈Q/2⌉!
≤ 9 (23)

for any Q, and therefore the merge is upper bounded by O(mQ).
Each of the three operations above is repeated once in each of the CT iterations. The

algorithm is therefore bounded by O(CTmQ).

7 Computational Experiments

It is of interest to find out in which cases the dynamic programming procedure performs
well and in which cases the mathematical model performs better. To this end we have
constructed a set of test instances. These are described in Section 7.1, and the results are
discussed in Section 7.2.

The algorithms have been implemented in C++ and compiled with the MinGW 4.5.2
compiler. The tests have been run on a Windows 7 based laptop equipped with an Intel i7
cpu and 8Gb RAM. The MILP model described in Section 2.1 has been implemented using
the COIN-OR interface to the CPLEX 12.2 32bit solver. When solving the MILP model we
use the default settings for CPLEX. Note that using the default setting for CPLEX allows
CPLEX to use more than one thread when solving the MILP model – in our case it can use
up to 8 parallel threads.

7.1 Test instances

In order to test the described methods a set of 15 random instances has been constructed.
The intention with these tests is to show how the methods behave when we change the
number of categories, the size of the penalties πs and πe, and finally the capacity of the
server.

Each of the instances has 500 jobs and a planning horizon of 25 periods. The duration
of each job is a uniformly distributed integer between 1 and 10. All jobs have job-period
penalties pjt uniformly distributed in the interval [−30.0, 10.0]. This allows for a job to
have a possibly positive penalty, while making most jobs profitable. The instances are
divided into five subsets with three instances each. These subsets have a different number
of categories. The number of categories is 1, 2, 4, 8 and 16. Within each subset three
instances are constructed. One where the value of the penalties is low, πs = πe = 5.0, one
where the value of the penalties is medium, πs = πe = 25.0, and one where the value of the
penalties is high, πs = πe = 100.0. This makes it increasingly undesirable to start a job late
as well as end a job prematurely. In order to test the problem for different server capacities
we duplicate the 15 sets into 30 sets, where the 15 first have a server capacity of two and
the second 15 have server capacity of four. We omit the trivial case having a server capacity
of one as this is solved directly by the lower bounding approach described in Section 4.3.

7.2 Results

We have solved each of the instances described in Section 7.1 with a server capacity of two
and of four. In this section we will discuss the effects of the preprocessing, as well as compare
the methods described previously.

22

Q = 2 Q = 4
I C T |J | avg. EA avg. |Rs

jt| avg. |Re
jt| |J | avg. EA avg. |Rs

jt| avg. |Re
jt|

1 1 L 109 2.80 6.11 5.85 170 3.06 9.88 9.50
2 1 M 152 3.32 5.62 4.07 218 3.49 8.40 6.17
3 1 H 176 7.48 6.01 2.50 250 7.49 8.71 3.94
4 2 L 170 3.28 5.01 4.85 251 3.38 7.77 7.58
5 2 M 213 3.54 3.66 2.72 303 4.17 6.08 4.72
6 2 H 244 7.55 4.27 1.96 324 8.06 5.93 2.87
7 4 L 248 2.87 3.53 3.39 343 3.09 5.09 4.90
8 4 M 301 4.25 3.03 2.33 370 4.56 3.93 3.03
9 4 H 300 7.87 2.62 1.27 384 8.53 3.72 1.98

10 8 L 336 3.16 2.42 2.34 412 3.24 3.11 3.03
11 8 M 359 4.51 1.87 1.46 412 4.81 2.33 1.86
12 8 H 360 8.29 1.63 0.83 430 8.78 2.10 1.20
13 16 L 405 3.46 1.49 1.45 453 3.41 1.72 1.69
14 16 M 408 4.50 1.08 0.84 446 4.76 1.24 1.00
15 16 H 427 8.66 1.05 0.57 466 9.05 1.26 0.75

Table 1: Effects of the preprocessing. All numbers are rounded to two decimal points.

