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Axiomatizations of symmetrically weighted solutions∗

John Kleppe† Hans Reijnierse‡ Peter Sudhölter§

February 1, 2013

Abstract

If the excesses of the coalitions in a transferable utility game are weighted, then we show that the
arising weighted modifications of the well-known (pre)nucleolus and (pre)kernel satisfy the equal
treatment property if and only if the weight system is symmetric in the sense that the weight of
a subcoalition of a grand coalition may only depend on the grand coalition and the size of the
subcoalition. Hence, the symmetrically weighted versions of the (pre)nucleolus and the (pre)kernel
are symmetric, i.e., invariant under symmetries of a game. They may, however, violate anonymity,
i.e., they may depend on the names of the players. E.g., a symmetrically weighted nucleolus may
assign the classical nucleolus to one game and the per capita nucleolus to another game.

We generalize Sobolev’s axiomatization of the prenucleolus and its modification for the nucleolus
as well as Peleg’s axiomatization of the prekernel to the symmetrically weighted versions. Only the
reduced games have to be replaced by suitably modified reduced games whose definitions may depend
on the weight system. Moreover, it is shown that a solution may only satisfy the mentioned sets of
modified axioms if the weight system is symmetric.

Keywords: TU game · Nucleolus · Kernel

JEL Classification: C71

1 Introduction

The (pre)nucleolus (Schmeidler 1969, Sobolev 1975) and the prekernel (Davis and Maschler 1965,

Maschler, Peleg, and Shapley 1972) are among the most well-known and important solution concepts

for (cooperative transferable utility) games. Their status is heavily supported by the fact that they can

be justified by simple and intuitive axioms. The definition of each of these solution concepts is based on

the excesses of the coalitions that may be regarded as their dissatisfactions. The excess of a coalition S

in a game (N, v) at some payoff vector x is the difference between the worth of S, v(S), and the amount∑
i∈S xi = x(S) that is distributed to S. Classically, the excesses of any two coalitions are treated as

equally important, regardless of coalition sizes and composition.

∗The three authors thank Javier Arin for valuable discussions. The third author was supported by the Spanish Ministerio
de Ciencia e Innovación under project ECO2012-33618, co-funded by the ERDF.
†CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE

Tilburg, The Netherlands. E-mail: j.kleppe@tilburguniversity.edu
‡CentER and Department of Econometrics and Operations Research, Tilburg University, P.O. Box 90153, 5000 LE

Tilburg, The Netherlands. E-mail: j.h.reijnierse@tilburguniversity.edu
§Department of Business and Economics and COHERE, University of Southern Denmark, Campusvej 55, 5230 Odense

M, Denmark. E-mail: psu@sam.sdu.dk



Variants of the nucleolus and the kernel result from modifying these excesses. Wallmeier (1983), e.g.,

considers weighted excesses v(S)−x(S)
f(|S|) where f is a nondecreasing function. The special case that f(s) = s

results in the so-called “per capita” nucleolus and kernel (Grotte 1970, Young, Okada, and Hashimoto

1982, Albers 1977). The resulting weighted versions of the solution concepts share many properties with

the classical solution concepts.

Derks and Haller (1999) consider arbitrarily weighted excesses, where the weight of the excess of a

subcoalition S of N may depend on N and S. They show that two weighted nucleoli coincide if and

only if the two weight systems coincide up to a positive multiplication factor. We adopt their setting and

first of all extend this result to weighted prenucleoli and weighted (pre)kernels. Moreover, we prove that

given a weight system the arising weighted modifications of the (pre)nucleolus and the (pre)kernel satisfy

anonymity (AN) or the equal treatment property (ETP) if and only if the weight system is anonymous

or symmetric, respectively. Here a weight system is anonymous if up to a multiple the weight of a

subcoalition S of a grand coalition N may only depend on the sizes of S and N . Further, a weight system

is symmetric if the weight of any subcoalition S of N may depend on the size of S and also on the grand

coalition. Hence, anonymity implies symmetry.

The foregoing results motivate the study of the symmetrically weighted (pre)nucleoli and prekernels

from an axiomatic point of view. According to Sobolev (1975) the classical prenucleolus is axiomatized1

by single-valuedness (SIVA), covariance under strategic equivalence (COV), symmetry (SYM), and the

reduced game property (RGP), provided that there are infinitely many potential players. Snijders (1995)

showed that the nucleolus is axiomatized similarly; only RGP has to be replaced by a suitable modification

that ensures that the reduction of an imputation is an imputation of the reduced game. For interesting

variants of Sobolev’s famous result see Orshan (1993) and Orshan and Sudhölter (2003). Moreover, Peleg

(1986) shows that the prekernel is axiomatized by non-emptiness, Pareto optimality, ETP, COV, RGP,

and the converse reduced game property (CRGP). We show that after adjusting the definition of the

reduced game for the given weight system, the corresponding weighted variants of the (pre)nucleolus and

prekernel are axiomatized by the same sets of axioms as in the classical context provided that the weight

system is symmetric; only RGP and CRGP refer to the adjusted variants of the reduced game now.

Moreover, we show that symmetry of the weight system is necessary (and sufficient) for the existence of

a solution that satisfies the mentioned sets of modified axioms.

It should be emphasized that, unlike in the classical case, symmetry of the weight system does not imply

that the arising weighted solution concepts satisfy AN. E.g., a symmetric weight system may result in the

classical prenucleolus for one part of the player society and in the per capita prenucleolus for the other

part.

This paper is organized as follows. In Section 2 the relevant notation is introduced, the definition of

and some known facts about the weighted (pre)nucleolus are recalled, and the weighted prekernel is

1An axiomatization is a characterization by axioms that are logically independent of each other. The logical independence,
in particular of the anonymity axiom, was proved by Sudhölter (1993).
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introduced. In Section 3 it is shown that two weighted solutions coincide if and only if their underlying

weight systems coincide up to a multiplication factor. Moreover, we show that a weighted solution

satisfies AN or ETP if and only the weight system is anonymous or symmetric, respectively. Finally,

we show that a symmetrically weighted prekernel is compact-valued, and we present an example of a

non-symmetrically weighted prekernel that is not compact-valued. In Section 4 the weighted variants of

the reduced games are introduced and it is shown that the weighted prenucleolus and prekernel satisfy

the reduced game property. Section 5 is devoted to the generalization of Sobolev’s axiomatization to

symmetrically weighted prenucleoli. We also show that if there exists a solution that satisfies this set

of modified axioms, then the weight system must be symmetric. Moreover, it is shown that Snijders’

axiomatization may be suitably modified for weighted nucleoli. Finally, in Section 6 the axiomatization

of symmetrically weighted prekernels is presented that resembles Peleg’s axiomatization of the classical

prekernel. Moreover, we show that symmetry of the weight system is necessary for the existence of a

solution that satisfies the axioms of this axiomatization.

2 Preliminaries

Let U be a set, the universe of players, containing, without loss of generality, 1, . . . , k whenever |U | > k.

