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Abstract

We analyze a general model of rationing in which agents have baselines, in addition to

claims against the (insufficient) endowment of the good to be allocated. Many real-

life problems fit this general model (e.g., bankruptcy with prioritized claims, resource

allocation in the public health care sector, water distribution in drought periods). We

introduce (and characterize) a natural class of allocation methods for this model. Any

method within the class is associated with a rule in the standard rationing model, and we

show that if the latter obeys some focal properties, the former obeys them too.
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1 Introduction

The problem of dividing when there is not enough is one of the oldest problems in the history

of economic thought. Problems of this sort (and possible solutions for them) are already

documented in ancient sources, but their formalization is much more recent. O’Neill (1982)

was indeed the first to introduce a simple model to analyze the problem in which a group of

individuals have conflicting claims over an insufficient amount of a (perfectly divisible) good.1

Such a model, which will be referred here as the (standard) rationing model, accommodates

many real-life situations, such as the division of an insufficient estate to cover all its associated

debts, the collection of a given tax from taxpayers, the distribution of commodities in a fixed-

price setting, sharing the cost of a public facility, etc. It fails, however, to accommodate more

complex rationing situations, such as those described next, in which not only claims, but also

individual rights, references, or other objective entitlements, play an important role in the

rationing process.

One example concerns bankruptcy laws, where some claims are typically prioritized. More

precisely, bankruptcy codes normally list all claims that should be treated identically as various

categories and assigns to them lexicographic priorities (e.g., Kaminski, 2006). Typically, there

exists a category of secured claims (involving, for instance, unpaid salaries) receiving the highest

priority, which implies that those claims are fully honored (if possible) before allocating the

remaining part of the liquidation value among other categories. Such secured claims can be

interpreted as a right to be considered in the allocation process.

Another example concerns university budgeting procedures, as considered by Pulido et al.,

(2002, 2008) under the name of bankruptcy situations with references. They analyze the real-life

case of allocating a given amount of money among the various degree courses that are offered at

a (public) Spanish university. The (verifiable) monetary needs of each course constitute their

claims. In addition to these claims, there exist reference values for each course, which are set

by the government independently, below their claims. It is typically the case that the available

amount is sufficient to cover all those reference values, but falls short of the aggregate claim.

As a result, the reference values are guaranteed for each course, and the remainder is divided

according to the claims.

Other relevant practical cases also involving more complex rationing situations could be

1The reader is referred to Moulin (2002) or Thomson (2003, 2006) for recent surveys of the sizable related

literature.
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protocols for the reduction of pollution, water distribution in drought periods, or even some

resource allocation procedures in the public health care sector, in which past consumption could

be considered as an entitlement, and current needs as a claim.

The aim of this paper is to explore a more general model of rationing able to accommodate

all the above situations. This model enriches the standard with a baselines profile (referring to

either individual rights, references, or other objective entitlements), complementing the claims

profile of a rationing problem.

We take first a direct approach to analyze this new model.2 That is, we single out a natural

class of rules which aims to encompass the real-life rationing situations mentioned above. In

short, rules within this class first allocate each agent his baseline and then adjust this tentative

allocation by using a (standard rationing) rule to distribute the remaining surplus, or deficit,

relative to the initial endowment. In other words, the class arises after submitting the domain of

standard rules to an extension operator reflecting the two-stage procedure described above.3 We

study the preservation of focal properties under such an operator, which can also be interpreted

as the study of the robustness of the class.

We then take an axiomatic approach and study the implications of new axioms reflecting eth-

ical or operational principles in this general context. We provide an axiomatic characterization

for the class of rules just described.4

The rest of the paper is organized as follows. In Section 2, we describe the basic framework

of the standard rationing model, as well as the new one to address more general rationing

problems. In Section 3, we present our family of rules and study its robustness. In Section 4,

we derive the family axiomatically. We conclude in Section 5 with some further insights. For a

smooth passage, we defer all the proofs and provide them in the appendix.

2The terminology is borrowed from Thomson (2006).
3The notion of operators for the space of rules was first introduced by Thomson and Yeh (2008).
4There is yet a third approach to rationing problems that we do not consider here: the so-called game

theoretic approach, which consists in modeling rationing problems as a transferable utility game and aims at

identifying the likely outcome of such a game as the solution of the rationing problem. This approach has been

taken, for instance, by Pulido et al., (2002, 2008) to analyze the bankruptcy situations with references described

above, which, as we shall see later, constitute a specific case of our model.
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2 Model and basic concepts

2.1 The benchmark framework

We study rationing problems in a variable-population model. The set of potential claimants,

or agents, is identified with the set of natural numbers N. Let N be the class of finite subsets

of N, with generic element N . Let n denote the cardinality of N . For each i ∈ N , let ci ∈ R+

be i’s claim and c ≡ (ci)i∈N the claims profile.5 A (standard rationing) problem is a triple

consisting of a population N ∈ N , a claims profile c ∈ Rn
+, and an endowment E ∈ R+ such

that
∑

i∈N ci ≥ E. Let C ≡
∑

i∈N ci. To avoid unnecessary complication, we assume C > 0.

Let DN be the set of rationing problems with population N and D ≡
⋃

N∈N DN .

Given a problem (N, c, E) ∈ DN , an allocation is a vector x ∈ Rn satisfying the following

two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)
∑

i∈N xi = E. We refer to (i) as

boundedness and (ii) as balance. A (standard) rule on D, R : D →
⋃

N∈N Rn, associates with

each problem (N, c, E) ∈ D an allocation R (N, c, E) for the problem. Each rule R has a dual

rule R∗ defined as R∗ (N, c, E) = c−R (N, c, C − E), for each (N, c, E) ∈ D.

Some classical rules are the constrained equal awards rule, which distributes the endowment

equally among all agents, subject to no agent receiving more than her claim; the constrained

equal losses rule, which makes losses as equal as possible, subject to no one receiving a negative

amount; and the proportional rule, which yields allocations proportionally to claims.6

Rules are typically evaluated in terms of the properties (axioms) they satisfy. The literature

has provided a wide variety of axioms reflecting ethical or operational principles (e.g., Thomson,

2003; 2006). Here we concentrate on principles with a long tradition in the theory of justice

(e.g., Moreno-Ternero and Roemer, 2006).7

We start with the requirement of allotting equal amounts to agents with equal claims.