In Table 1 the effects of the preprocessing are given. Column I is the instance number,
C is the number of categories for the instance and T indicates whether the values of πs and
πe are low (L), medium (M) or high (H). The remainder of the table is divided into two
parts; one part for Q = 2 and another part for Q = 4. Each of these parts has the size of
the job set |J | after job elimination of full jobs. Avg. EA is the average number of arcs
eliminated in the single job graph for the jobs remaining after the elimination of full jobs.
Finally, avg. |Rs

jt| and avg. |Re
jt| give, respectively, the average size of the number of jobs

which are better to start than a given job and the average size of the number of jobs in a
specific period, which are better to finish than a given job in a specific period.

In all cases, the number of jobs is reduced by the preprocessing. The reduction is most
significant in the single category case, however. This is not surprising as the elimination
based on Proposition 3, becomes weaker as the number of categories increases while the
number of jobs remains the same. It is evident that the number of eliminated arcs in the
single job graph increases when we increase the value of πs and πe. This is mainly due
to the shortest path based elimination, as it becomes more likely that the arcs having the
larger penalties will never be on a negative penalty path. The average sizes of Rs

jt and
Re

jt tend to decrease when the number of categories increases and when the penalties get
larger. This is no surprise either; the average number of jobs in each category will decrease
as the number of categories increases (and the number of jobs does not increase by the same
magnitude). Hence, there are simply fewer jobs which can be better than a given job in the
same category.

We have solved each of the aforementioned 15 instances with a server capacity of 2
and a server capacity of 4. The results of these tests can be seen in Tables 2 and 3,
respectively. Each row corresponds to an instance. The first four columns describe instance
characteristics, where I is the instance number, |C| is the number of categories, Q is the
server capacity, and T is the type of πs and πe with low (L), medium (M), and high (H).
The following three columns show the calculated bounds. LB and UB are the shortest path
based lower and upper bounds described in Section 4.3, whereas LP is the lower bound
derived using the LP relaxation of the MILP model described in Section 2.1. We have not
included computation times for these as they are small. Next, the computation time TIP (s)

23

I C T LB LP UB TIP (s) TDyn(s) P ∗

1 1 L -1275.19 -1256.69 -1252.69 0.73 0.13 -1256.70
2 1 M -1161.61 -1116.19 -1116.19 2.03 0.16 -1116.19
3 1 H -1098.53 -1071.15 -1071.15 0.75 0.12 -1071.15
4 2 L -1265.25 -1223.47 -1212.47 1.40 0.20 -1221.26
5 2 M -1188.23 -1075.71 -1025.48 1.65 0.28 -1072.24
6 2 H -1089.84 -995.22 -827.02 7.75 0.20 -964.79
7 4 L -1298.52 -1229.58 -1217.05 1.65 0.52 -1225.11
8 4 M -1142.38 -1022.72 -965.73 1.79 0.76 -1017.28
9 4 H -1083.31 -961.20 -761.80 14.57 0.50 -922.50

10 8 L -1286.16 -1183.48 -1117.99 2.43 0.79 -1179.11
11 8 M -1176.10 -968.54 -857.47 22.46 0.67 -912.49
12 8 H -1166.03 -918.48 -728.78 38.80 1.09 -846.50
13 16 L -1288.79 -1133.97 -1038.62 1.72 2.27 -1130.70
14 16 M -1167.01 -909.05 -710.57 51.88 2.27 -846.24
15 16 H -1156.75 -945.88 -689.68 25.21 1.49 -881.12

Table 2: Results with server capacity Q = 2. All numbers are rounded to two decimal
points.

in seconds for the integer model using CPLEX is given along with the computation time
TDYN (s) in seconds for the dynamic programming. Finally, the optimal value P ∗ found by
the exact approaches is stated.

