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Abstract

Recently there has been some discussion in the literature concerning
the nature of scale properties in the Data Envelopment Model (DEA). It
has been argued that DEA may not be able to provide reliable estimates
of the optimal scale size. We argue in this paper that DEA is well suited
to estimate optimal scale size, if DEA is augmented with two additional
maintained hypotheses which imply that the DEA-frontier is consistent
with smooth curves along rays in input and in output space that obey the
Regular Ultra Passum (RUP) law (Frisch 1965). A necessary condition
for a smooth curve passing through all vertices to obeys the RUP-law is
presented. If this condition is satified then upper and lower bounds for the
marginal product at each vertex are presented. It is shown that any set
of feasible marginal products will correspond to a smooth curve passing
through all points with a monotonic decreasing scale elasticity. The proof
is constructive in the sense that an estimator of the curve is provided
with the desired properties. A typical DEA based return to scale analysis
simply reports whether or not a DMU is at the optimal scale based on
point estimates of scale efficiency. A contribution of this paper is that we
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provide a method which allows us to determine in what interval optimal
scale is located.

Keywords: DEA, Efficiency

1 Introduction
The issue of optimal scale is an important one in industrial economics since the
closer all firms are to the optimal scale the more accurately the sector provides
minimized total cost of the aggregated production. Obstacles of various kinds
that prevent adjustment of the size distribution will imply welfare loss and
regulators may be called upon to remedy this problem. Hence, an important
part of an analysis of scale and scope in a given sector will focus on whether
or not it is possible to explain the measured deviation of size from the optimal
scale of the various firms in the sector. It is therefore of course very important
that the estimation of the optimal scale size as a function of input and output
mix is both precise and robust and founded on a sound economic estimation
procedure.
Several choices of methods for estimating the optimal scale size are available.

In this paper focus in on the non-parametric estimation procedure used in Data
Envelopment Analysis (DEA) where a convex hull estimator enveloping all data
points in input output space is used. This estimation procedure is flexible
in the sense that no functional form is maintained as part of the estimation.
This has in many cases been underlined as an important advantage. However,
it is important to keep in mind that maintaining no functional form leaves
the estimation with very little structure. The curse of dimensionality in non-
parametric estimation implies that a large sample in a relatively small input
output space is needed to e.g. recover scale and scope characteristics from a
known parametric technology.
Recently the non-parametric estimation method has been criticized for not

providing reliable estimates of the optimal scale size [1]. The argument made
in [1] is that a DEA based convex hull estimator of the technology may pro-
vide results that seems to indicate that all scales are optimal if we trace the
optimal scale for varying output mix. In this paper we will argue that this
apparent weakness is a characteristic that is to be expected with small sample
size unless additional structure in the form of additional maintained hypotheses
are "added" to the non-parametric estimation procedure. In this paper we will
argue that unless a large sample is available the analyst should look for reason-
able additional structure and we argue that DEA augmented with two additional
maintained hypotheses related to microeconomic theory is well suited to analyze
and estimate optimal scale size.
Insert Figure 1 and 2 here.
Figure 1: Facet structure: A sample of 7 data points
Figure 2: DMU 7 is at the DEA optimal scale

One particular problem with a small sample in a DEA based scale analysis
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is the fact that conclusions on optimal scale are based on point estimates of
the location of points with scale efficiency of one. Following [2],[3][4] we can
use the dual information to determine the returns to scale characteristics of a
given efficient DMU. However neither methods try to estimate upper and lower
bounds for the optimal scale size1. A contribution of this paper is that we
provide a method which allows us to determine in what interval optimal scale is
located. This allows us to explicitly quantify the uncertainty of the position of
optimal scale given the information provided by data of the local shape of the
production curve.
Consider the data exhibited in Figure 1 generated as part of a simulation

presented in details below in Section 4. Data is generated from a generalized
production function [5], a known S-shaped technology with two inputs and one
output. Figure 2 illustrates the section of the convex hull in Figure 1 correspond-
ing to the input mix from DMU 7. Hence the piecewise linear curve in Figure
2 is the intersection of the hull in Figure 1 with a hyperplane spanned by the
third unit vector (the output) and the input vector of DMU 7 but rescaled such
that (μ, β (μ)) in Figure 2 corresponds to (x1, x2, y) = (μX7, βY7) in Figure 1.
The smooth curve in Figure 2 corresponds to the "true" generalized production
function for this particular input mix. In the figure approximately 1.4 times the
size of DMU 7 is the optimal scale size. A typical DEA based return to scale
analysis, however simply reports that DMU 7 is at the optimal scale, although
indications exist that optimal scale may be located well above this level, since
no information on scale is available above DMU 7. At least some information is
available for scale size lower that DMU 72.
In this paper we will provide a method which allows us to determine in

what interval optimal scale is located, based on interval estimates of the scale
elasticities of efficient DMUs. We assume that vertices in a specific section, i.e.
fixed mix of inputs and outputs almost all are located3 on some "true" smooth
scale curve β (μ). Furthermore, we will maintain an assumption of a specific
monotone movement of the scale elasticity ∂β(μ)

