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Abstract

We consider the problem of assigning agents to a facility, represented by slots on a

line, where only one agent can be served at a time. There is a finite number of agents, and

each one wants to be served as close as possible to his preferred slot. We first consider

deterministic assignment of agents to slots. We characterize (Pareto) efficiency in such

setting and provide an algorithm for testing if a given deterministic assignment is efficient.

We also characterize utilitarianism (minimization of the total gap between preferred and

assigned slots) and provide a quick algorithm for testing if a given deterministic assign-

ment is utilitarian. We then consider probabilistic assignment of agents to slots. In such

framework, we characterize, making use of the previous algorithms, a method which is

ordinally efficient and utilitarian.
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1 Introduction

Imagine four applicants are shortlisted for a job interview. Each interview takes an hour. Three

applicants prefer to go at 1pm and one applicant prefers to go at 2pm. Every applicant would

like an interview as close as possible to his preferred time slot. How should we assign time slots

to the four applicants given their preferences?

We analyze in this paper assignment problems like the one above. More precisely, we

consider situations where there is a finite number of agents, each with a preferred slot, caring

only about the gap between their assigned slot and their preferred slot. Due to the geometric

interpretation of the problem, we refer to such a situation as assigning agents to a line. Our

model will have potential applications within a wide range of matching problems in which agents

are served sequentially and only limited preference information (e.g., the preferred serving time)

is available from the agents. For instance, assigning drivers to congested facilities, personnel to

work shifts, tennis players to courts, students to oral exams etc.

Assignment problems can be solved deterministically or probabilistically (i.e., randomizing

over deterministic allocations) and we consider both cases.

First we characterize Pareto efficiency of a deterministic allocation. In particular, we show

that if it is possible to make a Pareto improvement by switching slots between n agents then it

is also possible to make a Pareto improvement between 2 agents. Based on this, we propose an

algorithm to determine whether a given (deterministic) allocation is Pareto efficient. Despite

the rather elementary (although non-trivial) nature of the problem, we have been, somewhat

surprisingly, unable to locate a direct characterization and algorithm in the literature.

Next, we characterize when a given (deterministic) allocation is utilitarian in the sense that

the total gap between agents’ preferred slot and their allocated slot is minimized. We propose an

algorithm building on this key characterization result stating that an allocation is constrained

utilitarian (i.e., utilitarian subject to the constraint that only occupied slots can be used) if and

only if there does not exist a total gap-reducing pairwise swap of slots between any two agents.

We use this result to focus on common shifts of blocks of assignments and whether they give

rise to reductions in the total gap. As such, we obtain a direct characterization of utilitarianism

and an algorithm for checking it, which is tailor-suited to the problem, as opposed to checking

it by first solving the classical linear sum assignment problem, identifying costs with gaps, and

then seeing if the total gap is the same as in the allocation at hand.

Deterministic assignment methods are usually criticized on equity grounds. If the objects
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to be assigned are indivisible then all deterministic methods will violate any fundamental no-

tion of fairness. A usual course of action in normative economics to deal with such problem

is to resort to randomization. Probabilistic assignment methods, which are commonly used in

practice, arise when randomizing over deterministic allocations. The first probabilistic assign-

ment method that comes to mind is the so-called random priority (RP) method, which assigns

objects based on a random ordering of the agents. RP obeys in our setting a fundamental prin-

ciple of fairness known as equal treatment of equals, as well as the basic incentive-compatibility

principle of strategy-proofness. It is, however, in conflict with efficiency (and, in the case of

our setting, even with weak forms of it). An alternative to RP is the so-called probabilistic

serial (PS) method, which assigns probability distributions over objects by means of a natural

constructive argument (the so-called “eating algorithm”) in which each indivisible object is

considered as a divisible object of probability shares. PS is (ordinally) efficient and envy-free,

although only weakly strategy-proof. As we shall show later, it is not utilitarian in our context

(in fact, a utilitarian solution cannot be envy-free).

We suggest in this paper a modified version of RP satisfying equal treatment of equals

which is not only (ordinally) efficient but also utilitarian. Intuitively, the new rule behaves as

RP by ordering agents randomly and then assigning them to slots sequentially, but with the

important modification of doing so in a way that will ensure that the allocation following each

step in the algorithm will be utilitarian among those agents already assigned. The construction

of this new rule is partly based on our algorithms for checking efficiency and utilitarianism of

deterministic assignments.

The rest of the paper is organized as follows. In Section 2, we summarize the related

literature to this paper on assignment problems. In Section 3, we set the preliminaries of our

model. In Section 4, we deal with the deterministic assignments and present our algorithms to

check efficiency and utilitarianism. In Section 5, we move to probabilistic assignments, showing

some logical relations among axioms and introducing our proposed (efficient and utilitarian)

rule for this context. For a smooth passage, proofs of lemmas can be found in an appendix.

2 Related literature

Assignment problems have long been analyzed in the operations research literature, mostly

taking a classical combinatorial optimization approach (see, for instance, Burkard et al., (2012)

and the literature cited therein). In the economics literature, however, the interest on assign-
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ment problems has mostly relied on issues of efficiency, incentive compatibility and fairness.1

For instance, Hylland and Zeckhauser (1979) deal, in an early an influential contribution, with

the general problem of achieving efficient allocations in matching problems in which individuals

must be allocated to positions with limited capacities, and propose an algorithm for it based

on market-clearing prices, which also guarantees that assignments are envy-free, i.e., no agent

would prefer the assignment of some other agent. Their algorithm, however, is not strategy-

proof, i.e., it does not always give agents the incentive to report their true preferences. It turns

out, as shown by Zhou (1990), that no rule in such setting satisfies strategy-proofness, (ex-ante)

efficiency, and an even weaker notion of fairness than no-envy. Zhou (1990) also discussed the

so-called random priority (RP) solution (known as serial dictatorship by Abdulkadiroglu and

Sönmez (1998), among others) which had played the role of a folk solution for a long time,

although it had not been considered in the economics literature before.

Bogomolnaia and Moulin (2001) can be considered as the seminal work that sparked the

recent interest within the economic literature on assignment problems. They restrict attention

to strict preferences and ordinal mechanisms (i.e., mechanisms that rely only on ordinal rankings

of objects) and introduce the notion of ordinal efficiency.2 They characterize, building on the

contribution of Cres and Moulin (2001) in a related setting, all ordinally efficient assignments,

which include the so-called probabilistic serial solution (PS) as a central element (but not

random priority), and show that ordinal efficiency is incompatible with strategy-proofness, and

equal treatment of equals.3 They also show that PS is envy-free but not strategy-proof, whereas

the opposite holds for RP.

PS is actually considered as a prominent method to solve assignment problems. Besides

being popularized by Bogomolnaia and Moulin (2001), it has been characterized, in related

settings to theirs, by Bogomolnaia and Moulin (2002, 2004), Katta and Sethuraman (2006),

Kesten (2009), Manea (2009), Yilmaz (2009), Che and Kojima (2010), Kojima and Manea

(2010), Hashimoto and Hirata (2011), Heo (2011), and Bogolmonaia and Heo (2012), among

others.