The shortest path based lower bound LB is in all tests dominated by the LP lower bound.
This is not surprising as the LP bound takes the different categories into account while not
allowing the solution to use more than one job in each period. In contrast, the shortest path
based LB just duplicates the jobs in each period and selects these in the most favorable way.
Compared with the LP lower bound we also note that the shortest path based lower bound
LB deteriorates as the number of categories increases and the server capacity increases.

The shortest path upper bound is close to the optimal solution when the number of
categories is low; however, when the number of categories increases, the distance to the
optimal solution also increases. This effect seems to be magnified for the high-penalty case
compared to the low-penalty case. Furthermore, the distance from the optimal solution also
increases when the capacity of the server increases.

For the MILP the computation time increases as the number of categories increases. The
main reason for this is that the integrality gap increases when we increase the number of
categories. On the other hand, the computation time of the dynamic programming approach
decreases as the number of categories increases. This is due to the decreasing size of Ft when
increasing the number of categories and keeping the number of jobs fixed. It is interesting
to see that the dynamic programming approach has the opposite effect in computation
time compared to the MILP when we increase the number of categories, and this effect
is profound in both directions. For Q = 4 and C = 1 the MILP model is solved around
hundred times faster than the dynamic programming, whereas for Q = 4 and C = 16 the
dynamic programming is solved up 15 times faster than the MILP model.

The M-cases tend to take slightly longer than the L-cases and the H-cases. We believe
the reason for this is twofold. When the penalties πs and πe decrease, dominance criterion
2 becomes stronger because the part depending on these two penalties decreases, thereby
making it easier to dominate a state. On the other hand, when the penalties increase the
preprocessing based on Propositions 1 and 2 becomes stronger, removing more arcs from
the single job graphs. This will result in significantly fewer constructed states. These two

24

I C T LB LP UB TIP (s) TDyn(s) P ∗

1 1 L -2550.38 -2430.54 -2419.58 0.75 77.99 -2430.54
2 1 M -2323.22 -2084.88 -2081.68 0.76 109.98 -2084.88
3 1 H -2197.06 -2045.30 -2042.58 0.79 61.24 -2045.30
4 2 L -2530.50 -2322.89 -2286.64 2.15 23.46 -2318.32
5 2 M -2376.47 -1924.44 -1696.54 10.98 46.75 -1873.42
6 2 H -2179.69 -1798.49 -1116.61 7.26 13.18 -1774.00
7 4 L -2597.03 -2246.75 -2144.46 2.36 8.03 -2238.65
8 4 M -2284.76 -1821.21 -1612.34 12.60 9.51 -1776.94
9 4 H -2166.62 -1689.65 -900.02 20.58 2.17 -1607.12

10 8 L -2572.33 -2133.97 -1825.97 4.81 3.29 -2117.05
11 8 M -2352.20 -1566.30 -1070.29 46.26 3.17 -1487.36
12 8 H -2332.06 -1528.51 -760.44 24.97 1.37 -1444.94
13 16 L -2334.01 -1459.35 -789.21 33.35 2.42 -1379.96
14 16 M -2577.58 -1878.19 -1421.46 4.82 2.78 -1860.14
15 16 H -2313.50 -1420.66 -696.68 57.38 3.32 -1278.19

Table 3: Results with server capacity Q = 4. All numbers are rounded to two decimal
points.

factors each work to the advantage of the algorithms in the extreme cases, whereas they are
not significant in the medium case.

8 Conclusion

In this paper we have introduced a new scheduling problem called the Selective Multi-
Category Parallel-Servicing Problem. The problem selects (partial) jobs with predetermined
processing times for processing on a server capable of executing jobs of the same category
in parallel.

The problem can be solved to optimality either by the mixed integer linear programming
model presented or by the dynamic programming algorithm constructed. We show that the
time complexity for the dynamic programming is polynomial when the capacity of the server
is fixed. Furthermore, we have introduced shortest path based methods for identifying lower
and upper bounds for the problem. Finally, we introduce several methods for preprocessing
the problem.