∂μ
μ

β(μ) along this curve β (μ).
In the following we will assume variable returns to scale. In addition we will

follow ([6] Chapter 8) arguing for the case of one output that along any expansion
path in factor space optimal scale size is unique (or possibly a connected intervals
of sizes4). Specifically we require a methodology that can estimate the technical
optimal scale curve of the production possibility set with the required properties
stated in Frich’s RUP-law:

Definition 1 The RUP law. Let a single output y be produced from a vector

1Upper and lower bounds on the scale elasticities are estimated by considering character-
istics of all facets on which a given efficient DMU is located. However, this information is not
usefull for estimating bounds on the location of the optimal scale size.

2All data are generated on the true frontier. The problem described here will get even
worse if significant inefficiency is present, i.e.even more data is needed to get information both
above and below optimal scale size.

3We exclude vertices violating (6) below.
4A unique optimal scale size is part of the requirement of Frisch Regular Ultra Passum

law.
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of m inputs x according to a production function F (x, y) = 0. This production
function obeys the RUP law if ∂ε(x,y)

∂xi
< 0, i = 1, · · · ,m where the function

ε (x, y) is the scale elasticity, and for some point (x1, y1) we have ε (x1, y1) > 1,
and for some point (x2, y2), where x2 > x1, y2 > y1, we have ε (x2, y2) < 1.

The non-parametric DEA approach involves by construction a piecewise lin-
ear envelopment of observed data based upon a number of maintained hypothe-
ses with a firm foundation in neoclassical production theory. A typical estimator
used in DEA is the BCC-estimator [2] which does not satisfy the assumption of
continuous first- and second-order derivatives, since it is obtained as the inter-
section of a number of halfspaces and the non-negative orthant. The production
possibility set is a polyhedral set with well defined first order derivatives in the
interior of its defining facets, but not in the segments of the frontier defined
by the intersection of facets. One of the advantages of DEA is that misspec-
ifications in the choice of parametric functional form cannot occur, since no
parametric functional form is involved in the first place. However, the use of
the BCC-estimator as a non-parametric "functional form" may involve misspec-
ifications, as it will be apparent below. If data origins from a data generating
process (DGP) obeying the RUP-law then different problems relate to the use
of the BCC-estimator.
One particular problem is that the envelopment of data points using support-

ing hyperplanes can wrongly determine data points as being efficient because
they are located on this enveloped frontier. Maintaining the RUP-law will add
structure to the estimation process and constrain the flexibility of the BCC
model. Hence adding this structure may imply that BCC-efficient points are
reclassified as being inefficient. As shown below, maintaining the RUP law im-
plies that focus is shifted towards a log-linear envelopment of segments of the
frontier along fixed rays in input and in output space which is related to the
work [7].
[1] have demonstrated how well established core concepts from neoclassical

theory such as scale elasticity can be fruitfully translated and applied within the
non parametric DEA approach. However, [8] argue that while the theoretical
concepts as such carry over to the piecewise linear frontier, the RUP-law simply
cannot be obeyed, not even with data generated in a process consistent with
the law. This is a simple consequence of marginal productivity being constant
while average productivity is decreasing when passing along a DRS facet5. The
main point to be made in this paper is that the DEA frontier when considered
a piecewise linear inner approximation for a true smooth frontier with basic
characteristics identical to those of the DEA frontier may well obey the RUP
law.
The paper unfolds as follows. The generalized RUP law is presented in

Section 2 together with a discussion of the requirements for a smooth estimator
of the true frontier curve along fixed rays in input and in output space. We
require that a smooth estimator is i) passing through almost the full set of

5Observe that the law is satisfied for movements along increasing returns to scale facets,
since average productivity in this case increases with marginal productivity unaffected.
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BCC-efficient observations with ii) marginal rates of transformation and scale
properties consistent with those defined by the DEA-frontier, and iii) obeying
the RUP law. Upper and lower bounds for the marginal product at each vertex
are presented. A necessary condition for a curve passing through all vertices to
obey the RUP-law is presented in Section 3. This condition simply states that
the upper bounds on the marginal product are greater than the lower bounds.
Any set of feasible marginal products within these bounds will correspond to
a smooth curve passing through all points with a monotonic decreasing scale
elasticity. A small illustrative example is provided. Section 4 presents a proof of
this result by constructing a smooth estimator with the desired properties. The
flexibility of the estimator reflects the possible variation of the marginal products
at each vertex, i.e. the sizes of the intervals between the upper and lower bounds.
Section 5 utilizes the proposed approach to estimate reasonable upper and lower
bounds on the optimal scale for synthetic data generated entirely in the IRS
input section (see Figure 1 and 2). Finally section 6 concludes and outlines
various topics for future research.