Here and in the sequel, if D is a set, then |D| denotes the cardinality of D. A coalition is a finite nonempty

subset of U . Let F denote the set of coalitions. A (cooperative transferable utility) game is a pair (N, v)

such that N ∈ F and v : 2N → R, v(∅) = 0. Let (N, v) be a game. We call N its grand coalition and

denote the set of all proper nonempty subcoalitions of N by FN , i.e., FN = 2N \ {∅, N}. Let

X∗(N, v) = {x ∈ RN | x(N) 6 v(N)},

X(N, v) = {x ∈ RN | x(N) = v(N)}, and

I(N, v) = {x ∈ X(N, v) | xi > v({i}) for all i ∈ N}

denote the set of feasible payoffs, the set of Pareto optimal feasible payoffs (preimputations), and the set of

individually rational preimputations (imputations) of (N, v), respectively, where x(S) =
∑
i∈S xi (x(∅) =

0) for S ⊆ N and x ∈ RN . For S ⊆ N and x ∈ RN , xS denotes the restriction of x to S, i.e., xS = (xi)i∈S ,

and e(S, x, v) = v(S)− x(S) denotes the excess of S at x.

A solution σ assigns a subset σ(N, v) of X∗(N, v) to any game (N, v). Its restriction to a set Γ of games

is again denoted by σ. A solution on Γ is the restriction to Γ of a solution.

In order to recall the definition of the “weighted (pre)nucleolus”, we employ and recall Justman’s (1977)

notion of the “generalized nucleolus”.

Let D be a finite nonempty set, X be a set, let h : X → RD. Define θ : X → R|D| by

θt(x) = max
T⊆D,|T |=t

min
i∈T

hi(x) for all x ∈ X and all t = 1, . . . , |D|,

that is, for any x ∈ X, θ(x) is the vector, whose components are the numbers hi(x), i ∈ D, arranged in

nonincreasing order. Let >lex denote the lexicographical order of R|D|. The nucleolus of h with respect
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to (w.r.t.) X, NUC(h,X), is defined by

NUC(h,X) = {x ∈ X | θ(y) >lex θ(x) for all y ∈ X}.

Remark 2.1 Justman (1977) proved the following statements.

(1) If X is nonempty and compact and if all hi, i ∈ D, are continuous, then NUC(h,X) 6= ∅.

(2) If X is convex and all hi, i ∈ D, are convex, then NUC(h,X) is convex and hi(x) = hi(y) for all

i ∈ D and all x, y ∈ NUC(h,X).

Let us recall the definition of a “weighted (pre)nucleolus” (Derks and Haller 1999). A weight system is

a system p = (pN )N∈F such that, for every N ∈ F , pN =
(
pNS
)
S∈FN , the weight system for N , satisfies

pNS > 0 for all S ∈ FN . Let p be a weight system and (N, v) be a game. The weighted prenucleolus and

the weighted nucleolus of (N, v) according to p, PN p(N, v) and N p(N, v), are defined by

PN p(N, v)=NUC
(
(pNS e(S, ·, v))S∈FN , X(N, v)

)
and N p(N, v)=NUC

(
(pNS e(S, ·, v))S∈FN , I(N, v)

)
.

As each of the excess functions e(S, ·, v) : RN → R is affine linear, it is convex so that, by Remark 2.1,

N p(N, v) is a singleton whose unique element is denoted by νpI (N, v) provided that I(N, v) 6= ∅. For any

x ∈ X(N, v), we may replace X(N, v) by the compact, nonempty, and convex polyhedral set{
y ∈ X(N, v)

∣∣∣∣max
S∈FN

pNS e(S, y, v) 6 max
T∈FN

pNT e(T, x, v)

}
in the definition of PN p(N, v) so that this weighted prenucleolus is also a singleton whose unique element

is denoted by νp(N, v). Note that if the core of a game (N, v),

C(N, v) = {x ∈ X(N, v) | e(S, x, v) 6 0 for all S ⊆ N},

is nonempty, then νp(N, v) = νpI (N, v) ∈ C(N, v) for any weight system p.

A solution σ is called a weighted (pre)nucleolus if there exists a weight system p such that σ =

(P)N p
. If all weights are identical, then the arising weighted (pre)nucleolus is the classical (pre)nucleolus

(Schmeidler 1969, Sobolev 1975). In this case we frequently omit the superscript p, i.e., ν(N, v) and, for

I(N, v) 6= ∅, νI(N, v) denote the classical prenucleolus point and the classical nucleolus point of (N, v),

respectively.

Other weight systems were considered by Wallmeier (1983) who investigated weighted nucleoli where the

weights may only depend on and are weakly decreasing in coalition size. This property is satisfied by,

e.g., the classical nucleolus and by the per capita nucleolus, i.e., the weighted nucleolus according to the

inverse cardinalities of the coalitions as weights, i.e., pNS = 1
|S| for each N ∈ F and S ∈ FN (Grotte 1970).
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Let p be a weight system, (N, v) be a game, and x ∈ RN . The p-weighted excess game of (N, v) at x,

denoted by (N, vpx), is defined by

vpx(S) =

 e(N, x, v), if S = N,

pNS e(S, x, v), if S ∈ FN .
(2.1)

We conclude that e(S, 0, vpx) = pNS e(S, x, v) for all S ⊆ N . Moreover, 0 ∈ X(N, vpx) if and only if

x ∈ X(N, v). Thus, we have deduced the following result.

Proposition 2.2 Let p be a weight system, (N, v) be a game, and x ∈ X(N, v). Then

(1) x = νp(N, v) if and only if 0 = ν(N, vpx);

(2) x = νpI (N, v) if and only if 0 = νI(N, v
p
x).

Whether or not a (pre)imputation of a game coincides with the weighted (pre)nucleolus can be checked

with the help of suitable modifications of Kohlberg’s (1971) “Property I” or “Property II”, the charac-

terization of the (pre)nucleolus by balanced collections of coalitions – see also Potters and Tijs (1992).

Let ΓI denote the set of all games (N, v) with I(N, v) 6= ∅, i.e., (N, v) ∈ ΓI if and only if v(N) >∑
i∈N v({i}). Some more notation is useful. For any game (N, v), X ⊆ RN , x ∈ X, and any bijective

mapping π : U → U , denote π(N) = {π(i) | i ∈ N}, πx = (xπ(i))i∈N ∈ Rπ(N), πX = {πx | x ∈ X}, and

let (π(N), πv) be the game defined by πv(π(S)) = v(S) for all S ⊆ N . A permutation π of N is called a

symmetry of (N, v), abbreviated by π ∈ SYM(N, v), if (π(N), πv) = (N, v).

Let σ be a solution on a set Γ of games. We recall some intuitive and desirable possible properties. The

solution σ satisfies

• non-emptiness (NE) if σ(N, v) 6= ∅ for all (N, v) ∈ Γ;

• single-valuedness (SIVA) if |σ(N, v)| = 1 for all (N, v) ∈ Γ;

• Pareto optimality (PO) if σ(N, v) ∈ X(N, v) for all (N, v) ∈ Γ;

• anonymity (AN) if, for all (N, v) ∈ Γ and all bijective mappings π : U → U we have σ(π(N), πv) =

πσ(N, v);

• symmetry (SYM) if πσ(N, v) = σ(N, v) for all (N, v) ∈ Γ and all symmetries π of (N, v);

• covariance under strategic equivalence (COV) if for any (N, v), (N,w) ∈ Γ, α > 0, and β ∈ RN the

following condition is valid: If w(S) = αv(S) + β(S) for all S ⊆ N , then σ(N,w) = ασ(N, v) + β;

• the equal treatment property (ETP) if for all (N, v) ∈ Γ, all x ∈ σ(N, v), and all k, ` ∈ N the

following condition is satisfied: If k and ` are substitutes, i.e., v(S ∪ {k}) = v(S ∪ {`}) for all

S ⊆ N \ {k, `}, then xk = x`.
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Note that AN implies SYM. Furthermore, each weighted prenucleolus clearly satisfies NE, SIVA, PO,

and COV on any set of games. Moreover, a weighted nucleolus satisfies PO and COV on any set of

games, and it satisfies NE and SIVA if and only if Γ is contained in ΓI . We now introduce the “weighted

(pre)kernel”.