1Another concept that might lie at the intersection of both literatures is the so-called notion of stability,

which has also received considerable attention since Gale and Shapley (1962) and their analysis of the so-called

marriage problem. See also Roth and Sotomayor (1990) and the literature cited therein.
2As we shall define later, a probabilistic assignment is ordinally efficient if it is not stochastically dominated

with respect to individual preferences over certain objects.
3Abdulkadiroglu and Sönmez (2003) provide an alternative characterization of ordinal efficiency. See also

McLennan (2002) and Manea (2008) for the relationship between ordinal efficiency and ex-ante efficiency.
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In this paper, we study a slightly different version of the model considered by Bogomolnaia

and Moulin (2001) and their followers. Not only we allow for weak preferences, as in Katta

and Sethuraman (2006), but we actually assume that preferences are symmetric with respect

to a peak (target). As such, our model is reminiscent of the so-called division problem with

single-peaked preferences, initiated by Sprumont (1991).4 It also touches some recurrent topics

in queueing problems (e.g., Dolan, 1978).

3 Preliminaries

Imagine a facility with a fixed service capacity that can serve one agent at each slot. We use

the term “slot” which can refer to both a point in time (i.e., a time slot) or a location (i.e., a

physical slot) arranged on a line. In the latter case, we could imagine that the situation is one

where the agents are showing up at a particular location (slot) before a given deadline, and

then they are going to be served as close as possible to the slot they arrived at.

The set of slots is identified by the set of integers. It is assumed that slots are equidistant

(in time, or in space).

Agents are labeled by letters A,B, . . . , with generic elements i and j. Each agent i has a

preferred slot ti which we refer to as the agent’s target. We label the agents so that tA ≤ tB ≤ . . .

A problem of assigning agents to a line (in short, a problem), consists of a finite number of

agents each having a target. In general, a problem can be represented by an agent-target table,

and be depicted graphically accordingly, as in following example.

Example 1: Two agents wish to be served at slot 3, one agent wishes to be served at slot 4,

and eight agents wish to be served at slot 6.

Example 1: Table

Agent A B C D E F G H I J K

Target 3 3 4 6 6 6 6 6 6 6 6

4Kasajima (2012) is actually a recent instance of a study of probabilistic assignment when agents have

single-peaked preferences.
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Example 1: Figure

C

B

A D
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|| | | | | | | | | | |

We add two modeling assumptions from the outset. First, anonymity, which says that the

identity of agents is irrelevant for solving problems. As such, the property can be interpreted

as reflecting the principle of impartiality, which excludes ethically irrelevant information (e.g.,

Moreno-Ternero and Roemer, 2006). Second, slot invariance, which says that our methods

for solving problems will not depend on how we label the slots. For instance, the problem of

Example 1, in which two agents share slot 3 as their target, one other agent has slot 4 as his

target, and eight more agents share slot 6 as their target, is solved as the problem in which two

agents share slot 9 as their target, one other agent has slot 10 as his target, and eight more

agents share slot 12 as their target, except for the corresponding shift in six slots. The two

assumptions together permit the use of a concise notation, in which only the number of agents

preferring (consecutive) targets are considered. For instance, the problem of Example 1 would

be described by the notation [2, 1, 0, 8]. Note that 0 is inserted to indicate that there is indeed

a slot between the target of one agent and the target of eight agents, which itself is not the

target of any agent.
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4 Deterministic Assignments

An allocation (of a problem) is a deterministic assignment of agents to slots. Denote by xi

the slot assigned to agent i in allocation x. We shall often refer to xi as agent i’s outcome (in

allocation x).

For each allocation x of a problem we define the gap of agent i as gi(x) = |ti − xi|, to be

interpreted as the disutility of agent i from being assigned the slot xi while having target ti.

We assume that only the size of the gap matters, i.e., agents’ preferences are symmetric around

the target.

Example 1 (cont.): [2, 1, 0, 8]. We can display an allocation and the associated gaps by

adding additional columns (see below for an example).

agent target assignment gap

A 3 1 2

B 3 2 1

C 4 3 1

D 6 4 2

E 6 5 1

F 6 6 0

G 6 7 1

H 6 8 2

I 6 9 3

J 6 10 4

K 6 11 5
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Example 1 (cont.)
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4.1 Efficiency

An allocation x is a Pareto improvement of another allocation y, if gi(x) ≤ gi(y) for each agent

i, with at least one strict inequality. An allocation is Pareto efficient if there does not exist

a Pareto improvement of it. We present in this section an intuitive algorithm for checking

whether a given allocation is Pareto efficient.

The next lemma, which is interesting on its own, provides an intermediate step towards

such algorithm. It focusses on reallocations among already occupied slots and states that if a

Pareto improvement through some reallocation of outcomes is possible, then it is possible to

obtain a Pareto improvement by a bilateral reallocation of outcomes between two agents.5

Lemma 1: Suppose that there exists a Pareto improvement by reallocating outcomes between

n agents. Then there exists a Pareto improvement by reallocating the outcomes of two agents.

5This is reminiscent of some results dealing with coalitional manipulation of agents’ characteristics in related

models of resource allocation, which state that if outcomes can be manipulated, then that can be done with

pairwise manipulations (e.g., Ju et al, 2007; Barberá et al., 2010).
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Lemma 1 implies that if no Pareto improving pairwise swap of slots can be found, it is

impossible to find a Pareto improvement of the current allocation using the same slots. It

suggests the following procedure for checking efficiency:

Efficiency Check Algorithm

Step 0: Check if any pair of agents can benefit from a swap.

If yes: conclude that the allocation is not efficient; if not: go to Step 1.

Step 1: Check if any unilateral reassignment (to an empty slot) can reduce the gap of an

agent.

If yes: conclude that the allocation is not efficient; if not: go to Step 2.

Step 2: Mark with “∗” all agents that are indifferent between their current outcome and

some empty slot. Also mark that associated occupied slot with “∗”. Then, check if any agent

prefers a “∗”-marked slot to his own slot.

If yes: conclude that the allocation is not efficient; if not: go to Step 3.

Step 3: Mark with “∗∗” all agents that are indifferent between their current outcome and a

“∗” marked slot. Also mark the associated slot with “∗∗”. Then, check if any agent prefers a

“∗∗”-marked slot to his own slot.

If yes: conclude that the allocation is not efficient; if not: go to Step 4.
...

Step k: Mark with ”

k−1︷ ︸︸ ︷
∗ · · · ∗” all agents that are indifferent between their current outcome

and ”

k−2︷ ︸︸ ︷
∗ · · · ∗” marked slots. Also mark that associated occupied slot with ”

k−1︷ ︸︸ ︷
∗ · · · ∗”. Then, check

if there is any agent that prefers a ”

k−1︷ ︸︸ ︷
∗ · · · ∗”-marked slot to his own slot.

If yes: conclude that the allocation is not efficient; otherwise go to Step k+ 1.