Formally, a rule satisfies equal treatment of equals if for each (N, c, E) ∈ D, and each i, j ∈ N,

we have Ri (N, c, E) = Rj (N, c, E) , whenever ci = cj.

A strengthening of the previous one says that agents with larger claims receive and lose

at least as much as agents with smaller claims. That is, a rule is order preserving, if for

5For each N ∈ N , each M ⊆ N , and each z ∈ Rn, let zM ≡ (zi)i∈M . For each i ∈ N , let z−i ≡ zN\{i}.
6The reader is referred to Moulin (2002) or Thomson (2003, 2006) for their formal definitions as well as for

further details about them.
7In what follows, we only consider properties that are either punctual (i.e., applying to a rule for each

problem separately, point by point) or relational (i.e., linking the recommendations made by the rule for a finite

set of different problems that are related in a certain way).
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each (N, c, E) ∈ D and i, j ∈ N , ci ≥ cj implies that Ri (N, c, E) ≥ Rj (N, c, E) and ci −

Ri (N, c, E) ≥ cj − Rj (N, c, E). The first inequality is referred to as order preservation in

gains. The second inequality is referred to as order preservation in losses.

We now turn to several formulations of the principle of solidarity.8 The first one says

that when there is more to be divided, nobody should lose. Formally, a rule R is resource

monotonic (e.g., Roemer, 1986) if, for each (N, c, E) ∈ D and each E ′ > E, with E ′ ≤
∑

ci,

we have R(N, c, E) ≤ R(N, c, E ′). The second one says that if an agent’s claim increases, she

should receive at least as much as she did initially. Formally, a rule R is claims monotonic

if, for each (N, c, E) ∈ D, each i ∈ N , and each c′i > ci, we have Ri(N, (c′i, cN\{i}), E) ≥

Ri(N, (ci, cN\{i}), E). A related property says that if an agent’s claim and the endowment

increase by the same amount, the agent’s allocation should increase by at most that amount.9

Formally, a rule R satisfies linked claims-resource monotonicity (e.g., Moreno-Ternero and

Villar, 2006b; Thomson and Yeh, 2008) if, for each (N, c, E) ∈ D and i ∈ N , Ri(N, (ci +

ε, cN\{i}), E + ε) ≤ Ri(N, c, E) + ε.

We next introduce a solidarity property that pertains to possible variations in populations.

It says that if new claimants arrive, each claimant initially present should receive at most as

much as she did initially. Equivalently, if some claimants leave but there still is not enough

to honor the claims all of the remaining claims, each remaining claimant should receive at

least as much as she did initially. Formally, a rule R is population monotonic (e.g., Thomson,

1983a,b) if, for each (N, c, E) ∈ D and (N ′, c′, E) ∈ D such that N ⊆ N ′ and c′N = c, then

Ri (N ′, c′, E) ≤ Ri (N, c, E), for each i ∈ N . A related property says that if new claimants

arrive and the endowment increases by the sum of their claims, then each claimant initially

present should receive at least as much as she did initially. Formally, a rule R satisfies linked

resource-population monotonicity (e.g., Thomson and Yeh, 2008) if for each (N, c, E) ∈ D

and each (N ′, c′, E ′) ∈ D such that N ⊆ N ′, c′N = c, and E = E ′, then Ri (N, c, E) ≤

Ri

(
N ′, c′, E +

∑
N ′\N c′j

)
, for each i ∈ N .

The next axiom also amounts to simultaneous changes in the endowment and the population.

It says that the arrival of new agents should affect all the incumbent agents in the same direction.

8Solidarity properties with respect to population changes, and axiomatizations based on it, were actually

introduced by Thomson (1983a,b) in related models. Roemer (1986) introduced the solidarity notion referring

to the available resource.
9In the dual context of taxation, the property reflects a “no donation paradox” condition (e.g., Ju and

Moreno-Ternero, 2011).
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In other words, agents cannot benefit from a change (either in the available wealth or in the

number of agents) if someone else suffers from it. Formally, a rule R satisfies resource-population

uniformity (e.g., Chun, 1999; Moreno-Ternero and Roemer, 2006), if for each (N, c, E) ∈ D

and (N ′, c′, E ′) ∈ D such that N ⊆ N ′ and c′N = c, then, either Ri (N ′, c′, E ′) ≤ Ri (N, c, E),

for each i ∈ N, or Ri (N ′, c′, E ′) ≥ Ri (N, c, E), for each i ∈ N . This axiom implies resource

monotonicity. In fact, it also implies the following axiom, which relates the allocation of a

given problem to the allocations of the subproblems that appear when we consider a subgroup

of agents as a new population and the amounts gathered in the original problem as the available

endowment. The axiom requires that the application of the rule to each subproblem produces

the allocation that the subgroup obtained in the original problem.10 Formally, a rule R is

consistent if for each (N, c, E) ∈ D, each M ⊂ N, and each i ∈ M, we have Ri (N, c, E) =

Ri(M, cM , EM), where EM =
∑

i∈M Ri(N, c, E). It turns out that consistency and resource

monotonicity together imply resource-population uniformity.

To conclude this section, for any given property P , P∗ is the dual property of P if for each

rule R, R satisfies P if and only if its dual rule P∗ satisfies P∗. A property is self-dual if it coin-

cides with its dual. Equal treatment of equals, order preservation, resource monotonicity, and

consistency are self-dual properties. Order preservation in gains and order preservation in losses,

claims monotonicity and linked claims-resource monotonicity, and population monotonicity and

linked resource-population monotonicity are pairs of dual properties (e.g., Thomson, 2006).