Let p be a weight system, (N, v) be a game, x ∈ RN , and k, ` ∈ N , k 6= `. The maximum p-weighted

surplus of k over ` at x (w.r.t. (N, v)) is defined by

spk`(x, v) = max{pNS e(S, x, v) | k ∈ S ⊆ N \ {`}}.

Definition 2.3 The weighted prekernel and weighted kernel according to p, PKp and Kp, respectively,

of a game (N, v) are defined by

PKp(N, v) = {x ∈ X(N, v) | spk`(x, v) = sp`k(x, v) for all k, ` ∈ N, k 6= `} and

Kp(N, v) = {x ∈ I(N, v) | spk`(x, v) > sp`k(x, v) or xk = v({k}) for all k, ` ∈ N, k 6= `}.

The kernel, i.e., the weighted kernel according to the weight system that assigns to all coalitions iden-

tical weights, was introduced by Davis and Maschler (1965), whereas the prekernel was first considered

by Maschler, Peleg, and Shapley (1972). If p is omitted as a superscript at (P)K, then the classical

(pre)kernel is meant.

Remark 2.4

(1) Similarly as in the classical case it is easily verified that the weighted prenucleolus of any game

belongs to its weighted prekernel. Moreover, if the game has imputations, then its weighted nucleolus

belongs to its weighted kernel.

(2) For any weight system p, any game (N, v), and any x ∈ X(N, v):

x ∈ PKp(N, v) ⇐⇒ 0 ∈ PK(N, vpx).

x ∈ Kp(N, v) ⇐⇒ 0 ∈ K(N, vpx).

(3) Weighted (pre)kernels satisfy COV.

3 Anonymity, symmetry, and the equal treatment property

We first extend a result for weighted nucleoli to the three other aforementioned weighted solutions (Derks

and Haller 1999, Theorem 1).

Theorem 3.1 Let N ∈ F . Two weighted nucleoli, prenucleoli, kernels, or prekernels coincide for all

(N, v) ∈ ΓI if and only if the two weight systems coincide for N up to a positive multiplication factor.
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Proof: The “if-part” is obvious. In order to show the “only if-part” let p and p′ be weight systems and

σ and σ′ be the respective arising weighted solutions. Let p = pN and p′ = p′N be the corresponding

weight systems for N and let S ∈ FN . Let T = {T ∈ FN \ {S} | T 6= {i} for all i ∈ N \ S} and

t > maxQ,R∈FN
pQp

′
R

p′QpR
. Note that t > 1. Define (N, v) by v(S) = − 1

pS
, v({i}) = − 1

p{i}
for all i ∈ N \ S,

v(N) = 0, and v(T ) = − t
pT

for all T ∈ T . Further, let x = 0 ∈ RN and note that x ∈ I(N, v). Then

pSe(S, x, v) = p{i}e({i}, x, v) = −1 for all i ∈ N \S and pT e(T, x, v) = −t for all T ∈ T . Let y = νp(N, v).

Then y(S) > x(S), yi > xi for all i ∈ N \ S, and y(N) = 0 so that y(S) = x(S) and yi = xi for all

i ∈ N \ S. Thus, y(T ) > x(T ) for all T ∈ T so that y = x. By Remark 2.4 (1), x ∈ σ(N, v) = σ′(N, v) so

that x ∈ PKp(N, v). By the definition of t,

sp
′

k`(x, v) = p′Sv(S) = −p
′
S

pS
and sp

′

`k(x, v) = p′{`}v({`}) = −
p′{`}

p{`}
for all k ∈ S, and ` ∈ N \ S.

Since S has been chosen in FN arbitrarily, we have

p′S
pS

=
p′{`}

p{`}
for all S ∈ FN and all ` ∈ N \ S. (3.1)

Applying (3.1) to singletons S yields
p′{k}

p{k}
=

p′{`}

p{`}
= c for all k, ` ∈ N . Hence, (3.1) applied to an

arbitrary proper nonempty coalition S of N yields p′S = cpS . q.e.d.

Theorem 3.1 enables us to characterize those weight systems p that result in weighted solutions that

satisfy anonymity. We call a weight system p anonymous if, for all N,N ′ ∈ F with |N | = |N ′|, there

exists c = c(N,N ′) > 0 such that pN
′

S′ = cpNS for all S ∈ FN and S′ ∈ FN ′
with |S| = |S′|. In this case

pNS = pN (|S|) and pN
′
(s) = c(N,N ′)pN (s) for all s = 1, . . . , |N | − 1.

Theorem 3.2 Let p be a weight system, Γ ⊇ ΓI , and σp be one of the following solutions on Γ:

N p,PN p,Kp, or PKp. Then σp satisfies AN if and only if p is anonymous.

Proof: The “if-part” is straightforward and left to the reader. In order to show the “only-if-part” let

N,N ′, S, S′ be coalitions with |N | = |N ′|, |S| = |S′|, S ∈ FN , and S′ ∈ FN ′
. Let π : U → U be a

bijection such that π(S) = S′, and π(N) = N ′. Let (N, v) ∈ Γ. Let the weight system p′ be defined by

p′MR = p
π(M)
π(R) for all M ∈ F and R ∈ FM .

For all T ∈ FN , x ∈ X(N, v) we have

p′NT e(T, x, v) = p′NT e(π(T ), πx, πv) = p
π(N)
π(T ) e(π(T ), πx, πv). (3.2)

Therefore, e.g., sp
′

k`(x, v) = spπ(k)π(`)(πx, πv) for all x ∈ RN and k, ` ∈ N , k 6= `. Now, let σp′
be the

weighted solution according to p′ defined in an analogous way as σp (e.g., σp′
is the p′-weighted nucleolus

if and only if σp is the p-weighted nucleolus). By (3.2), πσp′
(N, v) = σp(π(N), πv). On the other hand,

by AN, πσp(N, v) = σp(π(N), πv) as well. As Γ ⊇ ΓI , σ
p and σp′

coincide on the set of games with

player set N whose imputation sets are nonempty. By Theorem 3.1 there exists c > 0 with pN = c · p′N .

Hence, pNS = c · p′NS = c · pπ(N)
π(S) = c · pN ′

S′ . q.e.d.
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It should be noted that the weights of an arbitrary weight system p can be normalized so that
∑
S∈FN pNS

is a constant that may only depend on |N | (e.g., the constant 2|N | − 2) for all N ∈ F without changing

the mentioned weighted solutions. If p is normalized, then it is anonymous if and only if c(N,N ′) = 1 for

all N,N ′ ∈ F with |N | = |N ′|, i.e., with |N | = n and |S| = s, pNS = pN (s) = p(s, n) for s = 1, . . . , n− 1

and n ∈ N, 2 6 n 6 |U |.