The algorithm stops when no agents have been “star-marked” in the latest step, or all agents

have been “star-marked”. In both cases, the assignment is deemed efficient.

The following figure illustrates the Efficiency Check Algorithm for a specific problem:

[2, 0, 2, 1]. For such problem, in the second step only one star is assigned to slot 3, because

only agent A would be indifferent between that slot (assigned to him) and 1, which is empty.

No other agent would prefer 3 to their assignment and, thus, we move to the third step. In

the third step, two stars are only assigned to slot 5, because only agent C would be indifferent

between that slot (assigned to him) and 3, which is marked with one star. Agent E prefers 5

to his assignment and thus we conclude that the assignment is inefficient.
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Illustration of the Efficiency Check Algorithm for the problem [2, 0, 2, 1]

E
?

B

?

A

∗

?

C

∗∗

?
D

?

1
∗

2 3
∗∗

4 5 6 7 8

| | | | | | | | | |

Theorem 1: The Efficiency Check Algorithm works: it finishes in a finite number of steps and

concludes that an allocation is Pareto efficient if and only if this is in fact the case.

Proof: Note that any agent (and any slot) is “star-marked” at most once. Thus, the algorithm

finishes in a finite number of steps. If at some step m some agent i prefers a “star-marked” slot

k to his own, a Pareto improvement is possible through the change in outcomes given by letting

agent i get his preferred position, letting the agent who currently has agent i’s preferred slot

change to his indifferent outcome, etc., until the last agent (with a single star) in the sequence

moves to an empty slot.

It remains to verify that if a Pareto improvement exists, then it is detected in one of the

steps.

If a Pareto improvement exists by reallocating outcomes among n agents, by Lemma 1, there

is also a Pareto-improving pairwise swap. Thus, Step 1 yields a ”yes” if a Pareto-improvement

exists from outcomes that are already used.

If a Pareto improvement exists that involves several previously unused slots, then there

exists also a Pareto improvement involving a single previously unused slot. Indeed, we can

decompose the Pareto improvement into a sequence of Pareto improvements that each makes

use of a single previously unused slot. Thus, it remains to verify that Step 2 or some of the

following steps detects a Pareto improvement involving a single previously unused slot. But

this follows by the construction of the algorithm. Q.E.D.

As we shall see it in the next section dealing with probabilistic assignment, this procedure

is also instrumental to check if a given lottery is ex-post efficient, by checking efficiency of each

possible realization.
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4.2 Utilitarianism

An allocation x for a given problem is utilitarian if it minimizes the aggregate gap of the

agents,
∑

i gi(x). Similarly, an allocation x for a given problem is constrained utilitarian if it

minimizes the aggregate gap of the agents, subject to the constraint that only slots assigned in

x can be used. As shown by the following example, efficiency does not even imply constrained

utilitarianism.

Example 2: [6, 0, 3]

G

H

I

B

C

D

F

E

A

1 2 3 4 5 6 7 8 9

| | | | | | | | | |

Consider the following two allocations for the problem above:
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Example 2 (allocation x)
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Example 2 (allocation y)
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We have
∑

i gi(x) =16 and
∑

i gi(y)=14 . However both assignments are efficient.

In what follows, we often make use of the following straightforward observations:6

6These observations follow from applications of general results for assignment problems satisfying the so-

called Monge property, see Burkard et al. 2012 , p. 150.
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For a given allocation x, any other allocation using the same slots can be obtained by a

sequence of pairwise swaps (of outcomes). In particular, a constrained utilitarian allocation

can be obtained from x by sequentially conducting pairwise swaps where each swap is ordering

outcomes like the targets. Note also that each such swap is aggregate gap-reducing or gap-

neutral.

Lemma 2: Let x be an allocation where assigned slots are ordered like targets. Then, the

following statements hold:

1. x is constrained utilitarian (and thus any pairwise swap of outcomes is either aggregate

gap-neutral or aggregate gap-increasing).

2. Any constrained utilitarian allocation using the same slots as in x can be obtained from

x by a sequence of aggregate gap-neutral pairwise swaps.

Lemma 3: A given allocation y is constrained utilitarian if and only if there does not exist a

pairwise aggregate gap-reducing swap of outcomes between two agents.

In order to introduce our next result, we need the following definition. Given an allocation

x, a connected segment of outcomes is a set of occupied slots with empty neighbor slots in both

ends.

The Utilitarian Check Algorithm:

Step 1: Order all outcomes like the targets through some sequence of pairwise swaps (if neces-

sary). If any such pairwise swap is aggregate gap-reducing then conclude that the allocation is

not utilitarian. Otherwise, go to Step 2.

Step 2: Given the target ordered allocation produced in Step 1, check all connected segments

using the following procedure:

Step 2.A: Label slots in the m-slot connected segment from left to right by a, b, c, . . . ,m, and

let A,B,C . . . ,M be the agents with outcomes a, b, c, . . . ,m respectively.

Start counting from the left: Define ci recursively as follows,

c1 = −1 if tA ≥ a and c1 = 1 otherwise

c2 = c1 − 1 if tB ≥ b and c2 = c1 + 1 otherwise
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...

If ci > 0, for some i ∈ {a, . . . ,m}, then conclude that the allocation is not utilitarian.

Otherwise, go to Step 2.B.

Step 2.B: Perform a procedure similar to that in Step 2.A but this time counting from the right

to the left. Formally, define di recursively as follows,

d1 = −1 if tm ≤ m and d1 = 1 otherwise

d2 = c1 − 1 if tm−1 ≤ m− 1 and d2 = d1 + 1 otherwise.
...

If di > 0, for some i ∈ {a, . . . ,m}, then conclude that the allocation is not utilitarian.

Otherwise, go to Step 3.

Step 3: Repeat the process described in Step 2 for any other (non-visited) connected segment.

...

Step k: If no further connected segments exist, and the process did not terminate in any of the

previous steps, conclude the allocation is utilitarian.

Illustration of the Utilitarianism Check Algorithm for the problem [4, 0, 3]

G
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E

?

C

?

B

?

A

?
D

?

a
|Step 2B
d7 = +1

-
b
| |
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-
c

|
d5 = −1

-
d

|
d4 = −2

-
e

|
d3 = −1

-
f

|
d2 = −2

-

g

|
d1 = −1

-

| | | | | | | | | |

Theorem 2: The Utilitarian Check Algorithm works: it finishes in a finite number of steps

and concludes that an allocation is utilitarian if and only if this is in fact the case.

14



Proof: Suppose a given allocation x has survived the algorithm and denote by y the corre-

sponding allocation after ordering outcomes from x as targets by a sequence of pairwise swaps

(cf. Step 1).

Our aim is to show that y, and hence x, is utilitarian.

First we observe that, for y, all agents with outcomes in a connected segment have targets

within the segment. Indeed, if some agent has his target outside the segment there would be

an aggregate gap-reducing shift involving this agent and all agents, either before, or after, in

the segment, towards the target. This is not the case, as y survived the algorithm.