2.2 The general framework

We now enrich the model to account for individual baselines that will be part of the rationing

process. A general (rationing) problem (or problem with baselines) is a tuple consisting of a

population N ∈ N , a baselines profile b ∈ Rn
+, a claims profile c ∈ Rn

+, and an endowment

E ∈ R+ such that
∑

i∈N ci ≥ E. We denote by EN the class of general problems with population

N and E ≡
⋃

N∈N EN . For each general problem (N, b, c, E) ∈ E , let ti(b, c) = min{bi, ci}, for

each i ∈ N , and t(b, c) = {ti(b, c)}i∈N denote the corresponding (baseline-claim) truncated

vector. Let T =
∑

i∈N ti(b, c). Given a general problem (N, b, c, E) ∈ E , an allocation is a

vector x ∈ Rn satisfying the following two conditions: (i) for each i ∈ N , 0 ≤ xi ≤ ci and (ii)∑
i∈N xi = E. A (general) rule on E , S : E →

⋃
N∈N Rn, associates with each (general) problem

(N, b, c, E) ∈ E an allocation x = S (N, b, c, E) for the problem.

10See Thomson (2007) for an excellent survey of the many applications that have been made on this idea.
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3 The direct approach to rationing in the presence of

baselines

3.1 A family of rules

We look for rules to solve rationing problems in the presence of baselines. We propose to

first assign agents their truncated baselines, and to allocate the resulting deficit, or surplus,

using a standard rule for the standard problem that results after embedding baselines into

claims. Specifically, a deficit is allocated according to the amounts already received by the

agents, whereas a surplus is allocated according to the gap between their claims and what has

already been allocated to them. An extension operator associates with each rule defined for the

standard model a rule for the general model. We refer to our specific extension operator as the

Baselines First extension operator.

Formally,

R̃ (N, b, c, E) =

 t(b, c)−R(N, t(b, c), T − E) if E ≤ T

t(b, c) + R(N, c− t(b, c), E − T ) if E ≥ T
(1)

We shall refer to R̃ as the extended rule induced by R, via the Baselines First extension operator,

or, simply, the extended rule induced by R.

Note that, if b = 0, then R̃ ≡ R. More interestingly, for any rule R, and any problem

(N, b, c, E), the induced extended rule R̃ results in an allocation x satisfying

xi ≤ ti(b, c) for all i ∈ N if and only if E ≤ T,

xi ≥ ti(b, c) for each i ∈ N if and only if E ≥ T.

As is the case with the so-called Talmud rule (e.g., Aumann and Maschler, 1985), rules obtained

via our operator impose a rationing of the same sort for each individual and the whole society,

but according to the profile of baselines.
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Figure 1: Extended rules in the two-claimant case. This figure illustrates how rules extended

via de Baselines First operator behave for N = {1, 2}, and b, c ∈ RN
+ , with ci > bi, for i = 1, 2. If the

endowment is Ex > b1+b2, then the proposed allocation x can be decomposed as b+(x−b) where x−b

is to be interpreted as the allocation for the problem arising after adjusting claims (and endowment)

down by the baselines, i.e., x = b+R(N, c−b, Ex−b1−b2). If, however, Ey < b1+b2 then the proposed

allocation y can be decomposed as b− (b− y) where b− y is to be interpreted as the allocation for the

problem arising after replacing claims by baselines and the endowment by the difference between the

aggregate baseline and the original endowment, i.e., b− y = R(N, b, b1 + b2 − Ey).

It is not difficult to show that the following expression is equivalent to (1):

R̃ (N, b, c, E) =

 R∗(N, t(b, c), E) if E ≤ T

t(b, c) +R(N, c− t(b, c), E − T ) if E ≥ T
(2)

It follows from (2) that if each individual baseline is one half of the corresponding claim, then

the rule induced by the constrained equal losses rule described above would solve the problem with

baselines as the so-called Talmud rule would solve the original problem. Similarly, the rule induced

by the constrained equal awards rule would solve the problem with baselines as the so-called Reverse

Talmud rule (e.g., Chun et al., 2001) would solve the original problem. If instead of one half, baselines

are equal to any other fixed proportion of claims, θ ∈ (0, 1), then the rule induced by the constrained

equal losses rule would solve the problem with baselines as the corresponding member of the so-called

TAL-family of rules (e.g., Moreno-Ternero and Villar, 2006a) would solve the original problem; also,

the rule induced by the constrained equal awards rule would solve the problem with baselines as the

corresponding member of the so-called Reverse TAL-family (e.g., van den Brink et al., 2008) would

solve the original problem.
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3.2 Preservation of axioms

As mentioned above, the Baselines First extension operator associates with each standard rule a new

rule to solve (rationing) problems with baselines. A natural question is whether the rule so constructed

inherits the properties of the original rule. We say that an axiom is preserved by our Baselines First

extension operator if whenever a rule R satisfies it, then the induced rule R̃ satisfies the corresponding

general version of the axiom.11

Our first result is that some of the solidarity axioms described above are preserved by the Baselines

First extension operator.

Theorem 1 The properties of resource monotonicity, consistency, and resource-population uniformity

are preserved by the Baselines First extension operator.

However, many of the remaining well-known axioms in the benchmark framework are not preserved,

as stated in the next result.

Theorem 2 If a property is not self-dual then it is not preserved by the Baselines First extension

operator.

Not all self-dual properties are preserved. An obvious counterexample is equal treatment of equals,

which is not satisfied by an induced rule if two agents with equal claims may have different baselines.

A natural question is whether pairs of dual properties are preserved. An obvious counterexample is

order preservation, which is the pair formed by order preservation in gains and order preservation in

losses. This property is not necessarily satisfied by the rule induced by an order-preserving rule, if

baselines are not ordered as claims. Nevertheless, some pairs are preserved, either by themselves or

“with the assistance” of an additional property, as shown in the next result.12

Theorem 3 The following pairs are preserved by the Baselines First extension operator: claims mono-

tonicity and its dual; population monotonicity and its dual, if assisted by resource monotonicity.

