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Abstract

In this paper we consider a label-setting dynamic-programming algorithm for the
Elementary Shortest Path Problem with Resource Constraints (ESPPRC). We use a
pseudo resource to guarantee that labels are permanent. We observe that storing the
states based on the subset of nodes visited by the associated path can improve the
performance of the algorithm significantly. To this end we use a variant of a prefix
tree to store the states and show by computational experiments that the performance
of the dynamic programming algorithm is improved significantly when the number of
undominated states is large.
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1 Introduction

The Elementary Shortest Path Problem with Resource Constraints (ESPPRC) is the prob-
lem of identifying a minimum cost non-cyclic path through a network having possibly neg-
ative arc costs, such that the path satisfies a set of resource constraints. This problem, also
known as the pricing problem, arises when column generation is applied to the Vehicle Rout-
ing Problem with Resource Constraints (see Desrochers et al. (1992)). Dror (1994) shows
that the ESPPRC is NP-hard in a strong sense for the special case where the resource
constraints are time windows.

The prevalent approach for solving ESPPRC has been Dynamic Programming (DP),
which is a general group of techniques where the solution process is divided into a sequence
of stages such that each stage can be derived from the previous stages. Within each stage a
set of possible states is constructed to keep track of the possible solutions of the stages. A
state corresponds to a partially constructed solution, and it has to be recursively extended
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to other states in later stages to complete the solution. DP suffers from the problem that
the number of states within a stage may explode if it is not possible to eliminate some of the
states. To handle this, simple sufficient dominance criteria are often given, which stipulate
that one state will always yield a better final solution than the other state.

Among the key factors to construct a good DP algorithm for a problem are:

1. the strength of the sufficient dominance criteria. In some cases using more computation
time may enable a dominance criterion which eliminates more states. Whether or not
this is worthwhile depends on the problem type or the problem instance.

2. the order of extending the states, i.e., how the states are sorted into stages. If this is
not done carefully, then some states already extended may be dominated and thereby
eliminated. As a consequence, all the extensions are also dominated and should be
eliminated. Hence, these extensions have wasted computational time.

3. the search method when trying to identify dominant or dominated states. When the
number of states in a stage grows large, then it is important to be able to quickly
identify the subset of states which may be dominated or dominant.

While we acknowledge that the first factor is important, we focus solely on the second
and the third factors in the present paper. Especially the third factor has not received
much attention in the literature, and we will show that it is important to efficiently identify
dominant and dominated states.

The main contribution of this paper is the development of a set-based data structure –
a so-called prefix tree – which facilitates fast dominance checks excluding a large number
of unnecessary dominance checks. We show that when the problems have a large number
of states, then the set-based data structure significantly speeds up the solution process. A
secondary contribution is to develop a permanent label setting algorithm for any kind of
resource extension function. In ESPPRC this is based on the observation that paths cannot
be extended to already visited nodes, and therefore we can use the number of unreachable
nodes as a pseudo resource to guarantee that states with fewer unreachable nodes will never
be eliminated.

The paper is organized as follows: A brief review of related literature is given in section
2. This is followed, in section 3, by a formal description of the problem and the related
notation. Then a description of the dynamic programming procedure is given in section
4. In section 5 we discuss how to store the states of the ESPPRC efficiently. A series of
computational experiments have been conducted, and they are described and discussed in
section 6. Finally, section 7 concludes the paper.

2 Related literature

Resources in shortest path problems have been used in many variants. Examples are capacity
constraints, time windows, and follower constraints in routing problems. Desaulniers et al.
(1998) introduce the definition of a resource extension function, which is a generalization of
the examples of resource constraints given above. They describe several types of resource
constraints. A further discussion of resource constraints, as well as shortest path problems
with resource constraints in general, is given by Irnich and Desaulniers (2005).

A distinction has to be made between methods having both non-negative costs and
non-negative resource consumption and methods for problems not satisfying this require-
ment. We are mainly interested in the latter case. The case having non-negative costs and
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non-negative resource consumption is investigated by Mehlhorn and Ziegelmann (2000),
Dumitrescu and Boland (2003), and Santos et al. (2007).

Desrochers and Soumis (1988) construct a dynamic programming algorithm for the (non-
elementary) shortest path problem with resource constraints based on the assumption that
a monotone positive resource extension function exists. They use generalized buckets for
this monotone positive resource extension function to constitute the stages of the dynamic
programming. Powell and Chen (1998) construct an algorithm for the (non-elementary)
shortest path problem with resource constraints based on lexicographic ordering of states
and choose only states for extension which are below a certain threshold.

Desrochers et al. (1992) apply a relaxation of the ESPPRC to solve the Vehichle Routing
Problem with Time Windows. They relax the elementarity of the paths and replace this
requirement with the requirement that no path can contain a 2-cycle. Dror (1994) shows, as
a comment on the paper by Desrochers et al. (1992), that ESPPRC is NP-hard in a strong
sense for the special case where the resource constraints are time windows. Irnich and
Villeneuve (2006) construct a k-cycle free algorithm for the resource constrained shortest
path problem. In principle, this algorithm can be used to solve ESPPRC by setting k

sufficiently large, but the complexity of the suggested algorithm increases exponentially
with k.

Beasley and Christofides (1989) note that in order to guarantee elementarity of a path it
is sufficient to add an extra resource for each node indicating whether or not the node has
been visited on the path. This resource is upper bounded by one, thereby prohibiting the
path to reenter previously visited nodes. Feillet et al. (2004) enhance this idea by observing
that some nodes are not reachable due to the resource constraints and that node resources
for the elementarity can be incremented for these nodes without the path having visited
them. They also observe that it is possible to count the number of unreachable nodes for a
path and use this number as a pseudo resource to speed up the dominance check, i.e., if a
state has larger value in the pseudo resource than another state, then it can never dominate
the other state. In all, as it is possible to model the elementarity by resources, it is possible
to use standard SPPRC algorithms for the ESPPRC. Chabrier (2006) applies a stronger
dominance criterion than Feillet et al. (2004) to eliminate more states. This is based on the
observation that if one state has sufficiently less cost compared to another state, then some
of the nodes not reachable for the first state but reachable for the second state will never
be reached by a lower cost extension of the second state.

Given that the resource extension functions of the shortest path problem have inverse
functions, Righini and Salani (2006) show that a significant reduction in the number of
states can be obtained by solving the problem using bidirectional dynamic programming.
Irnich (2008) gives a thorough treatment of inverse resource extension functions.

Kohl (1995) describes a state space relaxation of the ESPPRC, where the problem is
relaxed by removing the requirement that each node must be visited at most once. After
the relaxation has been solved the requirement is reintroduced for the nodes which are
visited more than once on the best path. This process is repeated until an elementary path
is found. Boland et al. (2006) and Righini and Salani (2008) implement this strategy and
show that in many cases it is worthwhile to use this approach.