Now, by contradiction, assume that there exists an alternative allocation z that reduces the

aggregate gap compared to y. If z involves several unused slots compared to y, then there also

exists an aggregate gap-reducing allocation z′ involving a single unused slot. Indeed, we can go

from y to z by a number of sequences of reallocations, where each such sequence involves the

use of a single slot unused at y.

Without loss of generality, we can assume that the agent being reallocated to an unused

slot moves to a neighbor slot to his segment. Indeed, this can be assumed because in any other

case the agent that moves to the new slot could benefit from a unilateral change to such an

unused neighbor slot of his own segment, which is closer to his target.

Moreover, without loss of generality, we can further assume that all agents involved in the

sequence of reallocations leading from y to z′ have targets within the same segment. Otherwise,

we could obtain at least the same aggregate gap reduction by eliminating agents with targets

outside the segment from the sequence.

Now, order the outcomes in z′ like the targets (as in y) by a sequence of pairwise swaps

and denote this allocation z′′. Note that, as all such swaps are either aggregate gap-neutral or

aggregate gap-reducing the allocation obtained is also aggregate gap-reducing compared to y.

However, it then follows that y would not survive the algorithm, as the allocation z′′ corresponds

to a shift of outcomes in the relevant connected segment of y; a contradiction. Q.E.D.

5 Probabilistic Assignments

We now move to focus on random (probabilistic) assignments, partially building onto the analy-

sis of deterministic assignments from the previous section. Formally, a probabilistic assignment

is a specification of marginal probabilities for each agent over slots. Our convention regarding

probabilistic assignments will be to disregard inactive slots, i.e., slots used with zero probability.
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Furthermore, if the number of active slots (i.e., slots assigned to some agents with a positive

probability) is greater than the number of agents, we shall introduce dummy agents to match

the total number of slots. In doing so, a probabilistic assignment will always be represented by

a bistochastic matrix.7

For a given problem, a lottery is a probability distribution over deterministic allocations. It

is clear that a lottery induces a probabilistic assignment. Conversely, by the classical Birkhoff-

von Neumann decomposition theorem (e.g., Budish et al., 2011), any probabilistic assignment

is consistent with some lottery, although, typically, it is not uniquely determined.

For any given probabilistic assignment, let pj
i be the probability that agent i obtains a gap

j. A vector pi = (p0
i , p

1
i , ..., p

m
i ) is a marginal distribution over gaps if pj

i ≥ 0 and
∑
pj

i = 1.

A marginal distribution pi = (p0
i , p

1
i , ...) is (first order) stochastically dominated by a marginal

distribution si = (s0
i , s

1
i , ..., s

n
i ) if

∑k
h=1 p

k
i ≤

∑k
h=1 s

k
i for each k ≤ max{m,n}, with the con-

vention that ph
i = 0 if m < h and sh

i = 0 if n < h.8 We say that stochastic dominance is strict

if the inequalities hold with at least one strict inequality.

A probabilistic assignment P is stochastically dominated by S if, for each agent, the marginal

distribution in S stochastically dominates that in P.

In this paper, we endorse the approach in the seminal contribution of Bogomolnaia and

Moulin (2001) and assume that each agent cares only about his marginal distribution over

outcomes/slots. Thus, agents are indifferent between all lotteries consistent with a given prob-

abilistic assignment, and, therefore, we shall focus on probabilistic assignments.9

We also add three basic assumptions over probabilistic assignments that our analysis en-

dorses. First, equal treatment of equals, which says that agents with the same target should get

the same probability distribution over slots. Second, slot invariance, as described in Section 2.

Third, symmetry, which says that if we “flip” the problem from left to right, the corresponding

solution flips too.

We also assume that the only relevant information of an agent is his probability distribution

over gaps. In other words, if two probability distributions over slots have the same induced

7Note that a deterministic assignment is, formally speaking, a one-to-one correspondence between the set of

agents and the set of objects. Thus, it could also be convenient to think of a deterministic assignment as a 0−1

matrix, with rows indexed by agents and columns indexed by objects, and containing exactly one 1 in each row

and each column.
8Equivalently, pi is first order stochastically dominated by si if it is possible to obtain pi from si by moving

probability mass from larger to smaller gaps.
9See Budish et al., (2012) for further discussion on this issue.
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probability distribution over gaps, then they are equally desirable for the agent. Hence an agent

is indifferent between being served k slots before or k slots after his target slot. Note that this

assumption is much weaker than assuming that only the expected gap matters for an agent.

5.1 Properties of probabilistic assignments

We now consider some notions of probabilistic assignments. Most of them are standard in the

literature.

First, we deal with efficiency. A lottery is ex-post efficient if any allocation that occurs with

positive probability is Pareto efficient. A probabilistic assignment is ordinally efficient if it is

not stochastically dominated by any other probabilistic assignment.

We then move to utilitarianism. A lottery is utilitarian if every allocation that occurs with

positive probability is utilitarian. There are two natural ways of defining that a probabilistic

assignment is utilitarian. On the one hand, a probabilistic assignment is universally utilitarian if

every lottery consistent with it is utilitarian. A probabilistic assignment is potentially utilitarian

if some lottery consistent with it is utilitarian.

We then consider a classical notion of fairness. A probabilistic assignment is envy-free if

the probability distribution over gaps for an agent i stochastically dominates the probability

distribution over gaps induced from obtaining instead the distribution over outcomes that any

other agent j gets. It is weakly envy-free if the probability distribution over gaps for an agent i

is not strictly stochastically dominated by the probability distribution over gaps induced from

obtaining instead the distribution over outcomes that any other agent j gets.

A solution is a mapping from problems to probabilistic assignments. We say that a solution

satisfies one of the above properties if each probabilistic assignment it gives rise to satisfies that

property.

Finally, we introduce a strategic notion. A solution is strategy-proof if the probability

distribution over gaps for an agent i stochastically dominates the probability distribution over

gaps induced from misrepresenting his target. It is weakly strategy-proof if the probability

distribution over gaps for an agent i is not strictly stochastically dominated by the probability

distribution over gaps induced from misrepresenting his target.
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5.2 Reasonable probabilistic assignments

We argue in this section that even in extremely simple settings, several reasonable probabilistic

allocations might exist. More precisely, consider the following example involving four agents

Example 3: [3,1].

C

B

A

D

· · · 0 1 2 3 4 5 · · ·
| | | | | | | | | |

The relevant slots (i.e., those that could be considered in an ex post efficient allocation)

are the slots 0 to 4. Slot 0 is, however, never needed: for any allocation where an agent is

assigned to slot 0, we can find another allocation involving only slots 1-4 and in which no agent

is worse off. In what follows, we therefore focus on (probabilistic) assignments for this problem

assigning agents to slots 1-4 by means of a lottery.10

We start with a first-priority-first-served probabilistic assignment, which gives priority to

assigning a slot to those who have it as target. That is, the solution below is the only ordinally

efficient solution which holds the property that if a slot is a first priority for someone, then it

would always go to someone who has it as first priority.11

FIRST 1 2 3 4

A 1
3

1
3

0 1
3

B 1
3

1
3

0 1
3

C 1
3

1
3

0 1
3

D 0 0 1 0

The following is a minmax-gap probabilistic assignment that minimizes the maximal possible

gap.