In other words, if a rule R satisfies claims monotonicity and linked claims-resource monotonicity,

then the induced rule R̃ satisfies the corresponding two general properties. Also, if a rule R satisfies

11For ease of exposition, we skip the straightforward definitions of the general versions of each axiom in-

troduced above. Just as an illustration, we say, for instance, that a rule S satisfies claims monotonicity if

for each (N, b, c, E) , (N, b, c′, E) ∈ E such that ci ≤ c′i for some i ∈ N , and c′N\{i} ≡ cN\{i}, we have that

Si(N, b, c, E) ≤ Si(N, b, c′, E). As for variable-population axioms, we say, for instance, that a rule S satisfies

consistency if for each (N, b, c, E) ∈ E and M ⊂ N , R̃(M, bM , cM ,
∑

i∈M xi) = xM , where x = R̃ (N, b, c, E).
12The terminology is borrowed from Hokari and Thomson (2008).
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population monotonicity and linked resource-population monotonicity, and in addition is resource

monotonic, then the induced rule R̃ satisfies the corresponding three general properties.

To conclude with this section, we focus on equal treatment of equals and order preservation, which,

as mentioned above, are not preserved by the Baselines First extension operator. Some caveats are in

order.

First, equal treatment of equals should not be expected to be preserved because the direct extension

of this property to the enriched model does not include hypotheses about baselines. One might

argue that this property does not have a direct transcription to the general model, that two agents

should be considered equals only if their claims and their baselines are equal. Thus, the proper (and

straightforward) statement should be the following: On the subdomain of problems in which baselines

are equals, equal treatment of agents with equal claims (on that domain, such agents can be said to

be truly equals) is preserved by the Baselines First extension operator.

As for order preservation, we impose additional conditions on baselines, to guarantee its preserva-

tion. We say that baselines are ordered like claims if whenever ci ≤ cj then bi ≤ bj . Similarly, we say

that claim-baseline differences are ordered like claims if whenever ci ≤ cj then ci − bi ≤ cj − bj .

Theorem 4 If baselines are ordered like claims, and R is order preserving, then R̃ is order preserving

in gains. If baselines and claim-baseline differences are ordered like claims then order preservation is

preserved by the Baselines First extension operator.

Properties Preservation

Resource monotonicity +

Consistency +

Resource-population uniformity +

Claims monotonicity + its dual +

Population monotonicity + its dual + (RM)

Equal treatment of equals + (*)

Order preservation + (**)

Table 1: Preservation of axioms. This table summarizes the behavior of the Baselines First

extension operator with respect to the properties we have considered. A plus sign indicates that the

property (or the pair of properties) is preserved. A parenthesis after the plus sign indicates that

the preservation occurs with a proviso. For instance, under the presence of resource monotonicity

(RM), the pair of properties formed by population monotonicity and its dual is preserved. Similarly,

10



if baselines are equals for agents with equal claims (*), equal treatment of equals is preserved. Finally,

if baselines and claim-baseline differences are ordered like claims (**), then order preservation is

preserved.

4 The axiomatic approach

In this section, we take a different approach to the problem of rationing in the presence of baselines.

We now provide some (new) axioms conveying natural ways of taking baselines into account, while

designing the rationing scheme, and study their implications. As we shall show, a combination of

these axioms will lead to a characterization of the family of rules presented above.

Our first axiom requires a baseline to be disregarded if it is above the corresponding claim.13 For-

mally, a rule S satisfies baseline truncation if, for each (N, b, c, E) ∈ E , S(N, b, c, E) = S(N, t(b, c), c, E).

The rationale is that as no agent can get more than her claim, as stated in the definition of (general)

rules, baselines above that level should be considered irrelevant.

The second axiom requires to disregard the amount of a claim exceeding its corresponding baseline,

whenever truncated baselines cannot be jointly covered. Formally, a rule S satisfies truncation of

excessive claims if, for each (N, b, c, E) ∈ E such that E ≤ T , S(N, b, c, E) = S(N, b, t(b, c), E). The

rationale for this idea is somewhat related to the rationale for the previous one. Namely, as not all

baselines can be honored, no agent will achieve more than her baseline and, thus, the portion of their

claims above their baselines should be considered irrelevant.

The third axiom complements the previous one as it refers to a situation where all truncated

baselines can be covered. It states that, in such a case, if an individual’s claim and baseline are reduced

by an amount ki, then such reduction in the endowment should be taken from that individual while

the others remain unaffected. Formally, a rule S satisfies baseline invariance if for each (N, b, c, E) ∈ E

such that E ≥ T , and k ∈ Rn
+ such that kj ≤ tj(b, c), for each j ∈ N , then S(N, b, c, E) = k+S(N, b−

k, c−k,E−
∑

i∈N ki). In particular, the axiom says that, when all truncated baselines can be covered,

the rationing problem can be solved in two stages; first, a certain amount is granted to all agents,

second, we solve the resulting problem after adjusting down baselines and claims by such amount, and

the endowment by the corresponding aggregated amount.14

Finally, we consider a fourth axiom dealing with the two polar cases of non-informative baselines,

and inspired by the notion of self-duality from the standard model of rationing. It states that a rule

should allocate amounts for a problem with null baselines in the same way as it allocates losses for

the corresponding problem in which baselines are equal to claims. Formally, a rule S satisfies polar

13This property is reminiscent of the so-called independence of irrelevant claims axiom (e.g., Dagan, 1996).
14This is somehow reminiscent of the composition from minimal rights axiom (e.g., Dagan, 1996).
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baseline self-duality if, for each (N, c,E) ∈ D, S(N, 0, c, E) = c− S(N, c, c, C − E).15

As the next theorem shows, these four axioms together characterize our family of rules introduced

above.

Theorem 5 A rule satisfies baseline truncation, truncation of excessive claims, baseline invariance

and polar baseline self-duality if and only if it is obtained via the Baselines First extension operator.

As shown in the appendix, Theorem 5 is tight. It turns out that the first three axioms of its

statement characterize the family of extended rules arising from using (possibly) different rules when

T ≥ E or T ≤ E in the definition of the Baselines First extension operator. More precisely, let us

define the generalized Baselines First extension operator (from the cartesian product of the space of

standard rules to the set of general rules) by

R̃U (N, b, c, E) =

 t(b, c)−R(N, t(b, c), T − E) if E ≤ T

t(b, c) + U(N, c− t(b, c), E − T ) if E > T
,

where R and U are standard (rationing) rules. Then, we have the following:

Theorem 6 A rule satisfies baseline truncation, truncation of excessive claims and baseline invari-

ance if and only if it is obtained via the generalized Baselines First extension operator.