We now characterize weight systems that result in weighted solutions satisfying the equal treatment

property. We call a weight system p symmetric if, for all N ∈ F , pNS may only depend on the size of the

subcoalition, i.e., pNS = pN (s) for all S ∈ FN where s = |S|.

Theorem 3.3 Let p be a weight system, Γ ⊇ ΓI , and σ be one of the following solutions on Γ:

N p,PN p,Kp, or PKp. Then σ satisfies ETP if and only if p is symmetric.

Proof: The “if-part” is an obvious consequence of the definitions of the considered weighted solutions. In

order to show the “only-if-part” let σ be one of the considered solutions and let it satisfy ETP. Assume,

on the contrary, that p does not satisfy the desired property. Hence, there exists a coalition N and

some S, S′ ∈ FN with |S| = |S′| such that pNS 6= pNS′ . It remains to show that σ violates ETP. As S′

arises from S by a sequence of replacements of one player by one other player, we may assume that

|S \ S′| = 1. Let T, k, ` be determined by S = T ∪ {k} and S′ = T ∪ {`}. Let (N, v) be the game defined

by v(N) = v(T ) = v(N \T ) = 0, v(T ∪{i}) = −1 for all i ∈ N \T , and v(R) =
−pNS −p

N
S′

min{pNQ |Q∈FN} for all other

R ∈ FN . Then (N, v) ∈ ΓI . Let y = νp(N, v). By Remark 2.4 (1), y ∈ σ(N, v). As σ satisfies ETP and

as all players inside T are substitutes and all players in N \T are substitutes as well, there exist α, β ∈ R

such that yi = α for all i ∈ T and yj = β for all j ∈ N \ T . As y(N) = v(N) = 0, |T |α + |N \ T |β = 0.

Let x = 0 ∈ RN . Then e(T, x, v) = e(N \ T, x, v) = 0 and e(R, x, v) < 0 for all R ∈ FN \ {T,N \ T}. By

the definition of the weighted prenucleolus, e(T, y, v) = e(N \ T, y, v) = 0. Hence, y(T ) = y(N \ T ) = 0,

implying |T |α = β = 0, i.e., y = x.

For any R ∈ FN \ {S} with k ∈ R 63 `, the definition of v gives

pNR e(R, y, v) 6 pNR
−pNS − pNS′

pNR
< −pNS = pNS e(S, y, v).

A similar statement is valid when switching the roles of k and `, so spk`(y, v) = −pNS 6= −pNS′ = sp`k(y, v).

Hence, y /∈ PKp(N, v), y /∈ Kp(N, v) and the desired contradiction is obtained by Remark 2.4 (1). q.e.d.

Remark 3.4 A symmetric weight system generates weighted solutions that do not only satisfy ETP, but

also satisfy SYM.

Let p be an arbitrary weight system and (N, v) be a game. A system S =
(
Sk`
)
(k,`)∈N×N,k 6=` is a

constellation if k ∈ Sk` ⊆ N \ {`} for any k, ` ∈ N , k 6= `. Hence, PKp(N, v) is the union taken over all

constellations S of the sets XS given by

XS =

x ∈ X(N, v)

∣∣∣∣∣∣ pNS e(S, x, v) 6 pNSk`e(S
k`, x, v) = pNS`ke(S

`k, x, v) > pNT e(T, x, v)

for all k, ` ∈ N, for all k ∈ S ⊆ N \ {`} and all ` ∈ T ⊆ N \ {k}

 .
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Hence, the weighted prekernel of (N, v) is, similarly to the classical case, a finite union of polyhedral sets.

Proposition 3.5 If p is a symmetric weight system, then for any game (N, v), PKp(N, v) is compact.

Proof: Assume, on the contrary, that PKp(N, v) is not compact. Let S =
(
Sk`
)
(k,`)∈N×N,k 6=` be a

constellation such that XS is unbounded. Let (xr)r∈N be an unbounded sequence of elements of XS .

Then, after replacing our sequence by a suitable subsequence, if necessary, there exist S, T ∈ FN with

S ∩ T = ∅ such that xri −→r→∞ −∞, xrj −→r→∞ ∞ for all i ∈ S, j ∈ T , and {xri | r ∈ N, i ∈ N \ (S ∪ T )} is

bounded. Let, for all r ∈ N, µr = maxR∈FN pNR e(R, x
r, v).

Let r ∈ N and k ∈ S. Let i, j be such that spij = µr. If k ∈ Sij , then spkj = µr. If k /∈ Sij , then

µr = spik = spki, where the second equality follows from the fact that xr ∈ PKp(N, v). Hence, there exists

a player m with spkm = µr. After again replacing our sequence (xr)r∈N by an appropriate subsequence if

necessary, we can assume that m does not depend on r.

As e({i}, xr, v) −→
r→∞

∞ for any i ∈ S, we have limr→∞ µr = ∞. Since pNSkme(S
km, xr, v) −→

r→∞
∞, there

exists a player ` ∈ T \ Skm. Then µr > pNSk`e(S
k`, xr, v) > pNSkme(S

k`, xr, v) > µr for all r ∈ N as well,

and hence, µr = pNSk`e(S
k`, xr, v). Denote R = S`k ∪ {k} \ {`}. Since p is symmetric, pNR e(R, x

r, v) >

pNS`ke(S
`k, xr, v) = pNSk`e(S

k`, xr, v) = µr for r taken sufficiently large, so the desired contradiction has

been obtained. q.e.d.

We now present an example of a weight system that results in a weighted prekernel that is not bounded

provided that |U | > 5.

Example 3.6 Let N = {1, . . . , 5} and pN be defined by

pNS = 7 if |S ∩ {1, 2, 3}| = 2 and |S ∩ {4, 5}| = 1, and pNT = 1 otherwise.

It is easy to check that (−2t,−2t,−2t, 3t, 3t) ∈ PKp(N, 0) for all t > 0.

4 Reduced games according to weight systems

We first recall the well-accepted definition of the reduced game (Davis and Maschler 1965). Let (N, v)

be a game, S ⊆ N be a coalition, and x ∈ RN . The reduced game of (N, v) w.r.t. S and x, denoted by

(S, vS,x), is the game defined by vS,x(S) = v(N)− x(N \ S) and

vS,x(T ) = max
Q⊆N\S

(v(T ∪Q)− x(Q)) for all T ∈ FS . (4.1)

A solution σ on a set Γ of games satisfies the reduced game property (RGP) if, for any (N, v) ∈ Γ, any

S ∈ FN , and any x ∈ σ(N, v), (S, vS,x) ∈ Γ and xS ∈ σ(S, vS,x).

Remark 4.1 The prekernel (Peleg 1986) and the prenucleolus (Sobolev 1975) satisfy RGP on the set of

all games.
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We now modify the reduced game such that the corresponding reduced game property is satisfied by the

weighted versions of the foregoing solutions.