Ibrahim et al. (2009) set up a multi-commodity flow formulation for the elementary
shortest path problem in a digraph and show that the LP relaxation of this is stronger than
an arc-flow formulation. Drexl and Irnich (2012) follow up on this and show that from an
integer point of view the arc-flow formulations along with subtour elimination constraints
are superior to the multi-commodity flow base formulations. Furthermore, Drexl and Ir-
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nich (2012) argue that neither mathematical formulations-based approaches nor dynamic
programming-based methods are able to fully handle large scale elementary shortest path
problems.

The ESPPRC can be interpreted as a prize collecting problem, where a connected path
has to be selected such that the total prize obtained from the arcs is maximized. The prize
for each arc will then correspond to the negated cost of the arc. The selective traveling
salesman problem (STSP) described by Gendreau et al. (1998) is closely related to the
ESPPRC, but with two main differences: The STSP does not have resources constraints,
and it has to visit a pre-specified subset of the nodes of the network. Gendreau et al. (1998)
solve STSP by branch-and-cut.

Gualandi and Malucelli (2012) provide a constraint programming approach for solving
resource constrained shortest path problems with super additive cost functions. Their def-
inition of resources differs from the one we use in the sense that in their context resources
are additive and are allowed to vary freely as long as the path at termination has resource
values within a specific resource window. Hence, they only have a single resource window
for each resource, whereas we have resource windows for each node and each resource.

3 Problem Description

Let D(V ,A) be a directed graph with nodeset V and arcset A ⊆ {(i, j)|i, j ∈ V , i 6= j}. The
set of nodes is divided into the set C of intermediate nodes which is sometimes referred to
as the customer nodes, the origin node o, and the destination node d, i.e., V = C ∪ {o, d}.

We denote a path visiting nodes v0, . . . , vp in sequence for P = (v0, . . . , vp). The length
of path P is p corresponding to the number of arcs used along the path. We say that a node
v ∈ V is on the path if v ∈ {v0, . . . , vp}, and we adopt the notation v ∈ P . For convenience
we let Pq = (v0, . . . , vq), for 0 ≤ q ≤ p, be the subpath of P visiting the first q + 1 nodes of
P . If all the nodes v0, . . . , vp are pairwise distinct, then the path is said to be elementary.

A real valued cost cij is associated with each arc (i, j) ∈ A. The cost of a path, P , is
then C(P ) =

∑p

q=1 cvq−1vq . The cost can also be calculated recursively by

C(P0) = 0
C(Pq) = C(Pq−1) + cvq−1vq , 1 ≤ q ≤ p

(1)

The recursive calculation is typically used within dynamic programming as we extend the
paths one node at a time.

An index set of resources R = {1, . . . , R} is given, and for each node i ∈ V and resource
r ∈ R a resource window [ari , b

r
i ] is present. With each arc (i, j) ∈ A and resource r ∈ R a

resource extension function (REF) f r
ij : RR → R is defined, stating the amount, f r

ij(T ), of

resource r is used when traversing arc (i, j) starting from i with resource vector T ∈ RR.
Given a path P = (v0, . . . , vp), the resource consumption when entering node vp is denoted
T (P ) = (T 1(P ), . . . , TR(P )). Typically, the resource consumption along a path is calculated
by the recursion

T r(P0) = arv0 , r ∈ R

T r(Pq) = max
{

arvq , f
r
vq−1,vq

(T (Pq−1))
}

, r ∈ R, 1 ≤ q ≤ p
(2)

Clearly, this depends on the types of resources in the problem, and the reader is referred to
Irnich and Desaulniers (2005) for a more elaborate description of these.
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The ESPPRC is then the problem of identifying an elementary path P = (v0, . . . , vp)
from v0 = o to vp = d such that the cost is minimized and T r(Pq) ∈ [avq , bvq ] for all vq ∈ P .

Even though the results of this paper can be applied using more general REFs, we limit
our attention to separable non-decreasing REFs in order to make the exposition more clear.
Furthermore, note that our algorithm does not require, that an inverse REF exists, and
it can therefore be applied to a wider variety of problems compared to the bidirectional
approach described by Righini and Salani (2006).

4 Dynamic Programming Algorithm

The ESPPRC can be solved by dynamic programming, which we describe in this section.
Our algorithm is a slight modification of the label correcting approach described by Feillet
et al. (2004). The main difference between our approach and the one presented by Feillet
et al. (2004) is that by selecting states for extension carefully, we obtain a label setting
algorithm rather than a label correcting algorithm and consequently minimize the number
of extensions performed.

We will denote L(P ) = (C(P ), T (P )) the state (or the label) of a path P . When
extending path P to node vp+1, we obtain the path Q = (v0, . . . , vp, vp+1), and we can
obtain L(Q) = (C(Q), T (Q)), where C(Q) and T (Q) are calculated by the recursion given
in (1) and (2), respectively.

To maintain elementarity it is prohibited to extend a path to an already visited node.
Hence, the nodes already visited are unreachable for any extension of the path. Furthermore,
some nodes may be unreachable due to resource bounds, as described by Feillet et al. (2004).
Therefore, we let U(P ) ⊆ V be the subset of nodes which are unreachable for any extension
of P .

4.1 Dominance

We will distinguish between resource dominance between states and elementary dominance.
In resource dominance it is only the resources and the costs which are taken into account,
whereas for elementary dominance the unreachable set of nodes is also considered.

Dominance 1 (Resource dominance). Given two paths P1 = (v10 , . . . , v
2
p) and P2 = (v20 , . . . ,

v2q) with v1p = v2q . Then P1 resource dominates P2 if

1. C(P1) ≤ C(P2),

2. T r(P1) ≤ T r(P2) for all r ∈ R,

3. L(P1) 6= L(P2).

When P1 resource dominates P2, we write L(P1) ≺r L(P2).

If a path is resource dominated by another path but can still visit some of the unreachable
nodes from the other path, then it has the potential to be extended to a lower cost path
by visiting the nodes unreachable by the other path. Hence, eliminating the corresponding
state based on resource dominance may prohibit the identification of an optimal solution.
This leads to a sufficient condition for elementary dominance:

Dominance 2 (Elementary dominance). Given two paths P1 = (v10 , . . . , v
2
p) and P2 =

(v20 , . . . , v
2
q ) with v1p = v2q . Then P1 dominates P2 if

5



1. L(P1) ≺r L(P2),

2. U(P1) ⊆ U(P2).

When P1 dominates P2, we write L(P1) ≺ L(P2).

Dominance 2 corresponds to the sufficient condition for dominance described by Feillet
et al. (2004), though it does not state the node resources explicitly. It requires the set of
unreachable nodes of the dominant path to be a subset of the set of unreachable nodes of
the dominated path. While seemingly innocent, this is highly prohibitive for the dynamic
programming approaches. The reason is that it is not possible to dominate cost-wise bad
paths which can reach some of the unreachable nodes of the resource dominant paths. To
overcome this, Chabrier (2006) constructs a stronger dominance relation, where P1 may
dominate P2 if |U(P1) \ U(P2)| ≤ K and the cost of P1 is sufficiently less than the cost of
P2. For K ≤ 2 the author demonstrates that this sufficient dominance condition enables
elimination of more states than Dominance 2 without impeding the performance of the
overall method. While we do not use the dominance criterion described by Chabrier (2006)
in the present paper, we comment on how to combine it with our approach in section 5.2.5.