2 Requirements for a smooth estimator of the
true frontier curve.

The starting point for the exposition is a standard neoclassical transformation
function F (x, y) = 0 for multiple outputs y = (y1, ..., ys) ∈ Rs+ and multiple
inputs x = (x1, ..., xm) ∈ Rm+ with strictly positive partial derivatives in outputs
and strictly negative partial derivatives in inputs F (x, y) = 0, ∂F (x,y)∂yr

> 0, r =

1, ..., s, ∂F (x,y)∂xi
< 0, i = 1, ...,m. When inputs are expanded proportionally with

the factor μ the resulting proportional expansion of outputs is the maximum
β(μ, x, y) with β(1, x, y) = 1 allowed by the transformation function

F (μx, β(μ, x, y)y) = 0,
∂β(μ, x, y)

∂μ
= −

∂F ()
∂x1

x1 + · · ·+ ∂F ()
∂xm

xm
∂F ()
∂y1

y1 + · · ·+ ∂F ()
∂ys

ys
(1)

The scale elasticity, ε, as a function of inputs and outputs is defined as the
marginal change in the output expansion factor by a marginal change in the
input expansion factor over the average ratio ε (x, y) = ∂β(μ,x,y)

∂μ
μ
β . Equivalently,

the scale elasticity can be described in terms of the transformation function
by taking the derivative of F (μx, β(μ, x, y)y) with respect to the input scaling
factor μ followed by an evaluation of the derivatives at β = μ = 1 and solving
the resulting equation for ε:6

ε (x, y) = −
Pm

i=1
∂F (x,y)
∂xi

xiPs
r=1

∂F (x,y)
∂yr

yr
(2)

6See [1] and [8] for details.

5



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

This formula translates directly into the BCC-model where the transformation
function FBCC() is defined as

FBCC (x, y) = min
k∈K

{vtkx− utky + uko}, and TBCC =
©
(x, y) : FBCC (x, y) ≥ 0

ª
(3)

where [vk, uk, u0k], k ∈ K, are normal vectors and intercept terms for all in-
terior and exterior facets of TBCC . From (1) and (3) follows that εk (x, y) =
vtkx/u

t
ky = 1− uk0/u

t
ky, see [2].

Recently, [1] have generalized the RUP law to multiple outputs, maintaining
the monotonicity in the impacts of outputs and inputs on the scale elasticity in
the following form:

Definition 2 The generalized RUP law. A production function F (x, y) = 0

obeys the RUP law if ∂ε(x,y)
∂xi

< 0, i = 1, · · · , s, and ∂ε(x,y)
∂yk

< 0, k = 1, · · · ,m,
where the scale elasticity function ε (x, y) is defined in (2), and for some point
(x1, y1) we have ε (x1, y1) > 1, and for some point (x2, y2), where x2 > x1, y2 >
y1, we have ε (x2, y2) < 1

Consider any 2-dimensional segment in (μ, β (μ))-space of an empirical BCC
production possibility set derived from (1) and (3) corresponding to the ob-
served mix of inputs and outputs for any efficient DMU (or any inefficient DMU
projected to the efficient frontier). The 2-dimensional segment of the BCC-
frontier defines a frontier with one "input" μ and one "output" β (μ), with
β (1) = 1, and is easily traced by the facet structure of the BCC-frontier. The
convex hull estimator is usually considered a conservative inner approximation
reflecting the properties of a true smooth frontier, which may or may not satisfy
the maintained hypotheses from neoclassical production theory, e.g. the RUP
law. Hence, we focus on a smooth estimator of the true curve and request that
this curve passes through almost the full set of vertices of the relevant section
of the BCC-frontier7 . An additional natural requirement is that the curve is
positioned within the set of triangles defined by a BCC-facet and the extension
of its two neighbor facets. However, we suggest additional structure in the form
of the RUP-law as an additional maintained hypothesis.
To be more precise8 , let z−κ1 , . . . , z0, z1, . . . , zN , zN+1, . . . , zκ2 , zi = (μi, βi) ,∀i

be the vertices along the piecewise linear section determined from TBCC for fixed
input output mix (Xo, Yo). z−κ1 , . . . , z0 and zN+1, . . . , zκ2 are vertices deter-
mined from exterior facets while z1, . . . , zN are determined from interior facets9 .
To simplify notation we will use bμ ≡ logμ. Let us define E = {1, . . . ,N} ,E0 =
{1, . . . , N − 1}. Let the unknown marginal product of the true curve at each
vertex zi, i ∈ E be denoted wi, i ∈ E. Since we need structure on the scale

7We exclude vertices violating (6) below, see footnote 2.
8To simplify the presentation we assume that we do not have any subsequence of ver-

tices from exterior facets within the sequence z1, · · · , zN . See [9] for discussions of various
degenerated facet structures.