Definition 4.2 Let p be a weight system. The p-reduced game of a game (N, v) w.r.t. a coalition S ⊆ N

and x ∈ RN is the game (S, vpS,x) defined by vpS,x(S) = vS,x(S) and

vpS,x(T ) = max
Q⊆N\S

(
v(T ∪Q)− x(Q) +

pNT∪Q − pST
pST

e(T ∪Q, x, v)

)
for all T ∈ FS . (4.2)

Note that (4.1) guarantees that the excess of a proper nonempty subcoalition T of S is the maximal excess

of coalitions that arise from T by adding players of N \S. Now, the modification (4.2) of (4.1) takes care

of the weighted excesses instead, i.e., it guarantees a similar property when the excess is replaced by the

weighted excess. Indeed, for Q ⊆ N \ S,

pST ·

(
v(T ∪Q)− x(Q) +

pNT∪Q − pST
pST

e(T ∪Q, x, v)− x(T )

)
= pNT∪Qe(T ∪Q, x, v)

so that we have deduced the following proposition.

Proposition 4.3 For any weight system p, any game (N, v), S ∈ FN , and x ∈ RN ,

pST e(T, xS , v
p
S,x) = max

Q⊆N\S
pNT∪Qe(T ∪Q, x, v) for all T ∈ FS . (4.3)

This proposition is used to show that the p-weighted prekernel satisfies the following weighted version

of RGP, the reduced game property w.r.t. p-reduced games (p-RGP), defined by replacing vS,x by vpS,x

wherever it occurs in the definition of RGP.

Corollary 4.4 For any weight system p the p-weighted prekernel satisfies p-RGP.

Proof: Let (N, v) be a game, S ∈ FN , x ∈ PKp(N, v), and k, ` ∈ S with k 6= `. By Proposition 4.3

spk`(xS , v
p
S,x) = spk`(x, v) = sp`k(x, v) = sp`k(xS , v

p
S,x)

so that the proof is complete. q.e.d.

The following lemma is useful to show that PN p satisfies p-RGP.

Lemma 4.5 Let p be a weight system, (N, v) be a game, S ∈ FN , and x ∈ RN . Then the p-weighted

excess game w.r.t. xS of the p-reduced game of (N, v) w.r.t. S and x coincides with the classical reduced

game w.r.t. S and 0 ∈ RN of the p-weighted excess game w.r.t. x of (N, v), i.e.,(
vpS,x

)p
xS

= (vpx)S,0 .

Proof: By the definitions of the p-weighted excess game, the classical and the p-reduced games ((2.1),

(4.1), and (4.2), respectively), we find(
vpS,x

)p
xS

(S) = vpS,x(S)− x(S) = (v(N)− x(N \ S))− x(S) = e(N, x, v) = vpx(N) = (vpx)S,0 (S).
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Additionally applying Proposition 4.3 yields for all T ∈ FS(
vpS,x

)p
xS

(T ) = pST e(T, xS , v
p
S,x) = max

Q⊆N\S
pNT∪Qe(T ∪Q, x, v) = max

Q⊆N\S
vpx(T ∪Q) = (vpx)S,0 (T ). q.e.d.

Theorem 4.6 For any weight system p the p-weighted prenucleolus satisfies p-RGP.

Proof: Let (N, v) be a game and denote x = νp(N, v). By Proposition 2.2 (1), we have 0 = ν(N, vpx).

Let S ∈ FN . By Remark 4.1, 0 = ν(S, (vpx)S,0), which rewrites by Lemma 4.5 to 0 = ν(S, (vpS,x)pxS
).

Applying once more Proposition 2.2 (1), we find that xS = νp(S, vpS,x). q.e.d.

The following remark and lemma are used in subsequent sections.

Remark 4.7 Let p be a weight system and σ be a solution.

(1) If σ satisfies SIVA, COV, and p-RGP, then it satisfies PO. Indeed, the proof in the classical case

(Peleg and Sudhölter 2007, Lemma 6.2.11) may be literally copied because it suffices to apply RGP

just to one-person reduced games.

(2) If σ satisfies NE, PO, COV, and ETP, then σ is a standard solution (Peleg 1986), i.e., for any

k, ` ∈ U, k 6= `,

σ(N, v) = {y}, where yk =
v({k})− v({`}) + v(N)

2
and N = {k, `}, for all games (N, v).

Hence, for any two-person game (N, v), σ(N, v) is a singleton {y}. Moreover, yk = y`, where

N = {k, `}, if and only if k and ` are substitutes.

Lemma 4.8 Let |U | > 3. If there exists a solution that satisfies NE, PO, COV, ETP, and p-RGP, then

pN{k} = pN{`} and pNN\{k} = pNN\{`} for all N ∈ F with |N | > 2 and all k, ` ∈ N .

Proof: Let σ be a solution on Γ that satisfies the requested properties. Let k, ` ∈ N ∈ F with k 6= `.

Choose t > max
{
pNR
pNQ

∣∣∣R,Q ∈ FN} so that t > 1. We first show that

pN{k}

pN{`}
=
p
{k,`}
{k}

p
{k,`}
{`}

=
pNN\{`}

pNN\{k}
. (4.4)

To this end define the game (N, v) by v(N) = 0, v({i}) = −1 for all i ∈ N , and v(T ) = −t for all other

T ∈ FN . Let y = 0 ∈ RN . By NE, PO, and ETP, σ(N, v) = {y}. Let S = {k, `}. By p-RGP, yS = 0 ∈

σ(S, vpS,y). By Remark 4.7 (2), vpS,y({k}) = vpS,y({`}) =: α. By Proposition 4.3, spk`(y, v) = spk`(yS , v
p
S,y)

and sp`k(y, v) = sp`k(yS , v
p
S,y). By the choice of t, spk`(y, v) = −pN{k} and sp`k(y, v) = −pN{`}. Moreover,

spk`(yS , v
p
S,y) = αpS{k} and sp`k(yS , v

p
S,y) = αpS{`} so that the first equation in (4.4) is shown. The second

equation in (4.4) is deduced similarly. Only the game (N, v) has to be replaced by the game (N, v′)

defined by v′(N) = 0, v′(N \ {i}) = −1 for all i ∈ N , and v(T ) = −t for all other T ∈ FN .
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Hence, it suffices to prove that pM{k} = pM{`} for any M ⊆ U with k, ` ∈ M and |M | = 3. We may assume

without loss of generality that M = {1, 2, 3}, k = 1, and ` = 2. Choose β > 2·max
{
pMR
pMQ

∣∣∣R,Q ∈ FM} and

define the game (M,w) by w(M) = 0, w({1, 2}) = w({3}) = −1, and w(T ) = −β for all other T ∈ FM .

By NE there exists z ∈ σ(M,w). By PO and ETP there exists α ∈ R such that z = (α, α,−2α). If

α > 0, then sp1,3(z, w) < 0, and if α < 0, then sp3,1(z, w) < 0. By p-RGP and Proposition 4.3, Remark 4.7

(2) guarantees that e({1, 2}, z, w) < 0 and e({3}, z, w) < 0, i.e., −1 < 2α < 1. Hence by Remark 4.7 (2),

e({1}, z{1,3}, wp
{1,3}) = e({3}, z{1,3}, wp

{1,3}) = −δ for some δ > 0. By Proposition 4.3 and the choice of β,

sp1,3(z, w) = pM{1,2}(−1− 2α) = −p{1,3}{1} δ and sp3,1(z, w) = pM{3}(−1 + 2α) = −p{1,3}{3} δ,

i.e.,
p
{1,3}
{1}

p
{1,3}
{3}

=
pM{1,2}(1−2α)
pM{3}(1+2α)

. Similarly, by considering wp
{2,3}, we receive

p
{2,3}
{2}

p
{2,3}
{3}

=
pM{1,2}(1−2α)
pM{3}(1+2α)

. By (4.4),

pM{1}

pM{3}
=
p
{1,3}
{1}

p
{1,3}
{3}

=
p
{2,3}
{2}

p
{2,3}
{3}

=
pM{2}

pM{3}
,

so that the proof is complete. q.e.d.