Computationally it is much cheaper to just check resource dominance than to check
elementary dominance. Part 2 of Dominance 2 has a linear worst case complexity in the
length of the paths on top of the time it takes to evaluate resource dominance. This, along
with the increasing number of states, makes the ESPPRC difficult.

4.2 Algorithm

Observe the following: If we extend P to a node v ∈ V \ U(P ), then the resulting path Q

can never reach the nodes in U(P ) nor the node v. As a result, the set of unreachable nodes
strictly increases when extending a path. More precisely, U(P ) ⊂ U(P ) ∪ {v} ⊆ U(Q) and
consequently |U(P )| < |U(Q)|. We will exploit this in Algorithm 1.

Below we describe a permanent label setting algorithm for ESPPRC. It exploits the
strictly increasing number of unreachable nodes when extending a state. The algorithm we
suggest uses the following elements:

• ∆i is the container for efficient states resident in node i ∈ V .

• ∆d
i is the subset of ∆i, where the paths associated with the states have d unreachable

nodes.

• Ed ⊆ V is the nodes for which unprocessed states with paths having d unreachable
nodes may exist.

• create init state() is a function constructing the initial state. Typically, this is a
state for the simple path P = (o) having cost C(P ) = 0 using the T r(P ) = aro
as resource consumption for each resource r ∈ R and having the origin node as an
unreachable node, i.e., U(P ) = {o}.

• succ(v) is the set of successors of v.

• extendable( L, v ) is a function returning true if node v is reachable by extending
state L and false otherwise.

• extend(L, v) creates the extension of state L to node v.
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• dominated(L,∆j) checks whether or not a state within ∆j dominates L.

• eliminate inefficient(L,∆j) searches ∆j for states which L dominates and eliminates
these states.

• insert(L,∆j ) simply inserts L into ∆j .

• num unreach(L) gives the number of unreachable nodes for the path P associated
with state L, i.e., |U(P )|.

Special notice should be given to the three methods dominated, eliminate inefficient,
and insert. The efficiency of these depend on the way the states are stored in the state
container ∆j . We will discuss this in detail in section 5.

We suggest the label setting algorithm given in Algorithm 1. It extends states in increas-
ing order of number of unreachable nodes. As we know that the number of unreachable nodes
is strictly increasing when extending a state – because of the requirement of elementarity
– the state extended will never be dominated using Dominance 2 later in the algorithm.
Consequently, this state is considered permanent.

Algorithm 1: Label setting dynamic programming algorithm

1 Function EspprcDynProg
2 Linit = create init states ()

3 insert(∆o, Linit )
4 for d = 1 to d = |V| do
5 Ed = ∅
6 end

7 E1 = {o}

8 for d = 1 to d = |V| do
9 while Ed 6= ∅ do

10 Choose vi ∈ Ed

11 forall the L ∈ ∆d
i do

12 forall the vj ∈ succ (vi) do

13 if extendable (L, vj) then

14 L′ = extend (L, vj)
15 if not dominated ( L′, ∆j) then

16 eliminate inefficient (L′, ∆j)
17 insert ( L′, ∆j )
18 u = num unreach ( L′ )
19 Eu ← Eu ∪ {vj}

20 end

21 end

22 end

23 end

24 Ed ← Ed \ {vi}

25 end

26 end

27 end

The algorithm first initializes the necessary elements in lines 2-7. That is, it creates an
initial state and inserts it into the state container for the origin node. Then each of the sets
of nodes having unprocessed states with d unreachable nodes is set up to be empty for each
d. The initialization ends with stating that the origin node has an unprocessed state with
one unreachable node.
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The main part of the algorithm is given in lines 8-26. The algorithm iterates increasingly
through the possible number of unreachable nodes. For each of these iterations the nodes
having states with the corresponding number of unreachable nodes are investigated. The set
of states having the corresponding number of unreachable nodes are, if possible, extended
to the possible successors. If the extension is not dominated by already inserted states, then
elimination of already inserted states are commenced and when this is finished, the new
state is inserted into the container. Finally, the set of nodes which has unprocessed states
with a number of unreachable nodes corresponding to the new state’s unreachable nodes, is
updated. When all possible extensions have been made from the node it is removed from
the set of nodes under consideration. This is continued until no more nodes are present in
the set Ed.

In principle, lines 9-25 is a label correcting algorithm, which is run |V| times. But as
an extension will always increase the number of unreachable nodes, a node will only be
processed once in this loop. However, this makes it possible to use the algorithm in a
state-space relaxation of the problem, where we only have to iterate through the number of
non-relaxed nodes, instead of |V|. The loop in lines 9-25 may then be executed more than
|V| times as a result.

5 Storing and updating the efficient states

The set of efficient states, ∆i, for node i can be stored in different ways. Each way of storing
the efficient states has consequences for the efficiency of the insertion, dominance check, and
elimination of states. The simplest way is to store the states in a single linked list and then,
when extending a state to node i, pass through the list to check whether or not the new
state is dominated by another state. If not, then a second pass through the list determines
which states in the list are dominated by the newly extended state. If the number of states
for the node is small, then this approach fast and easy to implement. However, for harder
instances of ESPPRC the number of states tends to increase drastically, and consequently
two linear searches through the states yield a corresponding increase in the running time.
We will refer to this approach as the single linked list storage (SLLS).

In this section we will discuss two alternative strategies for storing the states. In 5.1 the
states are stored in a set of lists exploiting the number of unreachable nodes for the state.
In contrast to this, subsection 5.2 gives a tree-based data structure efficiently storing the
states using the actual unreachable sets instead of just the number of unreachable nodes. In
the tree-based storage we observe that it is not necessary to store U(P ) explicitly for each
state, and by implicitly checking part 2 of Dominance 2 it is in fact only necessary to check
Dominance 1 explicitly.

5.1 List-based storage

The states in ∆i can be stored in a single linked list, as described above. However, we can
easily exploit additional information on the states to improve the performance of a list-based
container of these states. In particular, we can use the pseudo resource described by Feillet
et al. (2004) in the following way. Instead of having a single list a set of |V|+1 lists are used
– one for each possible number of unreachable nodes for the states. Hence, each state is
inserted into the list corresponding to the unreachable nodes of the states. This corresponds
to a bucket-based sorting, where each list is a bucket containing the states having a number
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of unreachable nodes matching the bucket index. We will refer to this approach as the
multiple linked list storage (MLLS).

Then, when checking whether or not a state is dominated by any of the states in the
container, only the states in the lists corresponding to the number of unreachable nodes or
less may dominate the given state, while the remaining states will never dominate the given
state. Therefore, the lists corresponding to a larger number of unreachable nodes than the
number of unreachable nodes for the state are never checked.

If the state is not dominated by any of the states in the container, then it may dominate
some of the already inserted states. To check this, it is only necessary to search through
the lists corresponding to the number of unreachable nodes or higher. The remaining states
have less unreachable nodes and can therefore never be dominated by the state at hand.