10Note, however, that in more complex problems there are generally more active slots (i.e., slots that are

occupied for at least some ex post efficient allocation) than agents.
11Note that, as we have more slots than agents, and therefore each agent must be assigned to some slot (but

not vice versa) a probabilistic assignment in our framework is a specification of marginal probabilities for each

agent over slots (that sum to 1) and marginal probabilities for each slot over agents (that sum to at most 1).
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MINMAX 1 2 3 4

A 1
3

1
3

1
3

0

B 1
3

1
3

1
3

0

C 1
3

1
3

1
3

0

D 0 0 0 1

A third assignment equalizing the expected gap (and minimizing the maximal expected gap)

among agents could also be considered.

EQUAL 1 2 3 4

A 1
3

1
3

1
4

1
12

B 1
3

1
3

1
4

1
12

C 1
3

1
3

1
4

1
12

D 0 0 1
4

3
4

Finally, we consider a probabilistic assignment obtained from a central mechanism in the

literature, the so-called EPS algorithm (e.g., Bogolmonaia and Moulin, 2001; Katta and Sethu-

raman, 2006). Such algorithm (adapted to our framework) works as follows.12

1. Give each agent a probability share of his most preferred slot, as large as possible, given

the constraint that each agent must receive the same probability share. (Thus, the slots that

are the most popular targets will be completely shared). Remove those slots that have been

completely shared.

2. Give each agent a probability share of his most preferred slots among those not removed,

as large as possible, given the constraint that each agent must receive the same total probability

share. Remove slots that have been completely shared.
...

The algorithm stops when all agents have obtained marginal probabilities over slots (that

sum to 1).13

It is not difficult to show that the EPS algorithm yields the following probabilistic assign-

ment for the example above:

12We refer to Katta and Sethuraman (2006) for a more formal treatment.
13In general, each step can be handled by solving an appropriately defined max flow problem, as described

by Katta and Sethuraman (2006).
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EPS 1 2 3 4

A 4
12

4
12

1
12

3
12

B 4
12

4
12

1
12

3
12

C 4
12

4
12

1
12

3
12

D 0 0 9
12

3
12

Remark. In each of the above four assignments, the average expected gap is 3
4
, which happens

to be the minimum possible value of it for the problem being considered.

5.3 Logical relations among axioms

The above remark raises the question of whether this property holds more generally for all

ordinally efficient solutions (in the context of our model). That is, are all ordinally efficient

solutions utilitarian? The following example provides a negative answer for such a question.

Example 4: [4,0,3].

G

F

E

C

B

A

D

1 2 3 4 5 6 7 8

| | | | | | | | | |

The EPS algorithm yields the following probabilistic assignment for this example:

agent / slot 1 2 3 4 5 6 7 8

A 3/84 1/4 1/4 1/4 9/42

B 3/84 1/4 1/4 1/4 9/42

C 3/84 1/4 1/4 1/4 9/42

D 3/84 1/4 1/4 1/4 9/42

E 1/21 1/3 1/3 6/21

F 1/21 1/3 1/3 6/21

G 1/21 1/3 1/3 6/21
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Hence, with probability 1/7, an allocation occurs that does not minimize aggregate gap.

More precisely, the canonical ordinally efficient solution - the EPS solution - is not utilitarian,

i.e., it does not minimize the average gap (over all agents) for each possible realization.

The above discussion is summarized in one of the statements of the upcoming proposi-

tion which refers to further connections in our setting between the notions of efficiency and

utilitarianism defined above.

Proposition 1. The following statements hold in our framework:

• Universal and potential utilitarianism are equivalent.

• Utilitarianism implies ordinal efficiency, but ordinal efficiency does not imply utilitarian-

ism.

• Ordinal efficiency implies ex post efficiency, but ex post efficiency does not imply ordinal

efficiency.

• Utilitarianism is incompatible with no-envy.

Proof. In order to prove the first statement, suppose, by contradiction, that there exists a

problem and a probabilistic assignment for it, which is potentially utilitarian, but not universally

utilitarian. Then, there is a lottery consistent with the probabilistic assignment such that, with

positive probability, an allocation occurs which is not utilitarian. Thus, the expected total gap

is then higher than for the utilitarian lottery. However, note that, for each agent, the expected

individual gap is the same for all lotteries (and the expected total gap is equal to the sum of

individual expected gaps). Thus, all lotteries consistent with a given probabilistic assignment

yield the same expected total gap. This represents a contradiction. This proves the first

statement. Thus, in what follows, we refer to either potential or universal utilitarianism simply

as utilitarianism.

The second part of the second statement has been shown above. As for the first part of

it, suppose, by contradiction, that the average expected gap is minimized in an allocation, but

that the allocation is not ordinally efficient. If so, some probability mass can be moved towards

strictly preferred alternatives for at least one agent. Thus, expected gap cannot be minimized,

a contradiction.

The first part of the third statement is straightforward. The second part of it is shown by

means of the following example
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Example 5: [3, 3]

A

B

C

D

E

F

1 2 3 4 5 6 7 8 9

| | | | | | | | | |

agent target assignment 1 assignment 2

A 4 3 1

B 4 4 2

C 4 5 3

D 5 6 4

E 5 7 5

F 5 8 6

Example 5 (assignment 1)

A
?

B

?

C

?
D

?

E

?

F

?

1 2 3 4 5 6 7 8 9

| | | | | | | | | |

Example 5 (assignment 2)

A
?

B

?

C

?
D

?

E

?

F

?

1 2 3 4 5 6 7 8 9

| | | | | | | | | |
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Note that both assignment 1 and assignment 2 are efficient. Moreover, any lottery (satisfying

equal treatment of equals) that gives positive probability to both assignments 1 and 2, fails to

be ordinally efficient, as agent C gets slot 5 with positive probability and agent D gets slot 4

with positive probability; hence it is possible to swap probabilities between these two agents for

slots 4 and 5 making both agents better of ex ante (while keeping the other agents unaffected).

This concludes the proof of the third statement of Proposition 1.

Finally, the fourth statement is proved by means of the following example:

Example 6: [3, 1, 3]

E

F

G

A

B

C

D

1 2 3 4 5 6 7 8

| | | | | | | | | |

Example 6 (cont.)

E
?

F

?

G

?
A

?

B

?

C

?
D
?

1 2 3 4 5 6 7 8

| | | | | | | | | |

In this problem, a utilitarian solution assigns agents A, B, and C to outcomes 1, 2 and 3,

respectively, agent D to 4, and agents E, F and G to 5, 6 and 7, respectively. Note that the

other agents do not face a probability distribution of outcomes that first-order (stochastically)

dominates agent D’s assignment. Thus, the solution fails to be envy-free. Q.E.D.