5 Axiomatization of the symmetrically weighted (pre)nucleolus

This section is devoted to the generalization of Sobolev’s (1975) famous axiomatization of the prenucleolus

that makes the following assertion: If |U | =∞, then the prenucleolus is the unique solution that satisfies

SIVA, AN, COV, and RGP. A careful inspection of the proof shows that, instead of AN, in fact the weaker

SYM is used. Moreover, SYM and SIVA imply ETP, and, in fact, Orshan (1993) shows that AN may

even be replaced by ETP. In view of Theorem 3.3 and Remark 3.4, we shall modify the aforementioned

result by employing SIVA, COV, SYM and p-RGP for a symmetric weight system p.

Moreover, the logical independence of each of the employed axioms of the remaining axioms will be

discussed, and Snijders’ (1995) result on the nucleolus will be generalized.

5.1 Symmetrically weighted prenucleoli

First, we show a relation between SIVA, SYM, COV, and p-RGP and the symmetry of the weight system.

Theorem 5.1 Let |U | > 3 and p be a weight system. Then there exists a solution that satisfies SIVA,

SYM, COV, and p-RGP if and only if p is symmetric.

Proof: If p is symmetric, then PN p satisfies SIVA and COV as is known (see Section 2), SYM by

Remark 3.4, and p-RGP by Theorem 4.6. In order to show the “only if”-part, let σ be a solution on Γ

that satisfies the requested properties. Let N ∈ F , n = |N | > 2, S, S′ ∈ FN such that s = |S| = |S′| and

S 6= S′. It remains to show that pNS = pNS′ . By Remark 4.7, σ satisfies PO. Moreover, SIVA and SYM

together imply NE and ETP. Hence, by Lemma 4.8 we may assume that |N | > 4 and 2 6 s 6 n− 2.
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As S′ arises from S by a sequence of replacements of one player by one other player, we may assume

that |S \ S′| = 1. Let t > max
{
pNR
pNQ

∣∣∣R,Q ∈ FM} . Hence, t > 1. Without loss of generality we may

assume that N = {1, . . . , n}, S = {1, . . . , s}, and S′ = {1, . . . , s − 1, n − 1}. Let π be the “cyclic”

permutation of N defined by π(i) = i− 1 for all i ∈ N \ {1} and π(1) = n, and let π′ be the permutation

of N defined by π′(j) = π(j) for all j ∈ N \ {n − 1, n}, π′(n − 1) = n − 1, and π′(n) = n − 2. Now, let

the game (N, v) be defined by v(N) = 0, v(πj(S)) = −1 for all j ∈ N , and v(T ) = −t for all other

T ∈ FN (here πj denotes the j-fold composition of π). Moreover, let the game (N, v′) be defined by

v′(N) = v′({n − 1}) = v′(N \ {n − 1}) = 0, v(π′j(S′)) = −1 for all j ∈ N \ {n} and v(T ) = −t for all

other T ∈ FN .

By SIVA, σ(N, v) = {z} and σ(N, v′) = {z′} for some z, z′ ∈ RN . By Remark 4.7 (1), z(N) = z′(N) = 0.

By construction π ∈ SYM(N, v) and π′ ∈ SYM(N, v′) so that, by SYM, zn = zn−1 = · · · = z1 and

z′n = z′n−2 = · · · = z′1. Hence, z = 0 ∈ RN and there exists α ∈ R such that z′ = (α, . . . , α︸ ︷︷ ︸
n−2

,−(n− 1)α, α).

Let w = v′pQ,z′ , where Q = {n − 1, n}. By p-RGP, z′Q ∈ σ(Q,w). By Remark 4.7 (2), spn−1,n(z′Q, w)

and spn,n−1(z′Q, w) have the same signum. As v′({n − 1}) = v′(N \ {n − 1}) = 0, spn−1,n(z′, v′) >

(n−1)pN{n−1}α and spn,n−1(z′, v′) > −(n−1)pnN\{n−1}α. By Proposition 4.3, spn−1,n(z′Q, w) = spn−1,n(z′, v′)

and spn,n−1(z′Q, w) = spn,n−1(z′, v′) so that α = 0, i.e., z′ = 0 ∈ RN .

Let T = πs(S) and T ′ = π′s−1(S′). Then T is the unique coalition in {πj(S) | j ∈ N} that contains n

and does not contain 1. Similarly T ′ is the unique coalition in {π′j(S′) | j ∈ N \ {n}} with 1 /∈ T ′ 3 n.

Moreover, T = T ′. By the choice of t,

sp1,n(0, v) = −pNS , s
p
1,n(0, v′) = −pNS′ , s

p
n,1(0, v) = −pNT , and spn,1(0, v′) = −pNT .

Let R = {1, n}. By p-RGP, zP = 0 ∈ σ(P, vpP,0) and 0 ∈ σ(P, v′pP,0) so that, by Remark 4.7, vpP,0({1}) =

vpP,0({n}) =: β and v′pP,0({1}) = v′pP,0({n}) = γ. Hence, by Proposition 4.3,

−pNS = pP{1}β,−p
N
S′ = pP{1}γ, and − pNT = pP{2}β = pP{2}γ

so that β = γ and pNS = pNS′ and the proof of this case is complete. q.e.d.

Now, the main result of this section can be proved.

Theorem 5.2 Let |U | =∞ and p be a symmetric weight system. Then the weighted prenucleolus PN p

is the unique solution that satisfies SIVA, SYM, COV, and p-RGP.

Proof: By Theorem 5.1 only the uniqueness part has to be verified. To this end, let σ be a solution that

satisfies the desired axioms. By Remark 4.7 (1), σ satisfies PO.

Let (N, v) be a game. In order to show σ(N, v) = PN p(N, v), by COV we may assume that νp(N, v) = 0.

By Proposition 2.2, 0 = ν(N, vp0 ) (for the definition of the p-weighted excess game (N, vp0 ) at 0 see (2.1)).

In the main step of his proof, Sobolev (see, e.g., Peleg and Sudhölter (2007, pp. 112-114) for an English

version or Kleppe (2010) for an adaptation to the per capita weight system of his proof) constructs a

game (M,w′) with the following properties:
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• N ⊆M and w′(M) = 0.

• w′N,0 = vp0 .

• (M,w′) is transitive, i.e., for any k, ` ∈M with k 6= ` there exists a permutation π of M such that

π(k) = ` and πw′ = w′.

Now, by SYM and PO of the classical prenucleolus, ν(M,w′) = 0 ∈ RM . Let (M,w) be the game defined

by w(M) = w′(M) = 0 and

w(S) =
w′(S)

pMS
for all S ∈ FM .