Whereas sorting the states by number of unreachable nodes decreases the number of
dominance checks conducted, each dominance check still has to verify both part 1 and part
2 of Dominance 2 explicitly. If each of the lists is single linked lists, then the insertion of a
state has constant worst case complexity.

5.2 Tree-based storage

The list-based storage described in section 5.1 to some extent takes the set-based dominance
into account by using the cardinality of the sets to limit the number of dominance checks. In
this section we introduce a tree-based data structure which exploits the set-based structure
to the full extent. That is, we can identify all the states which have subsets of unreachable
nodes of a given set and, likewise, identify all the states which have supersets of unreachable
nodes of a given set.

Savnik (2012) discusses how to use a variant of a prefix tree (also known as a Trie) to store
sets such that the operations of checking the existence of subsets and supersets as well as
enumeration of all subsets and supersets can be done efficiently. The author investigates the
existence-checking operations in detail, stating that enumeration operations are extensions
of these. In the present paper we develop a variant of the enumeration operations.

Below we describe the basic elements of the variant of a prefix tree we use. This will be
followed by a description of how we relate states with the tree. The necessary operations of
1) inserting a state into the tree, 2) checking whether or not a state is dominated by another
state in the tree, and 3) eliminating states already inserted into the tree based on a given
state is then described. Finally, we make observations related to the prefix tree.

5.2.1 Prefix tree

A prefix key (π1, . . . , πp) is an increasing sequence of key values, where the possible key
values are bounded. We intend to build a tree storing states based on the corresponding
prefix key. The idea is that each prefix key corresponds to a unique path from the root
node to a specific node in the tree, where the nodes in the tree have key values equal to the
element of the prefix key. Suppose that we have a tree with N = {0, 1, . . . , N} nodes. With
each node, n ∈ N , we associate:

• key(n) ∈ {1, . . . , |V|} ∪ {−1}, the key of the node n. The node n has key(n) = −1 if
and only if it is the root node.

• par(n) ∈ N ∪ {−1}, the parent node of node n. If the node is the root node, the
parent is set to −1.
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Figure 1: A full prefix tree for all subsets of {1, . . . , 5}. The full black arcs correspond to the first
child, the dashed black arcs correspond to right sibling and the gray arcs correspond to the parent.
The filled gray nodes are the nodes corresponding to subsets of the set {1, 3, 5}, and the nodes
having thick black borders are the nodes corresponding to supersets of {1, 3, 5}.

• fc(n) ∈ N ∪ {−1}, the first child of node n. If the node has no children, then this is
−1. The first child should be the child node with the lowest key value.

• rs(n) ∈ N ∪ {−1}, the right sibling of node n. If the node has no right sibling, then
this is −1.

• S(n), the set of states contained in the node. This is stored as a single linked list.

These parameters constitute the tree and make the traversals we need possible. For sim-
plicity we let node 0 be the root node of the prefix tree. The tree maintains the following
invariants:

1. For any node n with rs(n) 6= −1: par(n) = par(rs(n)).

2. For any non-root node n: key(n) > key(par(n)).

3. For any node n with rs(n) 6= −1: key(n) < key(rs(n)).

The first part of the tree invariant states that a node has to have the same parent as its right
sibling. The second tree invariant states that any child has to have larger key value than
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its parent node. Consequently, a path from the root node to a leaf node will correspond to
a strictly increasing sequence of keys. Finally, the third invariant states that moving from
left to right through the siblings also yields a strictly increasing sequence of keys.

Figure 1 is an example of a full prefix tree for the set {1, . . . , 5} having a node for each
possible subset and where the root node corresponds to the empty set. The numbers above
the nodes are the node indices from N , whereas the numbers given within the nodes are the
keys of the nodes. The full black arcs correspond to the first child of the relation of the tail
node, and the dashed black arcs indicate the right sibling of the tail node. The gray arcs
point from a node to its parent node. We have only included arcs where both head and tail
are within N .

A path from the root node using only arcs corresponding to the first-child and right-
sibling relations corresponds to a search for a specific set. If the first-child relation is used,
then the key of the tail node is included into the set, except if the tail node is the root,
whereas if the right-sibling relation is used, then the value is excluded from the set. In
the example a path (0, 1, 6, 16, 17, 28) corresponds to the set {1, 2, 4, 5}. Each of the nodes
corresponds to a specific subset of {1, . . . , |V|}. Using the parent relation, we can obtain the
corresponding subset directly by the arcs traversed. Again in the example, the path from
node 22 to the root node 0 using the parent relation is (22, 10, 2, 0) yielding the set {2, 3, 4}.

Identifying all subsets of a given set requires traversal of parts of the tree. Intuitively, if
a node in the tree has a key which is not in the subset, then neither the node nor any of the
nodes in the subtree can be part of a subset of the set we are searching for. In Figure 1 the
nodes corresponding to subsets of the set {1, 3, 5} are indicated by filled gray nodes. The
traversal skips any node and subtree of the node, having a key equal to either two or four.

Likewise, all supersets of a given set can be identified by traversal of the tree. Here
it is the skipping of nodes which reduces the number of nodes traversed. That is, we will
never go to the right sibling of a node having a key which is included in the set, as this
corresponds to excluding the key from the sets identified. In the example of Figure 1 the
nodes corresponding to supersets of {1, 3, 5} are the nodes with thick black borders. Here
it is not possible to use the right-sibling relationship for nodes with keys one, three, or five.
For instance, we will never use the arc from node 1 to node 2, as it corresponds to skipping
key one from node 1. Thereby, half of the tree is excluded from the traversal. Note that, if
we identify a path to a node including all the keys from the set, then all of the nodes in the
subtree will correspond to supersets of the set we are searching for.

If the root has depth zero, then the depth of the nodes correspond to the number of
included keys in the set. The maximal depth is equal to the number of possible keys.
Furthermore, as the keys are strictly increasing both when selecting the first child and when
selecting the right sibling we have that the longest path in the tree uses no more arcs than
the number of possible keys.

If all possible subsets are represented by a node in the prefix tree, then the cardinality of
N will be 2|V|. Consequently, we are interested in not having a node unless it is necessary.
That is, we only include a node in the tree if a set of unreachable nodes corresponds to
either the node or a node in the subtree. Hence, when adding states to the prefix tree we
also add the nodes necessary to represent the sets of unreachable nodes for the states, thus
gradually building the tree.

To relate the set of unreachable nodes with the prefix tree described above, we will use
an auxiliary function giving each node in V a unique number and then state the set as an
increasing sequence of the numbers of the unreachable nodes. The formal definition is:

Definition 1. Given a path P and a bijective function Π : V → {1, . . . , |V|}, let U(P ) =
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{v1, . . . , vu} be ordered such that Π(vd) < Π(vd+1) for d = 1, . . . , u − 1 and denote πd =
Π(vd). Then a prefix key for the path P is the increasing sequence π = (π1, . . . , πu).