Our computational study shows that the dynamic programming approach is faster than
solving the mixed integer linear programming model when either the capacity of the server
is low or the number of categories is high, whereas the contrary is true in the other cases.
Furthermore, we demonstrate that the preprocessing significantly reduces the size of the
instances.

The problem might be generalized by allowing subsets of categories to be processed
simultaneously. This could be interesting if the jobs had more than one characteristic which
make them incompatible. We have, however, left this for future research.

References
R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows - Theory, Algorithms, and Applications. Prentice

Hall, 1993.

R. Anbil, C. Barnhart, L. Hatay, E. L. Johnson, and V. S. Ramakrishnan. Crew-pairing optimization at american
airlines decision technilogies. In T. A. Ciriani and R. C. Leachman, editors, Optimization in Industry, volume 1,
chapter 2, pages 31 – 36. John Wiley & Sons, 1993.

25

E. Andersson, E. Housos, N. Kohl, and D. Wedelin. Crew pairing optimization. In OR in Airline Industry. Kluwer
Academic Publishers, 1998.

J. Aráoz, E. Fernández, and C. Zoltan. Privatized rural postman problems. Computers & OR, 33(12):3432–3449,
2006.

J. Bang-Jensen and G. Gutin. Digraphs: Theory, Algorithms and Applications. Springer Monographs in Mathe-
matics. Springer, 2001.

D. Black, R. Eglese, and S. Wøhlk. The time-dependent prize-collecting arc routing problem. Computers and
Operations Research, 40:526 – 535, 2013.

Z.-L. Chen and W. B. Powell. Solving parallel machine scheduling problems by column generation. INFORMS
Journal on Computing, 11(1):78, 1999.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduction to Algorithms. MIT Press, 2001.

P. Demeester, W. Souffriau, P. D. Causmaecker, and G. V. Berghe. A hybrid tabu search algorithm for automatically
assigning patients to beds. Artificial Intelligence in Medicine, 48:61–70, 2010.

M. Desrochers, J. Desrosiers, and M. Solomon. A new optimization algorithm for the vehicle routing problem with
time windows. Operations Research, 40(2):342, 1992.

M. Drexl. Rich vehicle routing in theory and practice. Logistics Research, 5:47–63, 2012.

D. Feillet, P. Dejax, and M. Gendreau. Travelling salesman problem with profits. Transportation Science, 39(2):
188 – 205, 2005.

M. R. Garey. The complexity of flowshop and jobshop scheduling. Mathematics of Operations Research, 1(2):117
– 129, 1976.

P.C. Gilmore and R.E. Gomory. A linear programming approach to the cutting-stock problem. Operations Re-
search, 9(6):849 – 859, 1961.

M. Haouri, S. B. Layeb, and H. Sherali. Tight compact models and comparative analysis for the prize collecting
steiner tree problem. Discrete Applied Applied Mathematics, 161:618 – 632, 2013.

S. Irnich. Resource extension functions: Properties, inversion, and generalization to segments. OR Spectrum, 30
(1):113–148, 2008.

S. Irnich and G. Desaulniers. Shortest path problems with resource constraints, chapter 2, pages 33–66. Springer:
New York, 2005.

D. Pisinger. Algorithms for Knapsack Problems. PhD thesis, Department of Computer Science, Copenhagen
University, 1995.

T. M. Range, R. M. Lusby, and J. Larsen. A column generation approach for solving the patient admission schedul-
ing problem. Discussion Papers on Business and Economics 1/2013, Department of Business and Economics,
University of Southern Denmark, 2013.

K. Smith-Miles and L. Lopes. Measuring instance difficulty for combinatorial optimization problems. Computers
and Operations Research, 39:875 – 889, 2012.

J. W. Suurballe and R. E. Tarjan. A quick method for finding shortest pairs of disjoint paths. Networks, 14:
325–336, 1984.

T. Tholey. Finding Disjoint Paths on Directed Acyclic Graphs, volume 3787 of Lecture Notes in Computer

Science, pages 319–330. Springer, 2005.

26