As p is symmetric, the game (M,w) inherits transitivity from (M,w′). Hence, by SIVA and SYM, and

PO, σ(M,w) consists of a unique element y that satisfies yk = y` for all k, ` ∈ M . By PO, y = 0. By

Lemma 4.5 we have

vp0 = w′N,0 = (wp
0 )N,0 = (wp

N,0)p0 ,

which implies v = wp
N,0. Finally, by p-RGP and SIVA, σ(N, v) = 0 ∈ RN . q.e.d.

Remark 5.3 It should be noted that a weighted prenucleolus according to a symmetric weight system

satisfies SYM, but it may not satisfy AN. E.g., one may partition F into two nonempty subsets F = F1∪F2

and define the weight system p by the requirement pNS = 1 for all N ∈ F1, S ∈ FN , and pN
′

S′ = 1
|S′| for all

N ′ ∈ F2, S′ ∈ FN ′
. This weight system is symmetric but violates AN and its weighted prenucleolus is the

classical prenucleolus when applied to a game (N, v) with N ∈ F1, and it is the per capita prenucleolus

when applied to a game (N ′, v′) with N ′ ∈ F2.

5.2 Symmetrically weighted nucleoli

We now consider the class ΓI . As in the classical case, the weighted nucleolus according to any weight

system p does not satisfy p-RGP. Indeed, consider the 3-person game (N, v) defined by v({i}) = 0 for all

i ∈ N and v(S) = 1 for all other coalitions and let x = νpI (N, v). Then there exists T ⊆ N with |T | = 2

and e(T, x, v) > 0. Let k ∈ T and ` ∈ N \ T and define S = {k, `}. Then vpS,x({k}) > xk so that xS is

not individually rational for this reduced game. Hence, we modify the imputation saving reduced game

property introduced by Snijders (1995).

Definition 5.4 Let (N, v) be a game, S ∈ FN , and x ∈ RN . The imputation saving p-reduced game

(S, ṽpS,x) is defined by the following requirement: If |S| = 1, then ṽpS,x = vpS,x, and if |S| > 1, then

ṽpS,x(T ) =

 vpS,x(T ), if T ⊆ S, |T | > 1,

min{xi, vpS,x({i})}, if T = {i}, i ∈ S.
(5.1)

Now the imputation saving reduced game property w.r.t. imputation saving p-reduced games (p-ISRGP)

arises from p-RGP by replacing vpS,x by ṽpS,x wherever it occurs. Modifying (4.3) suitably yields, for any
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weight system p, any game (N, v) with |N | > 1, for all S ∈ FN and all x ∈ RN , that

pST e(T, x, ṽ
p
S,x) = max

Q⊆N\S
pNT∪Qe(T ∪Q, x, v) for all T ∈ FS , |T | > 2, and (5.2)

pS{i}e({i}, x, ṽ
p
S,x) = min

{
0, max
Q⊆N\S

pN{i}∪Qe({i} ∪Q, x, v)

}
for all i ∈ S. (5.3)

In the proofs of Lemma 4.8 and of Theorem 5.1 only games in ΓI are used and the proofs remain valid

if the employed p-reduced games are replaced by their imputation saving versions. Hence, these results

remain valid if we consider a solution on ΓI and replace p-RGP by p-ISRGP.

Theorem 5.5 Let |U | > 3 and p be a weight system. Then there exists a solution that satisfies SIVA,

SYM, COV, and p-ISRGP if and only if p is symmetric.

A careful inspection of Snijders’ (1995) proof in the classical case (cf. Peleg and Sudhölter (2007, Sub-

section 6.3.1) and an application of Proposition 2.2 (2), Lemma 4.8, and (5.2) and (5.3) yields a proof of

the following theorem.

Theorem 5.6 Let |U | =∞ and p be a symmetric weight system. Then the weighted nucleolus N p is the

unique solution on ΓI that satisfies SIVA, SYM, COV, and p-ISRGP.

5.3 Logical independence of the axioms

Examples of solutions are presented that exclusively violate one of the axioms in Theorem 5.2 or Theorem

5.6, respectively.

It is well-known that the Shapley value (Shapley 1953) satisfies SIVA, COV, and SYM on any class of

games. It violates, however, p-RGP and p-ISRGP on ΓI , provided |U | > 3. Indeed, there are 3-person

games whose core is nonempty and whose Shapley value does not belong to the core, while weighted

(pre)nucleoli always belong to a nonempty core.

If |U | > 4, according to Section 6 (see Example 6.2), PKp or Kp is a nonempty solution that satisfies all

axioms of Theorem 5.2 or Theorem 5.6, respectively, with the exception of SIVA.

The “equal split solution” exclusively violates COV in Theorem 5.2 provided |U | > 2.

The following modification of the equal split solution exclusively violates COV in Theorem 5.6. The

modified solution assigns max{λ, v({i})} to each player i ∈ N of game (N, v) ∈ ΓI where λ is determined

by Pareto optimality. As its definition is similar to the definition of the “constrained equal award solution”

for bankruptcy problems (Aumann and Maschler 1985), we could call it the “constrained equal split

solution”.

In order to show that SYM is logically independent of the remaining axioms in Sobolev’s axiomatization,

first an auxiliary solution, the “positive core”, is defined (Orshan and Sudhölter 2010). A preimputation

x of a game (N, v) belongs to its positive core if it lexicographically minimizes the positive parts of the
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excesses, i.e., if the excess of a coalition at x coincides with the excess of the coalition at the prenucleolus

if the former excess is positive. Hence, the positive core is a convex polytope, and it is easily seen that the

positive core satisfies COV, SYM, and RGP. Fixing some total order on U and selecting the lexicographic

smallest element of the positive core results in a solution that exclusively violates SYM (cf. Peleg and

Sudhölter (2007, Subsection 6.3.2)). One may similarly define the “weighted positive core according to

p” of a game (N, v) by the requirement that a preimputation x belongs to this solution if the weighted

excesses at x coincide with the weighted excesses at νp(N, v) if positive. In order to show that SYM

is logically independent of the remaining axioms in Theorem 5.6 one may further modify the weighted

positive core by requiring that an imputation x belongs to the modified auxiliary solution if the excess

of a coalition at x coincides with the excess of this coalition at the nucleolus point, if it is positive.

It should be mentioned that the infinity assumption on the cardinality of U cannot be deleted in either

Theorem 5.2 or Theorem 5.6. Indeed, if 4 6 |U | < ∞, then together with a suitable modification of the

game given in Exercise 6.3.2, suitable modifications of the solution defined in Remark 6.3.3 of Peleg and

Sudhölter (2007) satisfy all properties of Theorem 5.2 or Theorem 5.6, respectively.

Finally, it is remarked that whether Orshan’s (1993) result that ETP replaces SYM in Sobolev’s axiom-

atization is still valid for, e.g., Theorem 5.2, is an open question.

6 Axiomatization of the symmetrically weighted prekernel

We show that Peleg’s (1986) axiomatization of the prekernel may be generalized to the weighted prekernel

according to any symmetric weight system.