Note that, as Π is bijective, not only are the elements of the prefix key unique but the
inverse of these elements is also unique, i.e., Π−1(πd) = vd. Hence, we can easily obtain the
original set of unreachable nodes when we know the prefix key π. A simple way to construct
Π would be to use the predetermined ordering of the nodes given by the problem instance
and thereby maintain the relative ordering of the nodes. As we will discuss below, this is
not always the best choice, but it is an intuitive starting point.

5.2.2 Inserting a state into the tree

A state is only inserted into the state container if it is not dominated by other states in
the container. Insertion of a state is based on a simple recursive algorithm, which is stated
in Algorithm 2. It has to search for the node corresponding to the prefix key of the state.
Algorithm 2 is divided into two functions. The first function, insert(L,∆), retrieves the
prefix key, π, from the state, L, and determines the root node of ∆. Then the second
function, recursive insert(L, π, n), is called with the root-node as n. The second function
is stated in lines 6-23. It recursively calls itself until it reaches the depth of the node which
is searched for. The depth of the node is exactly equal to the length of π. When the node
is found, the state is inserted into the state set S(n) in line 21. On the other hand, if the

Algorithm 2: Prefix tree-based insertion of a state

1 Function insert (L,∆)
2 π =get prefix key (L)
3 root = get root (∆)
4 recursive insert (L,π,root)

5 end

6 Function recursive insert (L,π,n)
7 if depth(n) < len(π) then

8 d = depth(n) + 1
9 c = fc(n) // child

10 pc = −1 // previous child

11 while c 6= −1 and key(c) < πd do

12 pc = c

13 c = rs(c)

14 end

15 if c = −1 or key(c) > πd then

16 c = add child (n, πd, pc) // add a right sibling to pc

17 end

18 recursive insert (L,π,c)

19 end

20 else

21 S(n) = S(n) ∪ {L}
22 end

23 end

depth of the node has not yet been reached, then we search for the node among the children
having a key equal to πd, where d is the depth of the child nodes. This search is conducted
in lines 8-18 by iteratively passing through the right siblings of the first child. We either
identify a child node having a key equal to πd, in which case we found the intended node at
that depth, or we reach a child node which either has a larger key or does not exist. In the
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latter case a new node is added with key πd. At this point we have identified the correct
child node and the function is called recursively.

The insertion function only searches through at most |V| nodes before identifying the
node, n, in which the state L can be inserted. This is due to the strictly increasing keys of
the first child and the right sibling. The addition of a new node can be performed in O(1)
time complexity, and the insertion therefore requires at most O(|V|) time. This is clearly
slower than the SLLS and the MLLS approaches, which had O(1) insertion time.

5.2.3 Checking dominance

Each time a state is extended, it has to be checked whether or not the new state is domi-
nated by another already inserted state. It is therefore the most frequently used dominance
operation, and we describe it in Algorithm 3.

Algorithm 3: Prefix tree-based dominance check

1 Function dominated (L,∆)
2 π =get prefix key (L)
3 root = get root (∆)
4 return recursive dominated (L, π, root, 0)

5 end

6 Function recursive dominated (L,π,n, s)
7 dom = false

8 d = depth(n) + s+ 1
9 if d ≤ len(π) then

10 c = fc(n) // child

11 t = 0
12 while c 6= −1 and not dom and d+ t ≤ len(π) do

13 if key(c) = πd+t then

14 dom = recursive dominated (L,π,c, s+ t )
15 if not dom then

16 foreach L′ ∈ S(child) do

17 if L′ ≺r L then return true
18 end

19 end

20 end

21 else if key(c) > πd+t then t = t + 1
22 else c = rs(c)

23 end

24 end

25 return dom

26 end

Like the insertion described above, Algorithm 3 is split into two function: one which ini-
tializes the dominance check and one which recursively explores the tree. The initialization,
in line 2-3 is done in the same way as the initialization of the insertion. Then the recursive
dominance check is called from the root node.

Recall that the depth of a node corresponds to how many of the keys from the prefix key
are included in the specific set related to the node. We use the input parameter s to indicate
how many keys are skipped from the prefix key in order to reach the node. Consequently,
d = depth(n) + s + 1 indicates the position in the prefix key with the value πd we intend
to search for among the child nodes. In lines 12-23 we search through the children for the
key-values of the prefix key. During this search we may skip keys from the prefix key, and
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t counts the number of times we have skipped such a key value. If a child have key value
πd+t, then the method is called recursively, and we check whether or not any of the states
included in the child node dominates the input state. If the child node has a larger key
value than πd+t, then we have skipped the current key, and t is incremented. Finally, if the
key value is less than πd+t, then we have not yet found the key value we are searching for,
and we proceed to the right sibling.

In the worst case, we have to traverse the whole tree and check each of the nodes for
dominant states. In this case, the PFTS is not better than the SLLS, as the same number of
states have to be checked. However, remember that part 2 of Dominance 2 is automatically
checked by the traversal of the tree, which may improve the performance of PFTS over
SLLS. Next, if only a few of the nodes in the tree have non-empty sets S(n) for n ∈ N ,
then PFTS’s dominated method has to do more work to identify these nodes than the work
required for the corresponding method for SLLS. In the case where it is not necessary to
traverse the whole tree and many or most of the nodes n ∈ N have non-empty sets S(n)
PFTS can be considerably faster, as it may exclude a large portion of ∆i from the dominance
check.

5.2.4 Elimination of inefficient states

Algorithm 4: Prefix tree-based elimination of inefficient states

1 Function eliminate inefficient (L,∆)
2 π =get prefix key (L)
3 root =get root (∆)
4 recursive eliminate inefficient (L,π,root,0)

5 end

6 Function recursive eliminate inefficient (L,π,n,e)
7 d = depth(n) − e

8 c = fc(n)
9 if d < len(π) then

10 while c 6= −1 and key(c) ≤ πd do

11 if key(c) = πd then recursive eliminate inefficient (L,π,c,e)
12 else recursive eliminate inefficient (L,π,c,e+ 1)
13 c = rs(c)

14 end

15 end

16 else

17 while c 6= −1 do

18 recursive eliminate inefficient (L,π,c,e+ 1)
19 c = rs(c)

20 end

21 foreach L′ ∈ S(n) do

22 if L ≺r L′ then

23 S(n) = S(n) \ {L′}
24 end

25 end

26 end

27 end

When it has been determined that a newly extended state is not dominated by any state
in the container ∆, then it can be used to eliminate states which it dominates in ∆. We
provide a recursive method for this in Algorithm 4.
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As for the insertion and the dominated check we have split this into two parts: one
which initializes the necessary components (lines 1-5), and one which is recursively called
to traverse the tree (lines 6-27). This initialization is equivalent to the one of Algorithms 2
and 3 except for the call to the recursive eliminate inefficient method.

Again, the depth of the node corresponds to the number of keys included in the set
corresponding to the node n. Hence, we need to keep track of which keys are actually part
of the prefix key π and which are extra keys inserted because we are searching for supersets.
We let e be the number of extra keys used in the path from the root to node n compared
to the position in the prefix key. Then we can calculate the position in the prefix key which
we are searching for as d = depth(n)− e.