5.4 A utilitarian solution

Motivated by the observation that the EPS solution (the canonical ordinally efficient solution)

fails to be utilitarian, we introduce in this last section a solution which is not only ordinally

efficient but also utilitarian.
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A simple and intuitive way of assigning agents to slots probabilistically is by means of the

random priority (RP) solution: First, pick an agent randomly and assign him to his most

preferred slot. Then, pick another agent randomly (among the remaining agents) and assign

him to a preferred slot (among those still free), and so on until all agents have been assigned

to slots. Note that, in our model, the random priority (RP) solution fails to be even ex post

efficient (think for instance of the example [2,1]). However, we will provide a modification which

is not only ex post efficient but also utilitarian (and hence also ordinally efficient). Intuitively,

the modified random priority solution behaves as RP by ordering agents randomly and then

assigning them to slots sequentially, but with the important modification that it does so in a

way that will ensure that the allocation following each step in the algorithm will be utilitarian

among those agents already assigned.

More precisely, the modified RP works as follows: Order agents randomly. Assign the first

agent his target. Assign the second agent a most preferred free slot; if there are two such slots

pick one of them with equal probability, . . . . Suppose that k−1 agents have been assigned, and

consider now the next agent k in the order. If his target is free, assign him the target and go

to the next agent. If his target is not free, we consider two allocations constructed as follows:

(a) Assign k to the slot furthest to the right that is occupied by some agent i with target

to the left of k and who is assigned to an outcome to the right of his own target (if no

such outcome exists, assign k to the first free slot to the left of his target, and go to (b)).

Assign agent i to the slot furthest to the right that is occupied by some agent j with

target to the left of i and who is assigned to an outcome to the right of his own target (if

no such outcome exists, assign j to the first free slot to the left of his target, and go to

(b)), etc. until some agent has been assigned the first free slot to the left.

(b) We now consider the symmetric counterpart construction involving agents having target

to the right of k’s target that stops when an agent has been assigned the first free slot to

the right of k’s target.

Now, if the two allocations in (a) and (b) respectively give rise to the same aggregate gap

among assigned agents 1, 2, ..., k, choose one of them with equal probability. Otherwise, choose

the one with lowest aggregate gap among assigned agents 1, 2, ..., k.

Formally,
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Modified Random Priority algorithm: Let N denote the set of all agents in a given

problem.

Step 1: Pick an agent randomly with equal probability among N , and denote him agent A1.

Let x1
A1

= tA1 .
...

Step k: Suppose that the agents A1, ..., Ak−1, have already been chosen randomly in steps

1,..., k−1 and assigned to slots xk−1
A1

, ...xk−1
Ak−1

. Pick an agent randomly from the setN\{A1, ..., Ak−1}

with equal probability, and denote him Ak.

Let α be the unoccupied slot closest to tAk
for which α ≤ tAk

and let γ be the unoccupied

slot closest to tAk
for which tAk

≤ γ.

If α = γ let xk
Ak

= tAk
, and xk

i = xk−1
i for each i ∈ {A1, ..., Ak−1} and go to step k + 1.

Otherwise, let zAk
= max{z | z = α, or xk−1

i = z, ti < tAk
, ti < xk−1

i , for some i ∈

{A1, ..., Ak−1}}. Let l1 denote the agent in {A1, ..., Ak−1} for which xk−1
l1

= zAk
. Let zl1 =

max{z|z = α, or xk−1
i = z, ti < tl1 , ti < xk−1

i , for some i ∈ {A1, ..., Ak−1}\{l1}}. Let l2 denote

the agent for which xk−1
l2

= zl1 , define zl2 = max{z|z = α, or xk−1
i = z, ti < tl1 , ti < xk−1

i ,for

some i ∈ {A1, ..., Ak−1}\{l1, l2}} etc., until we have defined agents, l1, . . . , lr such that tAk
>

tl1 > tl2 > . . . , with zlr = α. Now, define

g(lh) =

 zlh−1
− zlh , if tlh ≤ zlh

(tlh − zlh)− (zlh−1
− tlh), if tlh > zlh ,

with the convention that zl0 = zAk
. Intuitively, g(zlh) measures the gain (possibly negative) that

lh gets from being reallocated from zlh−1
to zlh . Define G =

∑
h=1,...,r g(lh), with the convention

that G = 0 if zAk
= α.

As a natural mirror-image of the above definitions, we also define the following. Let qAk
=

min{z|z = γ,or xk−1
i = z, ti > tAk

, ti > xk−1
i , for some i ∈ {A1, ..., Ak−1}}. Let m1 denote the

agent in {A1, ..., Ak−1} for which xk−1
m1

= qAk
. Let qm1 = min{z|z = γ, or xk−1

i = z, ti > tm1 , ti >

xk−1
i , for some i ∈ {A1, ..., Ak−1}\{m1}}. Let m2 denote the agent for which xk−1

m2
= qm1 , define

qm2 = min{z|z = γ, or xk−1
i = z, ti > tm1 , ti > xk−1

i ,for some i ∈ {A1, ..., Ak−1}\{m1,m2}} etc.,

until we have defined agents, m1, ...,ms such that tAk
< tm1 < tm2 < .., with qms = γ. Now,

define

g(mh) =

 qmh
− qmh−1

, if zmh
≤ tmh

(qmh
− tmh

)− (qmh
− qmh−1

), if tmh
< zmh

,

with the convention that qm0 = qAk
. Intuitively, g(mh) measures the gain (possibly negative)

that mh gets from being reallocated from qlh−1
to qlh . Define H =

∑
h=1,...,s g(mh), with the

25



convention that H = 0 if zAk
= γ.

Now, we consider three cases:

(1) If |zAk
− tAk

| − G > |zAk
− tAk

| −H, let xk
Ak

= zAk
and xk

lh
= zlh , for each h = 1, ...r,

and xk
i = xk−1

i for i ∈ {A1, ..., Ak−1}\{l1, ..., lr}.

(2) If |zAk
− tAk

| − G < |zAk
− tAk

| −H, let xk
Ak

= qAk
and xk

lh
= qmh

, for each h = 1, ...s,

and xk
i = xk−1

i for i ∈ {A1, ..., Ak−1}\{m1, ...,ms}.

(3) If |zAk
− tAk

| −G = |zAk
− tAk

| −H choose either the allocation in (1) or (2) with equal

probability.

Go to step k + 1.

Stop the algorithm when all agents have been assigned to an outcome.

The next figure illustrates a situation where k = 14, i.e., 13 agents have been assigned to

slots by way of the algorithm. A new agent, H, with target at 11, has to be assigned to a slot.

There are two options, either assign him to target 11 and push two agents to the left, or assign

him to slot 12 and push an agent to the right. The arrows below the lines show how they

are going to be pushed according to the algorithm and the associated gain/loss from doing so.

Clearly, the outcome in this example will be that the agent is assigned to slot 11.

Illustration of the Modified RP algorithm

?? ??? ?? ? ?
H

?? ??