5 Final remarks

We have formulated a general framework to analyze general rationing problems in which agents have

claims over the (insufficient) endowment, but also relevant baselines for the allocation. An individual

baseline can be interpreted as an objective entitlement (as in budgeting situations), a right (as in

the case of unpaid salaries in bankruptcy situations), or as a measure of needs (as in health care

prioritization). We have introduced a natural family of rules and argued that this family encompasses

a series of real-life rationing situations. It is somewhat surprising that with little or no structure on

the arbitrarily chosen baseline profiles, this family still proves relatively robust in preserving a series

of well known and desirable properties from the standard rationing model.

Our contribution is somehow reminiscent of a route previously explored for cooperative models

of bargaining. A variety of studies has extended Nash’s original bargaining model by specifying an

additional reference point to the disagreement point, which plays a role in the bargaining solution.

15Note that the standard definition of self-duality does not make sense in the present context as there is no

clear definition of a loss when both baselines and claims are in play. That is why we restrict the notion only to

the two polar cases of non-informative baselines.
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Such a reference point can be interpreted as a status quo, as a first step towards the final compromise,

or simply as a vector of claims (e.g., Gupta and Livne, 1988; Thomson, 1994). It is the obvious

counterpart to the baselines profile in our setting.

In a companion paper (Hougaard et al., 2011) we have dealt with an alternative model of rationing

in the presence of baselines, in which baselines are endogenously generated. Instead of assuming that

baselines are exogenously given, we assume that they are determined as a function of the components

of a standard rationing problem. Instances of such endogenous baselines are the so-called lower bounds,

which guarantee each claimant a minimal amount as a function of their claims and the available amount

(e.g., Moreno-Ternero and Villar, 2004). In that model, rather than defining an extension operator

(to move from the set of rules for standard problems to the set of rules for problems with baselines),

we define a family of operators (one for each baseline) on the space of standard rules. Each operator

associates each rule with another defined by a two-step procedure, somewhat similar to the one we

describe in this paper, and inspired by the so-called composition properties, which pertain to the way

in which (standard) rules allocate tentative estimations of the endowment (e.g., Moulin, 2000). The

resulting family of composition operators encompasses (and generalizes) two focal operators, known

as the attribution of minimal rights and truncation operators respectively (e.g., Thomson and Yeh,

2008).

Finally, we believe that our work can also shed some light in the search of a dynamic rationale for

some classical rules. More precisely, imagine we consider a sequence of rationing problems (involving

the same group of agents), at different periods of time, whose period-wise allocations might not only

be determined by the data of the rationing problem at such period, but also by the allocations in

previous periods. A plausible way to start approaching this issue would be by assuming that, at each

period, the corresponding rationing problem is enriched by an index summarizing the amounts each

agent obtained in the previous period. If so, we would just be providing an alternative interpretation

for the baselines profile that we consider in our model. Needless to say, it would be interesting to go

beyond this point and, ultimately, to provide a dynamic rationale for some classical rules, as recently

done by Fleurbaey and Roemer (2011) for the three canonical axiomatic bargaining solutions.

6 Appendix: Proofs of the results

Proof of Theorem 1

Resource monotonicity. Let R be a rule satisfying resource monotonicity. Let (N, c,E) ∈ D and

each E′ > E, with E′ ≤
∑
ci. Let b ∈ Rn be a baseline profile and let i ∈ N be a given agent. The

aim is to show that R̃i(N, b, c, E) ≤ R̃i(N, b, c, E′). To do so, we distinguish three cases.

Case 1: E < E′ ≤ T .
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Then, R̃i(N, b, c, E) = R∗i (N, t(b, c), E) and R̃i(N, b, c, E′) = R∗i (N, t(b, c), E′). Now, as resource

monotonicity is a self-dual property, it follows that R∗ satisfies resource monotonicity too and hence

R∗i (N, t(b, c), E) ≤ R∗i (N, t(b, c), E′), as claimed.

Case 2: T ≤ E < E′.

Then,

R̃i(N, b, c, E) = ti(b, c) +Ri(N, c− t(b, c), E−T ) ≤ ti(b, c) +Ri(N, c− t(b, c), E′−T ) = R̃i(N, b, c, E′),

where the inequality follows from the fact that R satisfies resource monotonicity.

Case 3: E < T < E′.

Then, the definition guarantees that R̃i(N, b, c, E) ≤ ti(b, c) ≤ R̃i(N, b, c, E′).

Consistency. Let R be a rule satisfying consistency. Let (N, c,E) ∈ D and b ∈ Rn
+. Let

x = R̃(N, b, c, E). The aim is to show that, for any M ⊂ N ,

R̃(M, bM , cM ,
∑
i∈M

xi) = xM .

Fix M ⊂ N and let E′ =
∑

i∈M xi and T ′ =
∑

j∈M tj(b, c). Thus, E ≤ T if and only if E′ ≤ T ′. We

then distinguish two cases.

Case 1: E ≤ T .

Then, xi = ti(b, c)−Ri(N, t(b, c), T−E) for each i ∈ N , and thus T ′−E′ =
∑

i∈M Ri(N, t(b, c), T−

E). Therefore, R̃i(M, bM , cM , E
′) = tM (b, c) − Ri(M, tM (b, c), T ′ − E′) for all i ∈ M . Now, as R is

consistent, it follows that Ri(N, t(b, c), T − E) = Ri(M, tM (b, c), T ′ − E′), for each i ∈ M , which

concludes the proof for this case.

Case 2: E ≥ T .

Then, xi = ti(b, c) +Ri(N, c− t(b, c), E − T ) for each i ∈ N , and thus T ′ − E′ =
∑

i∈M Ri(N, c−

t(b, c), E − T ). Therefore, R̃i(M, bM , cM , E
′) = ti(b, c) + Ri(M, cM − tM (b, c), E′ − T ′) for all i ∈ M .

Now, as R is consistent, it follows that Ri(N, c − t(b, c), E − T ) = Ri(M, cM − tM (b, c), E′ − T ′), for

each i ∈M , which concludes the proof for this case.