If d < len(π), then we still have to add elements from the prefix key to the set in order
to obtain a superset. We do this in lines 9-15. In this case, each of the children (with keys
no larger than πd) is checked to ascertain if they have a matching key. If the key is not
matched, then the key of the child node is an extra key, and the method is called recursively
stating that we have included an extra key. If it is a match, then the method is called
recursively with the same number of extra keys. Note that we will never skip a key πd

because otherwise we would not obtain a superset.
On the other hand, if d ≥ len(π), then all elements of the prefix have been included in

the set, and all nodes in the subtree correspond to supersets of π. This is described in lines
16-26. Clearly all states included in the superset nodes have to be dominance checked.

If the set U(P ) is small, then it may have many supersets in the tree, and we may have
to traverse most of the tree. In this case the SLLS may be more efficient compared to the
PFTS. This is also true if the number of nodes in the tree having non-empty S(n) sets is
small, as we then have to traverse many unnecessary nodes. However, during the course
of the algorithm the number of unreachable nodes will increase and consequently we have
to check relatively fewer nodes compared to the case where we had only a few unreachable
nodes. Furthermore, having long prefix keys will in general result in cutting off large portions
of the tree, because some of the key values are not present in these parts. Again, when the
number of nodes having non-empty sets S(n) is high, then more states will not be checked,
and the PFTS will become faster than SLLS and MLLS.

5.2.5 Remarks

For each realization of subsets U ⊆ V it can be observed that there are many paths leading to
the set of unreachable nodes corresponding to U . Therefore the number of states contained in
node n may be large. The number of undominated states will tend to increase if all resources
are arc-based instead of node-based. This is because node-based resources will tend to have
the same value if having visited the same set of node.1 Thus, it is expected that it is more
difficult to solve problems where resources are arc-based rather than node-based.2

A state will be stored at the same depth of the tree regardless of the selection of Π. This
is due to the fact that the depth corresponds to the number of unreachable nodes for the
state which is independent of the selection of Π. This could lead one to think that arbitrary

1Note that due to other resource constrains we may have some nodes are unreachable and therefore the
corresponding node-based resource is not accumulated for these. Hence, even though the set of unreachable
nodes is the same for two paths the amount of accumulated node-based resource may not be the same for
the two paths.

2Clearly it is possible to transform node-based resources into arc-based resources, so the more distinct
the arc resource consumption is for different arcs into the same node, the more difficult the problem will
tend to be.
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choices of Π are equally good. This is not true, however. Suppose that we have a single
node v′ which is never reachable for any extension and Π(v′) = |V|. Then any prefix key
will have |V| as the largest value. As a consequence, each prefix key will end in a leaf node
having key |V| i.e. the number of nodes in the tree will be equal to at least the number of
different prefix keys. On the other hand, if we change Π such that Π(v′) = 1, then only a
single node, as a child of the root, is added to the tree having a key equal to 1. This yields
a huge memory saving. Intuitively, the more likely it is for a node to be unreachable the
smaller value it should have in the Π-function.

Two states, L1 and L2, the first resident in node n, and the second resident in par(n)
will always have the relation L2 ⊀r L1, i.e., the state in the parent node will never resource
dominate the state in the child node. If the state in the parent node did in fact resource
dominate the state in the child node, then the state in the child node would not only be
resource dominated but also dominated according to Dominance 2, and could thereby be
eliminated. This is clearly transitive, and therefore we have that no state in the subtree of
a given node will ever be resource dominated by a state from that node.

It is possible to extend the prefix tree-based storage to accommodate the dominance
relation given by Chabrier (2006). Remember that the requirement is |U(P1) \U(P2)| ≤ K

for L(P1) to have the chance of dominating L(P2). Thus, when we search for states which
may dominate a given state and having found a node corresponding to a subset, the part
of the subtree of this node having depth no deeper than the node’s depth plus K has to be
included in the dominance check. In this way, we include up to K additional keys into the
set we are searching for. Likewise, when searching for supersets, we may exclude up to K

keys from the superset, which is done by using the right-sibling arcs in the tree. That is,
we are allowed to use up to K right sibling arcs having tails in nodes with keys included in
the set for which we are trying to identify supersets.

If all sets are represented by nodes in the prefix tree, then an alternative view of the
tree is as a balanced binary search tree. In each node we have the choice between including
the key in the set or excluding the key from the set. This corresponds to selecting the first
child or the right sibling in the prefix tree. However, this is not directly possible if some of
the nodes are left out of the prefix tree.

If the bidirectional approach described by Righini and Salani (2006) is applied, it is
possible to exploit the PFTS to enhance the merging of states necessary. Recall that the
bidirectional approach uses a forward pass, where only states below a certain threshold are
extended, and a backward pass, where states are only extended if they, too, are below a
specific threshold. After this, the states from the two passes have to be merged. Here Righini
and Salani (2006) suggest to run through the lists of states for pairs of nodes. This can be
enhanced by the PFTS where a state L(P 1) from ∆i in the forward pass can be merged
with a state L(P 2) from ∆j from the backward pass if U(P 1) ∩ U(P 2) = ∅. Hence, we
select each state L(P 1) from ∆i and search for states L(P 2) in ∆j from the backward pass
having U(P 2) ⊆ V \ U(P 1). This search yields all the pairs of states which are elementary
compatible, and a check of whether or not they are resource compatible then has to be
commenced.

6 Computational Experiments

We have conducted a set of experiments based on an implementation of the approach de-
scribed in the previous sections. The main purpose of these experiments is to observe the
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behavior of the dynamic programming algorithm when we change the storage method. The
performance of the storage methods depends on the number of states generated and we
therefore construct instances which have very few states as well as instance which result in
a large number of states.

In 6.1 we give further details on the actual implementation. A set of test instances has
been generated and we describe these in 6.2. Finally, the computational set-up as well as
the results of the experiments are described in section 6.3.

6.1 Implementational details

With each state it is necessary to be able to obtain U(P ). This can be done by either
identifying it each time it is necessary or by storing it after it has been identified the first
time. This is the classical trade-off between time consumption and memory consumption.
For LSSL and MSSL we choose to store U(P ) after it is obtained the first time because it is
necessary each time Dominance 2 has to be checked. But as part 2 of Dominance 2 is not
checked explicitly when using PFTS, we do not store U(P ) for PFTS.

Each extended state has a counter on the number of successful extensions it has which
are not eliminated. When a state is eliminated, then the counter of the predecessor state
is decremented. If this counter becomes zero, then all of the extensions of the state have
been dominated, and it is not necessary to keep this state any more. Consequently, it can
be eliminated, too. Clearly, this is recursive. In practice we mark these as dominated and
eliminate them prior to extending states from the corresponding resident node.

When having eliminated inefficient states in the tree-based approach, we may have re-
moved the last state resident in the node of the tree. The node is not explicitly removed
from the tree, however. Instead, we have a recursive procedure which eliminates all nodes
having no states in the corresponding subtree. It is executed prior to extending states from
the container.