1 2 3 4 5

6

−2

6 7 8 9 10 11

6

+2

12 13 14 15

6

−1

| | | | | | | | | | | | | | | |

It is clear from the construction of the modified RP algorithm that it satisfies equal treatment

of equals, left-right symmetry and slot-invariance. As desired, it is also utilitarian:

Theorem 3: The Modified RP solution is utilitarian.
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Proof: We need to show that any given allocation x = (x1, . . . , xn) obtained from applying the

Modified RP algorithm is utilitarian.

Note first that allocation x1
A1

(= tA1) is utilitarian for the single-agent problem consisting of

one agent A1 with target tA1 .

Next, suppose that xk−1
A1

, ..., xk−1
Ak−1

obtained in Step k − 1 is utilitarian with respect to the

set of agents {A1, ...Ak−1} (with targets tA1 , ..., tAk−1
respectively). We aim to show that then

xk
A1
, ..., xk

Ak
obtained in Step k is utilitarian with respect to the set of agents {A1, ...Ak} (with

targets tA1 , ..., tAk
respectively).

For this, we first argue that xk
A1
, ..., xk

Ak
is constrained utilitarian. Indeed, suppose that

xk
A1
, ..., xk

Ak
fails to be constrained utilitarian. Then by application of Lemma 3 there are agents

i, j in {A1, ...Ak} such that ti < tj, xj < xi, ti < xi and xj < tj. However, by construction of

step k in the algorithm this cannot happen. Thus, xk
A1
, ..., xk

Ak
is constrained utilitarian.

Next, we observe that if a utilitarian allocation can be obtained from using the slots already

occupied in xk−1
A1

, ..., xk−1
Ak−1

and then either the slot α or the slot γ, the allocation xk−1
A1

, ..., xk
Ak

is utilitarian. For this note that if a utilitarian allocation can be obtain from using the slots

already occupied in xk−1
A1

, ..., xk−1
Ak−1

and the slot α, we have |zAk
− tAk

|−G > |zAk
− tAk

|−H and

as xk
A1
, ..., xk

Ak
is constrained utilitarian, it is also utilitarian. Likewise, if a utilitarian allocation

can be obtain from using the slots already occupied in xk−1
A1

, ..., xk−1
Ak−1

and the slot γ, we have

|zAk
− tAk

| − G < |zAk
− tAk

| − H and as xk
A1
, ..., xk

Ak
and is constrained utilitarian, it is also

utilitarian. Finally, if a utilitarian allocation can be obtain from using the slots already occupied

in xk−1
A1

, ..., xk−1
Ak−1

and either the slot α or γ, we have |zAk
− tAk

| −G = |zAk
− tAk

| −H and as

xk
A1
, ..., xk

Ak
and is constrained utilitarian, it is also utilitarian.

It remains to argue that a utilitarian allocation can be obtained from using the slots already

occupied in xk−1
A1

, ..., xk−1
Ak−1

and then either the slot α or the slot γ.

For this, let yA1 , ..., yAk
be a utilitarian allocation and consider two cases:

Case 1. yAk
is not one of the slots already occupied in xk−1

A1
, ..., xk−1

Ak−1
. Obviously, we then

have that (xk−1
A1

, ..., xk−1
Ak−1

, yA) is a utilitarian, i.e., a utilitarian allocation can be obtained from

using the slots already occupied in xk−1
A1

, ..., xk−1
Ak−1

and then some other unoccupied slot. But

then clearly this slot is either α or γ and we are done.

Case 2. yAk
is one of the slots already occupied in xk−1

A1
, ..., xk−1

Ak−1
. Then, we can obtain

yA1 , ..., yAk
from xk−1

A1
, ..., xk−1

Ak−1
by a sequence of interchanges as follows: The first interchange

assigns agent Ak to yAk
, then agent i for which xk−1

i = yAk
gets yi instead etc, until some agents

j gets a slot yj that is unoccupied at xk−1
A1

, ..., xk−1
Ak−1

. Next, if the final allocation obtained is not
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yA1 , ..., yAk
, pick an agent h which does not have yh yet, move the agent k who currently has

that slot to the slot yk, etc., and continue with such sequences of interchanges until the final

allocation is yA1 , ..., yAk
obtained. Note that all interchanges except for the first sequence could

have been carried out given the allocation xk−1
A1

, ..., xk−1
Ak−1

with the same gain in total gap. This

contradicts that xk−1
A1

, ..., xk−1
Ak−1

is utilitarian, and we are done. Q.E.D.

Example 4: (continued). The modified RP solution gives the following probabilistic

assignment:

agent / slot 1 2 3 4 5 6 7 8

A 1/4 1/4 1/4 1/4

B 1/4 1/4 1/4 1/4

C 1/4 1/4 1/4 1/4

D 1/4 1/4 1/4 1/4

E 1/3 1/3 1/3

F 1/3 1/3 1/3

G 1/3 1/3 1/3

Hence, it never happens that an allocation occurs that does not minimize aggregate gap.

6 Appendix. Proof of the lemmata

Proof of Lemma 1: Let x be an assignment for a problem involving n ≥ 3. Suppose that

these agents can obtain a Pareto improvement by reallocating outcomes internally and leading

to an assignment y. We claim that it is possible to obtain a Pareto improvement by reallocating

slots among at most n − 1 agents. The statement of the lemma then follows by an induction

argument.

To prove that claim, we consider four (mutually exclusive and comprehensive) cases. For

ease of exposition, let A be an agent such that tA ≤ ti for each other agent i in the group.

1. Suppose that tA ≤ xA < xi for each i 6= A. Then there exists a Pareto improvement

among the n− 1 agents (excluding agent A).

Suppose first that no other agent shares target with A.14 Then, A’s gap increases if reas-

signed to any other outcome xi, i 6= A. Thus, any Pareto improvement involving the n agents

14It is straightforward to adapt the argument to cases where more than one agent share the leftmost target.
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assigns A to his original outcome xA, and therefore it is possible to obtain a Pareto improvement

among the n− 1 other agents.

2. Suppose that xA < tA < xi for each i 6= A. Then there exists a Pareto improvement

among the n− 1 agents (excluding agent A).

Suppose first that no other agent shares target with A. Let i be the agent for which yi = xA.

We can assume that i 6= A (as if A = i it is clear that a Pareto improvement can be found from

x involving the remaining agents only).

Now, let z denote the allocation obtained from taking y and then switching the outcomes of

A and i, i.e., zi = yA, zA = yi = xA and zj = yj otherwise. As tA < ti, tA < yA and yA < xi then

i’s gap decreases going from y to z and also weakly decreases going from x to y and thereby

also going from x to z. As we also have that zA = xA, z is a Pareto improvement of x. Thus,

as z involves only a reallocation of outcomes for agents other than A (relative to x), we have

shown the statement.

Assume now that more than one agent share the (leftmost) target with A. Let i be such that

yi = xA. Clearly, we can assume that such an agent exists as, otherwise, a Pareto improvement

can be made by reallocating outcomes among the agents not having target leftmost among all

agents (and we are done). Now, the same previous argument applies.