Resource-population uniformity follows from the first two statements and the relationship

among the axioms described in Section 2.

Proof of Theorem 2

Let P be a property and P∗ be its dual. Let R be a rule satisfying P, but not P∗. Then, R∗, the

dual rule of R, satisfies P∗ but not P.

If P is “punctual” then there exists a problem (N, c,E) ∈ D for which R∗ violates P. We then

consider the corresponding problem with baselines (N, b, c, E) ∈ E in which b = c. It then follows that

R̃(N, b, c, E) = R∗(N, c,E) and hence, we conclude that R̃ violates P .
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If P is “relational” a similar argument applies. For ease of exposition, we assume that P only

involves a finite collection of problems. Formally, if R∗ violates P then there exists a collection of

problems {(N j , cj , Ej)}j=1,...,k ⊂ D for which P is violated. Now, consider the corresponding problems

with baselines {(N j , bj , cj , Ej)}j=1,...,k ⊂ E where, for each j = 1, . . . , k,

bji =

 maxl=1,...,k{cli}, if i ∈
⋂

l=1,...,k N
l

cji if i ∈ N j \
⋂

l=1...k N
l

It is straightforward to show that, for each j = 1, . . . , k, R̃(N j , bj , cj , Ej) = R∗(N j , cj , Ej). Therefore,

R̃ violates P.

Proof of Theorem 3

Let R be a rule satisfying claims monotonicity and linked claims-resource monotonicity. Our aim

is to show that R̃ satisfies the general versions of the two properties.

Claims monotonicity. Let (N, c,E) ∈ D and i ∈ N , such that ci ≤ c′i. Let b ∈ Rn
+ be a baseline

profile, T =
∑

j∈N tj(b, c), and T ′ =
∑

j∈N tj(b, c′).16 The aim is to show that

R̃i(N, b, c, E) ≤ R̃i(N, b, c′, E). (3)

We distinguish three cases:

Case 1: E ≤ T .

Then, R̃i(N, b, c, E) = R∗i (N, t(b, c), E) and

R̃i(N, b, c′, E) = R∗i (N, t(b, c′), E) = R∗i (N, (tN\{i}(b, c), ti(b, c
′)), E).

As R satisfies linked claims-resource monotonicity, it follows that R∗ satisfies claims monotonicity,

from where we obtain (3).

Case 2: E ≥ T ′.

Then, R̃i(N, b, c, E) = ti(b, c) +Ri(N, c− t(b, c), E − T ), and

R̃i(N, b, c′, E) = ti(b, c′) +Ri(N, c′ − t(b, c′), E − T ′) =

= ti(b, c′) +Ri(N, (c− t(b, c))N\{i}, c
′
i − ti(b, c′)), E − T − ti(b, c′) + ti(b, c)).

Let ε = ti(b, c′)− ti(b, c) ≥ 0. Then, (3) is equivalent to

Ri(N, c− t(b, c), E − T ) ≤ ε+Ri(N, ((c− t(b, c))N\{i}, c
′
i − ti(b, c′)), E − T − ε). (4)

We distinguish three subcases.

Case 2.1: bi > c′i.

16Note that tN\{i}(b, c′) ≡ tN\{i}(b, c), ti(b, c′) ≥ ti(b, c) and thus, T ′ ≥ T .
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Here, ti(b, c) = ci < c′i = ti(b, c′) (and thus ε = c′i − ci). Then, (4) becomes

Ri(N, ((c− t(b, c))N\{i}, 0), E − T ) ≤ ε+Ri(N, ((c− t(b, c))N\{i}, 0), E − T − ε).

Now, by claims monotonicity of R,

Ri(N, ((c− t(b, c))N\{i}, 0), E − T ) ≤ Ri(N, ((c− t(b, c))N\{i}, ε), E − T ).

And, by linked claims-resource monotonicity of R,

Ri(N, ((c− t(b, c))N\{i}, ε), E − T ) ≤ ε+Ri(N, ((c− t(b, c))N\{i}, 0), E − T − ε),

which concludes the proof in this case.

Case 2.2: c′i ≥ bi ≥ ci.

Here, ti(b, c) = ci ≤ bi = ti(b, c′) (and thus ε = bi − ci). Then, (4) becomes

Ri(N, ((c− t(b, c))N\{i}, 0), E − T ) ≤ bi − ci +Ri(N, ((c− t(b, c))N\{i}, c
′
i − bi), E − T − bi + ci).

Now, by claims monotonicity of R,

Ri(N, ((c− t(b, c))N\{i}, 0), E − T ) ≤ Ri(N, ((c− t(b, c))N\{i}, c
′
i − ci), E − T ).

And, by linked claims-resource monotonicity of R,

Ri(N, ((c− t(b, c))N\{i}, c
′
i − ci), E − T ) ≤ ε+Ri(N, ((c− t(b, c))N\{i}, c

′
i − ci − ε), E − T − ε),

which concludes the proof in this case.

Case 2.3: ci > bi.

Here, ti(b, c) = bi = ti(b, c′) (and thus ε = 0), from where (4) trivially follows as a consequence of

the fact that R satisfies claims monotonicity.

Case 3: T < E < T ′. Then, R̃i(N, b, c, E) = ti(b, c)+Ri(N, c−t(b, c), E−T ), and R̃i(N, b, c′, E) =

R∗i (N, t(b, c′), E) = ti(b, c′)−Ri(N, (tN\{i}(b, c), ti(b, c′)), T ′−E). Thus, in order to prove (3), it suffices

to show that

Ri(N, (tN\{i}(b, c), ti(b, c
′)), T ′ − E) +Ri(N, c− t(b, c), E − T ) ≤ ti(b, c′)− ti(b, c) (5)

Note that Case 3 implies that ti(b, c) = ci (otherwise, ti(b, c) = bi and hence T = T ′). Thus, by bound-

edness, Ri(N, c−t(b, c), E−T ) = 0. Also, by balance and boundedness, Ri(N, (tN\{i}(b, c)), ti(b, c′)), T ′−

E) ≤ T ′ − E = T − E + ti(b, c′)− ti(b, c) ≤ ti(b, c′)− ti(b, c), from where (5) follows.