We first define the weighted version of Peleg’s “converse reduced game property”. Let p be a weight

system. A solution σ satisfies the converse reduced game property w.r.t. p-reduced games (p-CRGP) if

the following property holds for all games (N, v) with |N | > 2 and all x ∈ X(N, v): If xS ∈ σ(S, vpS,x) for

all S ⊆ N with |S| = 2, then x ∈ σ(N, v).

Theorem 6.1 Let p be a weight system and |U | > 3. Then the following statements are valid.

(1) There exists a solution that satisfies NE, PO, COV, ETP, p-RGP, and p-CRGP if and only if p is

symmetric.

(2) If p is symmetric, then the weighted prekernel PKp is the unique solution that satisfies NE, PO,

COV, ETP, p-RGP, and p-CRGP.

Proof: If p is symmetric, then, by Remark 2.4, the definition of PKp, and Corollary 4.4, PKp satisfies

the first five desired properties. By Proposition 4.3, spk`(x, v) = spk`(x{k,`}, v
p
{k,`},x) for any game (N, v)

and all k, ` ∈ N with k 6= `. Hence, PKp satisfies p-CRGP.
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In order to show the remaining only-if part of (1) and the uniqueness part of (2), let σ be a solution that

satisfies the desired properties. We may copy Peleg’s proof for the classical prekernel, just the reduced

game has to be replaced by the p-reduced game wherever it occurs: Let (N, v) be a game. The properties

p-RGP and p-CRGP cannot be distinguished from RGP and CRGP if |U | 6 2 so that σ(N, v) = PK(N, v)

if |N | 6 2. By Remark 4.7 (2), PK(N, v) = PKp(N, v) for |N | 6 2. If |N | > 3 and x ∈ σ(N, v), then

by p-RGP of σ, xS ∈ σ(S, vpS,x) = PKp(S, vpS,x) for all S ⊆ N with |S| = 2. By p−CRGP of PKp,

x ∈ PKp(N, v). The opposite inclusion may be proved by interchanging the roles of σ and PKp. Now,

by Theorem 3.3, p is symmetric. q.e.d.

Suitable modifications of the examples that show that each of the six axioms in Peleg’s (1986) axiomati-

zation of the prekernel is logically independent of the remaining axioms, provided that |U | > 4, may be

used to show that the axioms employed in Theorem 6.1 (2) are logically independent as well.

As in the classical case, it is straightforward to apply the characterization of the p-weighted prenucleolus

of a game by balanced collections of coalitions (Kohlberg 1971) in order to show that PKp(N, v) is a

singleton for all 3-person games (N, v). Hence, if |U | = 3, p-CRGP is implied by the remaining five

properties of Theorem 6.1 (2).

For completeness we present an example of a 4-person game of which none of the weighted (pre)kernels

is a singleton.

Example 6.2 Let N = {1, 2, 3, 4} and (N, v) be a game such that v({1, 2}) = v({2, 3}) = v({3, 4}) =

v({1, 4}) = 1, v(N) = 0, v({i}) = −1 for all i ∈ N and v(S) 6 −2 for all other coalitions S of N . Then

(t,−t, t,−t) ∈ Kp(N, v) ∩ PKp(N, v) for all −1 6 t 6 1 and all weight systems p that are symmetric.

References

Albers, W. (1977): “Core- and kernel-variants based on imputations and demand profiles”, in Game

Theory and Related Topics, ed. by O. Moeschlin, and D. Pallaschke, pp. 3 – 16, Amsterdam. North-

Holland.

Aumann, R. J., and M. Maschler (1985): “Game theoretic analysis of a bankruptcy problem from

the Talmud”, Journal of Economic Theory, 36, 195 213.

Davis, M., and M. Maschler (1965): “The kernel of a cooperative game”, Naval Research Logistics

Quarterly, 12, 223–259.

Derks, J. J. M., and H. Haller (1999): “Weighted nucleoli”, International Journal of Game Theory,

28, 173 – 187.

Grotte, J. H. (1970): “Computation of and Observations on the Nucleolus, the Normalized Nucleolus

and the Central Games”, Master’s thesis, Cornell University, Ithaka, New York.

Justman, M. (1977): “Iterative processes with ‘nucleolar’ restrictions”, International Journal of Game

Theory, 6, 189 – 212.

Kleppe, J. (2010): “Modelling interactive behaviour, and solution concepts”, Ph.D. thesis, Tilburg

University, The Netherlands.

17



Kohlberg, E. (1971): “On the nucleolus of a characteristic function game”, SIAM Journal on Applied

Mathematics, 20, 62 – 66.

Maschler, M., B. Peleg, and L. S. Shapley (1972): “The kernel and bargaining set for convex

games”, International Journal of Game Theory, 1, 73 – 93.

Orshan, G. (1993): “The prenucleolus and the reduced game property: Equal treatment replaces

anonymity”, International Journal of Game Theory, 22, 241 – 248.

Orshan, G., and P. Sudhölter (2003): “Reconfirming the prenucleolus”, Mathematics of Operations

Research, 28, 283 – 293.

(2010): “The positive core of a cooperative game”, International Journal of Game Theory, 39,

113 – 136.

Peleg, B. (1986): “On the reduced game property and its converse”, International Journal of Game

Theory, 15, 187 – 200.

Peleg, B., and P. Sudhölter (2007): Introduction to the Theory of Cooperative Games, Theory

and Decisions Library, Series C: Game Theory, Mathematical Programming and Operations Research.

Springer-Verlag, Berlin, Heidelberg, 2nd edn.

Potters, J. A. M., and S. H. Tijs (1992): “The nucleolus of matrix games and other nucleoli”,

Mathematics of Operations Research, 17, 164 – 174.

Schmeidler, D. (1969): “The nucleolus of a characteristic function game”, SIAM Journal on Applied

Mathematics, 17, 1163 – 1170.

Shapley, L. S. (1953): “A value for n-person games”, in Contribution to the Theory of Games II,

Vol. 28 of Annals of Mathematics Studies, pp. 307 – 317, Princeton, N.J. Princeton University Press.

Snijders, C. (1995): “Axiomatization of the nucleolus”, Mathematics of Operations Research, 20, 189

– 196.

Sobolev, A. I. (1975): “The characterization of optimality principles in cooperative games by functional

equations”, in Mathematical Methods in the Social Sciences, ed. by N. N. Vorobiev, Vol. 6, pp. 95 –

151, Vilnius. Academy of Sciences of the Lithuanian SSR, in Russian.

Sudhölter, P. (1993): “Independence for characterizing axioms of the pre-nucleolus”, Working paper

220, Institute of Mathematical Economics, University of Bielefeld.

Wallmeier, E. (1983): “Der f -Nukleolus und ein dynamisches Verhandlungsmodell als Lösungskonzepte

für kooperative n-Personenspiele”, Ph.D. thesis, Westfälische Wilhelms-Universität, Münster.

Young, H. P., N. Okada, and T. Hashimoto (1982): “Cost allocation in water resources develop-

ment”, Water Resources Research, 18, 463 – 475.

18


	Introduction
	Preliminaries
	Anonymity, symmetry, and the equal treatment property
	Reduced games according to weight systems
	Axiomatization of the symmetrically weighted (pre)nucleolus
	Symmetrically weighted prenucleoli
	Symmetrically weighted nucleoli
	Logical independence of the axioms

	Axiomatization of the symmetrically weighted prekernel