3. Suppose that tA < xA and that there exists an agent i for which xi < xA. Then there

exists an agent j 6= A such that A and j can obtain a Pareto improving pairwise swap in x.

Suppose first that no other agent shares target with A. Let k = |tA−xA|. As tA−k ≤ yA <

xA, there exists j 6= A such that tA − k ≤ xj < xA and xA ≤ yj.
15

We consider two sub-cases:

3a. Suppose that xA ≤ tj.

Then we have |tA − xj| ≤ |tA − xA| and |tj − xj| < |tj − xA|. Thus, A and j can obtain a

Pareto improving pairwise swap in x.

3b. Suppose that tj < xA.

First notice that |tA − xj| ≤ |tA − xA| and as tA < ti < xA we have |ti − xA| ≤ |ti − yj|.

Consequently, |tj − xA| ≤ |tj − xj| (as y is a Pareto improvement of x). As tA 6= tj either A or

j is strictly better off at the other’s outcome, and thus A and j can obtain a Pareto improving

pairwise swap.

15Note that yj < tA − k is not possible as we have tA < tj implying that j would be worse off at y.
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It remains to show that the above arguments apply also to cases where more than one agent

share a target with A. It is straightforward for the case of 3a. In case of 3b, if tA < tj, by the

same argument as above, we get that A and j can obtain a Pareto improving pairwise swap.

Thus, assume that tj = tA and that there does not exist an agent j′ for which tA < tj′ and

tA − k ≤ xj′ ≤ xA, xA ≤ yj′ . As tA − k ≤ xj ≤ xA, xA ≤ yj we must have that yj = xA and

xj = tA − k. In particular, any agent j
′′

for which tA − k ≤ xj′′ ≤ xA and yj′′ ≥ xA must have

xj′′ = tA− k and yj′′ = xA. Thus, y is obtained from x by an interchange of outcomes between

two agents with the same target. Consequently, it is possible to obtain a Pareto improvement

with fewer than n agents, as desired.

4. Suppose that xA < tA and that there exists an agent i for which xi ≤ tA. Then there

exists a Pareto improvement of x involving only n− 1 agents (excluding agent A).

Suppose first that no other agent shares target with A. Take allocation y and let i be the

agent for which yi = xA. Now, consider the allocation z for which zA = xA, zi = yA and zj = yj

otherwise. As ti > tA and xA < tA we get that |ti − zi| < |ti − yi| (and |ti − zi| < |ti − xi|).

Thus, z is a Pareto improvement of x that involves only a reallocation of slots between n − 1

agents (excluding agent A).

Suppose now that agent i (as defined in the previous paragraph) shares target with agent A.

Then both A and i are equally well off in z as in y.16 Thus, again, z is a Pareto improvement

of x that involves at most n− 1 agents (excluding agent A). Q.E.D.

Proof of Lemma 2: Suppose y is a constrained utilitarian allocation using the same slots as in

x. Then, by a sequence of pairwise swaps, where each is aggregate gap-neutral, an allocation y′

can be obtained where slots are ordered like the targets (indeed if two outcomes are not ordered

like the targets a pairwise swap is either gap-neutral or gap-reducing and as y is constrained

utilitarian it cannot be gap-reducing). Note that y′ and x are then identical allocations up to

pairwise swaps between agents with shared targets, and hence the first two statements follow.

Q.E.D.

Proof of Lemma 3: Clearly, if y is constrained utilitarian there does not exist an aggregate

gap-reducing pairwise swap. Thus, we prove the converse implication.

Suppose that there does not exist an aggregate gap-reducing pairwise swap and, by contra-

diction, that the allocation is not constrained utilitarian.

16If i has his target to the right of A, the same argument as in the previous paragraph applies.
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By the observation prior to Lemma 2, there exists a sequence of pairwise swaps, each

ordering outcomes according to targets, leading to gap reduction. This sequence only contains

aggregate gap-neutral or aggregate gap-reducing pairwise swaps. By assumption this sequence

starts with one or more aggregate gap-neutral pairwise swaps. It remains to be shown that

whenever such a sequence exists, an aggregate gap-reducing pairwise swap exists from the initial

allocation.

First, we claim that no aggregate gap-neutral pairwise swap between two agents A and

B can lead to a subsequent aggregate gap-reducing pairwise swap between any of these two

agents, and a third agent C, unless such an aggregate gap-reducing pairwise swap was possible

from the initial allocation. Indeed, consider three agents A,B, and C with targets tA, tB and

tC , where a swap between the outcomes of agents A and B is aggregate gap-neutral. As the

case tA = tB is trivial, we will assume, without loss of generality, that tA < tB.

Consider an allocation where A and B have outcome either xk or xh, where xk < xh, and C

has outcome xC . Note that, as we have assumed that a swap between the outcomes of agents

A and B is aggregate gap-neutral, we have either tB ≤ xh, xk or xh, xk ≤ tA. As the two cases

can be treated in a symmetric way, we assume for the rest of the proof that tB ≤ xh, xk. We

consider four cases:

Case 1. tC ≤ tB. In this case, xC ≤ tB, as otherwise any sequence of pairwise swaps is

aggregate gap-neutral. If tC ≤ tA, then either outcomes are ordered like the targets (in which

case no sequence of pairwise swaps reduce the aggregate gap), or the swap between A and B

orders outcomes like targets (in which case it is not possible to reduce the aggregate gap from

a subsequent swap involving C). If tA < tC ≤ tB, then tC ≤ xC ≤ tB (otherwise there exists

an aggregate gap-reducing pairwise swap between A and C from the beginning). Thus, a swap

between A and C is aggregate gap-neutral regardless of whether A has swap with B or not and

a swap between C and B can only increase the aggregate gap regardless of a swap between A

and B.

Case 2. tB < tC ≤ xk. If xC ≥ tC then all swaps are aggregate gap-neutral. If xC < tC then

C can make a gap-reducing swap with either A or B from the beginning.

Case 3. xk < tC ≤ xh. If xC ≥ xh then either outcomes are ordered like the targets or the

swap between A and B orders outcomes like targets. If xC < xk then there exists an aggregate

gap reducing pairwise swap between A and C from the beginning. If xk ≤ xC < xh then

i) if xk ≤ xC < tC there exists an aggregate gap-reducing swap initially by swapping with

the agent assigned xh, and
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ii) if tC ≥ xC < th the allocation is efficient.

Case 4. tC > xh.Then either there exists an aggregate gap-reducing swap from the beginning

or the swap is weakly increasing the gap.

Now, as the sequence of an aggregate gap-neutral pairwise swap followed by an aggregate

gap-reducing pairwise swap cannot exist, unless there exists an aggregate gap-reducing pairwise

swap from the beginning, we get, by an induction argument, that there cannot exist any finite

sequence of aggregate gap-neutral switches followed by an aggregate gap-reducing swap unless

there exists an aggregate gap-reducing pairwise swap from the beginning.

Q.E.D.
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