Linked claims-resource monotonicity. Let (N, c,E) ∈ D and i ∈ N . Let b ∈ Rn
+ be a baseline

profile, ε > 0 and c′ = (ci + ε, cN\{i}). Let T ′ = T + ti(b, c′)− ti(b, c). Then, ti(b, c′) ≤ ti(b, c) + ε and

T ≤ T ′ ≤ T + ε. The aim is to show that

R̃i(N, b, (ci + ε, cN\{i}), E + ε) ≤ R̃i(N, b, c, E) + ε (6)
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We distinguish several cases:

Case 1: E ≤ T ′ − ε.

Then, R̃i(N, b, c, E) = R∗i (N, t(b, c), E) and R̃i(N, b, c′, E+ε) = R∗i (N, t(b, c′), E+ε) = R∗i (N, (ti(b, c′), t−i(b, c)), E+

ε). By claims monotonicity R∗, R∗i (N, t(b, c′), E + ε) ≤ R∗i (N, (ti(b, c) + ε, t−i(b, c)), E + ε). By linked

claims-resource monotonicity of R∗, R∗i (N, (ti(b, c) + ε, t−i(b, c)), E + ε) ≤ R∗i (N, t(b, c), E) + ε, from

where (6) follows.

Case 2: E ≥ T .

Then, R̃i(N, b, c, E) = ti(b, c)+Ri(N, c−t(b, c), E−T ) and R̃i(N, b, (ci+ε, cN\{i}), E+ε) = ti(b, c′)+

Ri(N, ((ci+ε, cN\{i})−(ti(b, c′), t−i(b, c))), E+ε−T ′). As (E−ε−T ′)−(E−T ) = ε−(ti(b, c′)−ti(b, c))

and (ci + ε− ti(b, c′))− (ci − ti(b, c)) = ε− (ti(b, c′)− ti(b, c)), (6) follows from linked claims-resource

monotonicity of R.

Case 3: T ′ − ε < E < T .

Then, R̃i(N, b, (ci + ε, cN\{i}), E+ ε) = ti(b, c′) +Ri(N, (ci + ε− ti(b, c′), (c− t(b, c))−i), E+ ε−T ′),

and R̃i(N, b, c, E) = ti(b, c′)−Ri(N, t(b, c), T − E). Thus, (6) becomes

ε− ti(b, c′) + ti(b, c) ≥ Ri(N, t(b, c), T −E) +Ri(N, (ci + ε− ti(b, c′), (c− t(b, c))−i), E + ε− T ′) (7)

Now, by balance and boundedness, the right hand side of (7) is bounded above by T −E+E+ ε−T ′,

which is precisely the left hand side of (7).

Let now R be a rule satisfying resource monotonicity, population monotonicity and linked resource-

population monotonicity. By Theorem 1, R̃ satisfies the general property of resource monotonicity.

Our aim is to show that R̃ also satisfies the general properties of population monotonicity and linked

resource-population monotonicity.

Population monotonicity. Let (N, c,E) ∈ D and (N ′, c′, E′) ∈ D be such that N ⊆ N ′,

c′N = c and E = E′. Let b ∈ Rn
+ and b′ ∈ Rn′

+ be two baseline profiles such that b′N = b. Note that

tj(b′, c′) = tj(b, c) for each j ∈ N . Finally, let T =
∑

j∈N tj(b, c) and T ′ =
∑

j∈N ′ tj(b′, c′). The aim is

to show that

R̃i(N ′, b′, c′, E) ≤ R̃i(N, b, c, E), (8)

for each i ∈ N .

We distinguish several cases:

Case 1: E ≤ T .

Then, R̃i(N ′, b′, c′, E) = R∗i (N ′, t(b′, c′), E) and R̃i(N, b, c, E) = R∗i (N, t(b, c), E). As R satisfies

linked resource-population monotonicity, it follows that R∗ satisfies population monotonicity, from

where we obtain (8).

Case 2: E ≥ T ′.
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Then, R̃i(N ′, b′, c′, E) = ti(b′, c′)+Ri(N ′, c′−t(b′, c′), E−T ′) and R̃i(N, b, c, E) = ti(b, c)+Ri(N, c−

t(b, c), E − T ). As R satisfies resource monotonicity and population monotonicity, (8) follows.

Case 3: T < E < T ′.

Then, the definition guarantees that R̃i(N ′, b′, c′, E) ≤ ti(b′, c′) = ti(b, c) ≤ R̃i(N, b, c, E).

Linked resource-population monotonicity. Let (N, c,E) ∈ D and (N ′, c′, E) ∈ D be such

that N ⊆ N ′ and c′N = c. Let b ∈ Rn
+ and b′ ∈ Rn′

+ be two baseline profiles such that b′N = b. Note

that tj(b′, c′) = tj(b, c) for each j ∈ N . Finally, let T =
∑

j∈N tj(b, c), and T ′ =
∑

j∈N ′ tj(b′, c′). The

aim is to show that, for each i ∈ N ,

R̃i(N, b, c, E) ≤ R̃i(N ′, b′, c′, E′), (9)

where E′ = E +
∑

N ′\N c′j .

We distinguish several cases:

Case 1: E ≤ T −
∑

N ′\N

(
c′j − tj(b′, c′)

)
.

Then, E ≤ T and E′ ≤ T ′ and, therefore, R̃i(N ′, b′, c′, E′) = R∗i (N ′, t(b′, c′), E′) and R̃i(N, b, c, E) =

R∗i (N, t(b, c), E). By resource monotonicity and population monotonicity of R∗, (9) follows.

Case 2: T −
∑

N ′\N

(
c′j − tj(b′, c′)

)
≤ E ≤ T .

Then, E ≤ T whereas E′ ≥ T ′ and, hence, the definition guarantees that R̃i(N ′, b′, c′, E′) ≥

ti(b′, c′) = ti(b, c) ≥ R̃i(N, b, c, E), as desired.

Case 3: E ≥ T .