For PFTS, deriving the set ∆d
i is easily done by traversing the tree associated with

the container ∆i and selecting the states in the nodes having depth d. This, of course,
becomes increasingly expensive throughout the algorithm as a larger part of the tree has to
be traversed. This is in contrast to the list-based approach, MLLS, where ∆d

i corresponds
to the list of states having d unreachable nodes.

As we are using instances based on the Solomon instances (see Section 6.2), we know
both traveling time tij along arcs (i, j) and the time window [aj ; bj ]. For a given node i

the latest departure time at which we can reach the node j is bj − tij , after which it is
not possible to reach node j anymore. Therefore, we set up Π in increasing order of latest
departure time and thereby have the nodes which are unreachable at the earliest time at
the front of the prefix key, whereas the nodes which become unreachable latest are placed
at the end of the prefix key.

6.2 Test instances

Solomon (1987) constructs six sets of benchmark instances for the Vehicle Routing Prob-
lem with Resource Constraints. These are subdivided into three pairs of instance sets: one
which has clustered customers (C), one which has randomly dispersed customers (R), and
one having a combination of the two previous (RC). These subsets of instances are then
subdivided into instances having narrow resource windows and instances having wide re-
source windows. The sets of instances having narrow resource windows are referred to as
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the 1-instances and those having wide resource windows are referred to as the 2-instances.
Each of the instances has 100 customers, but are often trunkated to the 25 first customers
or 50 first customers.

The distances between the nodes are trunkated euclidian distances, i.e.,

dij =
1

10

⌊

10
√

(xi − xj)2 + (yi − yj)2
⌋

(3)

where node i has coordinated (xi, yi). The time for traveling between customers is equal
to the distance. Hence the time resource is highly correlated with the distance traveled.
Furthermore, the instances have a specified demand and a capacity for demand covered for
each of the homogeneous vehicles. Consequently, the problem has two resources. One which
is node-based and one which is highly correlated with the cost function.

We have constructed 54 test instances based on the Solomon benchmark instances having
wide resource windows. 27 of the instances have 50 customers, and 27 have 100 customers.
Typically, the more negative cost arcs there are in the instance the harder the problem
becomes to solve for the dynamic programming algorithms. This is due to the time resource
becoming negatively correlated with the cost, and therefore it is not possible to dominate as
many states. As we are interested in having some easy instances and some hard instances,
we subtract a virtual profit from each arc which is partly based on the head node and partly
based on the arc itself. For each node i ∈ C let Xi be drawn from the uniform distribution
U(0;M1), and for each arc (i, j) ∈ A we let Yij be drawn from the uniform distribution
U(0;M2). Then we use the cost cij = dij −Xj − Yij . For the instances with 50 customers
we let M1 = M2 = 10.0, and for the instances with 100 customers we let M1 = M2 = 5.0.
The reason for the different selection of parameters is that these balance the number of easy
with the number of hard instances for each number of customers.

6.3 Results

We have conducted experiments on the instances described in Section 6.2. The dynamic
programming algorithm has been implemented using C++ and compiled with GNU g++
4.4.7 compiler using the -O3 flag. The experiments have been performed on a computer
equipped with an Intel(R) Xeon(R) E5-1620 CPU and 24Gb RAM using a Linux operating
system. We have imposed a two-hour time limit on the execution.3

In tables 1 and 2 we report the results of the experiments. Here the instance (I) is given
along with the percentage of negative arcs (% neg.). Then for each of the three storage
methods, SLLS, MLLS, and PFTS, the time (Time), the stage (St.), and the number of
undominated states at termination (U.S.) are given. If the time is above 7200 seconds, then
the instance is terminated prematurely due to the time limit. The stage then corresponds to
the stage reached on termination. Note that we record the last stage where extensions have
actually taken place and none of the remaining stages have produced any states inserted
into the containers. The time taken from the last active stage to stage |V| is negligible.

For the instances with 50 customer nodes we see that SLLS is at least as fast as the other
storage methods in seven out of the 27 instances, whereas MLLS is at least as fast as SLLS
and PFTS in four out of the 27 instances. The PFTS storage method is no slower than the
other methods in 13 out of 27 instances.4 As soon as the number of states becomes large

3The check of the time limit is carried out each time a new successor node is selected, i.e. in line 12 of
algorithm 1. Hence, we always allow finishing all extensions from one node to another.

4In some cases the running times are identical, and these instances may be counted more than once.
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SLLS MLLS PFTS
I % neg. Time St. U.S. Time St. U.S: Time St. U.S.

c201.50 9.56 0.06 49 1,217 0.06 49 1,217 0.07 49 1,217
c202.50 9.21 68.66 51 93,742 56.97 51 93,742 9.12 51 93,742
c203.50 9.10 7415.83 22 1,394,556 7223.84 22 1,607,783 7200.08 36 13,129,556
c204.50 9.94 7738.78 8 2,669,316 7268.46 8 2,746,553 7212.52 10 39,219,765
c205.50 13.96 0.16 51 2,703 0.18 51 2,703 0.18 51 2,703
c206.50 12.78 0.43 50 8,083 0.44 50 8,083 0.4 50 8,083
c207.50 13.18 33.29 51 74,414 29.67 51 74,414 7.44 51 74,414
c208.50 12.30 1.23 50 14,363 1.17 50 14,363 1.01 50 14,363
r201.50 5.27 0.04 49 260 0.04 49 260 0.04 49 260
r202.50 6.25 4.31 46 30,398 3.87 46 30,398 3.27 46 30,398
r203.50 5.97 7213.24 30 1,845,503 7202.88 31 2,159,993 1660.92 50 3,354,928
r204.50 5.41 7200.13 12 2,905,738 7241.26 12 3,310,501 7201.14 16 25,021,429
r205.50 5.27 0.16 44 1,237 0.16 44 1,237 0.18 44 1,237
r206.50 6.55 316.58 49 386,622 258.34 49 386,622 86.75 49 386,622
r207.50 3.57 31.81 47 83,811 26.8 47 83,811 20.66 47 83,811
r208.50 5.94 7201.23 10 2,873,925 7359.8 10 3,265,207 7223.65 12 35,146,200
r209.50 6.51 5.15 47 30,604 4.74 47 30,604 5.82 47 30,604
r210.50 4.71 42.43 44 112,463 34.19 44 112,463 28.16 44 112,463
r211.50 6.70 7253.74 14 2,718,784 7200.12 14 2,745,058 7203.57 17 4,769,108
rc201.50 13.85 0.05 49 607 0.05 49 607 0.04 49 607
rc202.50 11.81 0.37 46 4,477 0.38 46 4,477 0.44 46 4,477
rc203.50 12.17 7285.63 31 1,840,503 7282.85 31 2,002,558 5936.03 51 9,820,636
rc204.50 12.46 7288.17 11 2,399,211 7201.83 11 2,552,646 7225.61 15 37,763,645
rc205.50 13.52 0.28 50 3,399 0.3 50 3,399 0.32 50 3,399
rc206.50 12.69 0.17 45 2,069 0.18 45 2,069 0.2 45 2,069
rc207.50 13.35 144.55 47 211,225 127.96 47 211,225 51.94 47 211,225
rc208.50 12.32 7221.80 12 2,815,911 7213.51 12 3,005,654 7200.23 14 12,173,535

Table 1: Results for 50 instances

SLLS MLLS PFTS
I % neg. Time St. U.S. Time St. U.S. Time St. U.S.

c201.100 1.72 0.14 100 877 0.17 100 877 0.18 100 877
c202.100 1.64 8.37 98 23,820 8.01 98 23,820 6.5 98 23,820
c203.100 1.63 1277.37 100 358,009 1031.86 100 358,009 200.52 100 358,009
c204.100 1.90 7743.77 16 1,883,482 7581.88 16 2,047,535 7202.7 21 15,548,964
c205.100 2.79 0.43 99 2,430 0.5 99 2,430 0.52 99 2,430
c206.100 2.82 0.71 97 3,665 0.81 97 3,665 0.9 97 3,665
c207.100 2.43 2.08 96 14,066 2.36 96 14,066 2.56 96 14,066
c208.100 2.44 1.25 97 6,784 1.4 97 6,784 1.62 97 6,784
r201.100 1.54 0.16 94 661 0.19 94 661 0.2 94 661
r202.100 1.91 28.66 96 67,930 28.06 96 67,930 25.95 96 67,930
r203.100 1.60 7200.28 18 2,338,512 7210.83 18 2,641,092 7201.33 33 6,406,248
r204.100 1.96 7223.65 10 2,676,779 7232.27 10 2,753,918 7201.65 12 27,377,153
r205.100 1.57 0.69 88 2,298 0.78 88 2,298 0.89 88 2,298
r206.100 1.80 7203.31 73 1,260,741 7214.41 75 1,368,715 2385.57 101 1,443,978
r207.100 1.48 7274.79 16 1,782,125 7203.79 17 1,886,187 7200.01 30 6,438,110
r208.100 1.51 7710.53 10 2,573,874 7202.99 10 2,687,185 7209.96 12 18,827,208
r209.100 2.03 21.53 86 54,702 21.68 86 54,702 41.74 86 54,702
r210.100 1.60 243.63 91 241,325 215.81 91 241,325 208.76 91 241,325
r211.100 1.68 7200.94 12 3,372,368 7223.24 12 3,361,297 7200.08 14 6,934,562
rc201.100 1.91 0.16 99 553 0.19 99 553 0.19 99 553
rc202.100 1.47 0.88 92 2,780 0.96 92 2,780 1.09 92 2,780
rc203.100 1.60 8.16 95 21,747 8.54 95 21,747 9.91 95 21,747
rc204.100 1.46 7200.47 35 1,387,056 7201.38 42 1,591,111 2239.72 97 1,533,980
rc205.100 1.91 0.62 96 2,363 0.72 96 2,363 0.79 96 2,363
rc206.100 1.49 0.66 88 2,206 0.72 88 2,206 0.82 88 2,206
rc207.100 1.79 2.93 81 9,655 3.04 81 9,655 4.73 81 9,655
rc208.100 1.74 2258.09 75 647,951 2101.28 75 647,951 5871.32 75 647,951

Table 2: Results for 100 instances

(in our case above 30604 states), we observe that PFTS is consistently the fastest method.
Furthermore, we observe that for the instances which are not solvable within the time limit
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using any of the methods, the PFTS handles far more undominated states compared to the
two other methods.

When turning to the instances with 100 customer nodes we observe that SLLS is the
fastest method for 14 out of the 27 instances. These 14 instances are, however, among
the easiest of the instances. In contrast, the PFTS is the fastest method for six of the 27
instances. Most of these are among the hardest of the instances. The MLLS is only fastest
for a single instance. Like for the instances having only 50 nodes we observe that for those
which cannot be solved within the time limit a stage is reached where significantly more
undominated states exist for the PFTS than for SLLS and MLLS.
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Figure 2: Relative performance for number of states for instances having less than a million
states at termination. The dotted line is the baseline corresponding to the time used by the SLLS
approach. The dashed lines are the time use by the MLLS divided by the base time. The full
lines are the PFTS time divided by the base time. The black curves correspond to the 50 customer
instances, and the gray curves correspond to the 100 customer instances.

We are interested in measuring the relative performance of the different ways of storing
the states. As we impose a time limit, the same stage may not be reached by all of the
methods. Hence, to compare the performance we identify the point in the algorithm in
which the slowest method terminates and record the time it took for the other methods to
reach the exact same point. We choose the time it takes for SLLS to reach this point as a
base time and divide the time it takes for MLLS and PFTS, respectively, by this base time.
The value of this is given in Figures 2 and 3, where it is stated as a function of the number
of states generated when reaching the stage. Figure 2 shows this for less than a million
states, whereas Figure 3 illustrates the cases having more than a million states.

For the 50 customer instances we see that when the number of states increase, then the
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Figure 3: Relative performance for number of states for instances having more than a million
states at termination. The dotted line is the baseline corresponding to the time used by the SLLS
approach. The dashed lines are the time use by the MLLS divided by the base time. The full
lines are the PFTS time divided by the base time. The black curves correspond to the 50 customer
instances, and the gray curves correspond to the 100 customer instances.

MLLS gets slightly faster than the SLLS. The PFTS gets significantly faster, however. Note
that nine of these instances have more than a million states for SLLS on termination, and
PFTS uses at most a quarter of the time to reach the same point in the DP. Furthermore, in
some cases PFTS is more than 50 times faster at reaching the point where SLLS terminates.

To some extent we can make the same observations for the 100-customer instances as for
the 50-customer instances. However, the number of states needed for the PFTS to become
more efficient than the two other methods has increased. Eight instances have more than
a million states for SLLS on termination. For these eight instances the PFTS reaches the
same point in the DP between four and 20 times faster.

When the number of states is not large, then the cost of insertion and the traversal time
of the tree outweighs the gain from the reduced number of dominance checks. When we
increase the number of customers, then we will have an increase in the depth of the tree for
PFTS, and therefore the gain from using the tree-based storage only becomes clear when
the number of states increases beyond a million states. This is exemplified by the tests for
r209.100 and rc208.100.

7 Conclusion and further research

In this paper we have demonstrated an approach for efficiently handling a large number of
states in dynamic programming approaches for ESPPRC. It is based on a prefix tree data
structure and makes it possible to check dominance only for states having sub- or supersets
of unreachable nodes. We show that when the number of states grows large, then it is
worthwhile to use this approach, while it is better just to use a single linked list when the
number of states is small. We have also demonstrated a dynamic programming approach
leading to a label setting algorithm rather than a label correcting algorithm.

In our implementation of the PFTS we have not made any attempts to compress the
tree. That is, we observe the number of times each key is used and then update the function
Π to have the most used keys closest to the root of the tree. Furthermore, if some nodes
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from V can never be reached, then they could be removed altogether and thereby decrease
the traversal time in the tree.

We have tested the PFTS on a mono-directional dynamic programming algorithm. As
discussed in section 5 it is possible to use the PFTS in the bi-directional dynamic program-
ming algorithm. Furthermore, it can easily accommodate the state space relaxation-based
algorithms. We will leave this for future research, however.
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