Then, E′ ≥ T ′ and, hence, R̃i(N ′, b′, c′, E′) = ti(b′, c′)+Ri(N ′, c′−t(b′, c′), E′−T ′) and R̃i(N, b, c, E) =

ti(b, c)+Ri(N, c−t(b, c), E−T ). It is straightforward to show that E′−T ′ = E−T+
∑

N ′\N

(
c′j − tj(b′, c′)

)
.

Thus, (9) follows from the fact that R satisfies resource -and-population monotonicity.

Proof of Theorem 4

We only give the proof of the second statement, as the other two are straightforward. Let R be a

rule satisfying order preservation and let (N, b, c, E) be a problem for which baselines are ordered like

claims. Let i, j ∈ N be such that ci ≤ cj (and hence bi ≤ bj). We aim to show that

R̃i(N, b, c, E) ≤ R̃j(N, b, c, E)

To do so, we distinguish two cases.

Case 1: E ≤ T .

Then, R̃i(N, b, c, E) = R∗i (N, t(b, c), E) and R̃j(N, b, c, E) = R∗j (N, t(b, c), E). Now, as order

preservation is a self-dual property, it follows that R∗, the dual rule of R, is order preserving too.

As bi ≤ bj and ci ≤ cj , it follows that ti(b, c) ≤ tj(b, c). Altogether, R̃i(N, b, c, E) ≤ R̃j(N, b, c, E), as

desired.
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Case 2: E ≥ T .

Then, R̃i(N, b, c, E) = ti(b, c) + Ri(N, c − t(b, c), E − T ) and R̃j(N, b, c, E) = tj(b, c) + Rj(N, c −

t(b, c), E − T ). Note that, as mentioned above, ti(b, c) ≤ tj(b, c). Thus, if ci − ti(b, c) ≤ cj − tj(b, c),

the desired inequality would trivially follow from the fact that R satisfies order preservation. If, on

the contrary, ci − ti(b, c) ≥ cj − tj(b, c) the fact that R∗ satisfies order preservation guarantees that

R∗i (N, c− t(b, c), C − E) ≥ R∗j (N, c− t(b, c), C − E). Thus,

ti(b, c) +Ri(N, c− t(b, c), E − T ) = ci −R∗i (N, c− t(b, c), C − E) ≤

≤ cj −R∗j (N, c− t(b, c), C − E) = tj(b, c) +Rj(N, c− t(b, c), E − T ),

as desired.

Proof of Theorem 5

It is straightforward to see that, for any (standard) rule R, R̃ satisfies the four axioms. Thus, we

focus on the converse implication. Let S be a rule satisfying the four axioms and let (N, b, c, E) be a

problem with baselines. We distinguish two cases.

Case 1: E ≥ T .

By baseline invariance, S(N, b, c, E) = t(b, c)+S(N, b−t(b, c), c−t(b, c), E−T ). Note that if bi ≤ ci,

then bi−ti(b, c) = 0 < ci−ti(b, c) = ci−bi, whereas if bi ≥ ci, then bi−ti(b, c) = bi−ci > 0 = ci−ti(b, c).

Thus, by baseline truncation, S(N, b− t(b, c), c− t(b, c), E − T ) = S(N, 0, c− t(b, c), E − T ).

Case 2: E ≤ T .

By baseline truncation, S(N, b, c, E) = S(N, t(b, c), c, E). And, by truncation of excessive claims,

S(N, t(b, c), c, E) = S(N, t(b, c), t(b, c), E). Finally, by polar baseline self-duality, S(N, t(b, c), t(b, c), E) =

t(b, c)− S(N, 0, t(b, c), T − E).

To summarize,

S (N, b, c, E) =

 t(b, c)− S(N, 0, t(b, c), T − E) if E ≤ T

t(b, c) + S(N, 0, c− t(b, c), E − T ) if E > T
. (10)

Let R : D →
⋃

N∈N Rn be such that, for any (N, c,E) ∈ D,

R (N, c,E) = S(N, 0, c, E).

In other words, R assigns to each problem the allocation that S yields for the corresponding problem

with baselines in which baselines are null. Hence, (10) becomes

S (N, b, c, E) =

 t(b, c)−R(N, t(b, c), T − E) if E ≤ T

t(b, c) +R(N, c− t(b, c), E − T ) if E > T
,

which implies that S ≡ R̃.
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We conclude by showing the tightness of the result. In what follows, let A denote the (standard)

constrained equal awards rule and P denote the (standard) proportional rule.17

• Let S be defined by

S(N, c, b, E) =


P (N, t(b, c), E), if E ≤ T

t(b, c) + P (N, c− t(b, c), E − T ) if E ≥ T and ci ≥ bi for each i ∈ N

t(b, c) +A(N, c− t(b, c), E − T ) if E ≥ T and ci < bi for some i ∈ N,

It is straightforward to show that S is a well-defined rule that satisfies truncation of excessive

claims, baseline invariance, polar baseline self-duality and polar baseline equivalence, but not

baseline truncation.

• Let S be defined by

S (N, b, c, E) =

 P (N, c,E) if E ≤ T

t(b, c) + P (N, c− t(b, c), E − T ) if E ≥ T

It is straightforward to show that S is a well-defined rule that satisfies baseline truncation,

baseline invariance, polar baseline self-duality and polar baseline equivalence, but not truncation

of excessive claims.

• Let S be defined by

S (N, b, c, E) =

 t(b, c)− P (N, t(b, c), T − E) if E ≤ T

P (N, c,E) if E ≥ T

It is straightforward to show that S is a well-defined rule that satisfies baseline truncation,

truncation of excessive claims, polar baseline self-duality and polar baseline equivalence, but

not baseline invariance.

• Let S be defined by

S (N, b, c, E) =

 t(b, c)−A(N, t(b, c), T − E) if E ≤ T

t(b, c) + P (N, c− t(b, c), E − T ) if E ≥ T

It is straightforward to show that S is a well-defined rule that satisfies baseline truncation,

truncation of excessive claims and baseline invariance, but neither polar baseline self-duality

nor polar baseline equivalence.

17Formally, for each (N, c,E) ∈ D, A (N, c,E) = (min{ci, λ})i∈N where λ > 0 is chosen so that∑
i∈N min{ci, λ} = E, whereas P (N, c,E) = E

C · c.
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