9An interior facet has a normal vector with strict positive components. In terms of Figure
2 we have A,B,C,D determined from interior facets while E is from an exterior facet.
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elasticity we focus on the constant scale elasticity (CSE) functions �i(μ), i ∈ E0
that passes through the two endpoints (μi, βi), (μi+1, βi+1) of the i0th facet,

�i(μ) ≡ eβi−μiδiμδi where δi ≡
βi+1−βi
μi+1−μi

10. Consider the marginal product

w2, at the second left most vertex z2. If w2 is below
d�2(μ2)
dμ or above d�1(μ2)

dμ

then (1, w2) can not span the tangent to a graph at z2 of a function with a
monotone decreasing scale elasticity and passing through both z2 and z3. The
same type of arguments can now be used to generate lower and upper bounds for
wi, i = 3, · · · , N − 1. A set of feasible solutions of marginal products wi, i ∈ E
must satisfy11

d�i(μi)

dμ
< wi <

d�i−1(μi)

dμ
or

d ln �i(μi)

d lnμ
< wi

μi
βi
≡ εi <

d ln �i−1(μi)

d lnμ
, i ∈ E0

(4)
or

δi
βi
μi

< wi < δi−1
βi
μi
or δi < wi

μi
βi
≡ εi < δi−1, i ∈ E0 (5)

where εi is the scale elasticity at vertex zi.
Notice that these CSE-functions, �i(μi) are linear function in log-log space

and, assuming the RUP-condition (6) (see next section), they pass through all
neighboring facet pairs of the N vertices of the two dimensional piecewise lin-
ear graph. Hence, the graphs of the CSE-functions are supporting hyperplanes
for facets in the log-log space representation. The supporting hyperplanes will
generate a collection of triangles, where neighboring pairs of triangles have the
neighboring vertex in common (see Figure 4 below). The fact that the deriv-
atives determine lower and upper bounds of the marginal products of the true
function implies that we know that this true function has a graph that runs
entirely within these triangles.

3 Testing the RUP-law:
In the previous sections we have assumed that the true curve passes through all
vertices in (μ, β)−space. However, some of the vertices in (μ, β)−space may
not support a true curve satisfying the RUP-law. It is shown in Appendix that
the following condition is a necessary condition for a curve passing through all
vertices to obey the RUP-law12:

10 d ln �i(μ)
d lnμ

=
d βi+

βi+1−βi
μi+1−μi

(μ−μi)

dμ
=

βi+1−βi
μi+1−μi

≡ δi, i ∈ E0
11Notice the sharp inequalities. To make sure that the scale elasticities are monotonic

decreasing we have to insist staying at least a non-Archimedian above(below) the lower (upper)
bounds.
12 If two adjacent facets violate the RUP-condition one possible remedy is to diminish the

number of points that are regarded (RUP) efficient by assuming that the point positioned on
both the two adjacent facets is inefficient.
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Condition 3 A necessary condition for a given two dimensional input output
projection of a production function to satisfy the regular ultra passum law is that
for any pair of adjacent facets

¡
μi−1, βi−1

¢
↔ (μi, βi) , (μi, βi) ↔

¡
μi+2, βi+2

¢
we must have bβi − bβi−1bμi − bμi−1 >

bβi+1 − bβibμi+1 − bμi (6)

We can now state necessary condition for a ordered set of vertices to obey
the RUP law:

Theorem 4 Let z1, . . . , zN , zi = (μi, βi) , i ∈ E be the vertices from interior
facets along the piecewise linear section determined from TBCC for fixed input
output mix (Xo, Yo) , i.e. {(μ, β) : F (μXo, βYo) = 0}. Assume that the points
satisfy the RUP-condition (6). Hence all points are on the upper boundary in
log-log space of a convex hull of zi, i ∈ E. Then there exist a smooth curve pass-
ing through all points with a monotonic decreasing scale elasticity.

Proof. The proof is a constructive proof and is presented in the next section.

Notice that the RUP-condition (6) is stated as a strict inequality. In other
words, an envelopment in log-log space of the vertices will i) have all points
on the upper boundary of the convex hull, and ii) no points will be located
in the interior of facets in this log-log space. Hence, we will by extending the
facets of these vertices in the envelopment in log-log space get pairs of full
triangles for each pair of adjacent facets with the common corner point as the
only common point of the triangles. Notice, if wi, i ∈ E are known (or feasible
values are imposed) we get additional information on where the true curve can
be positioned. A known value of wi at the i0th vertex (μi, yi) implies that
the true curve for increasing μ has to run below the CSE curve with elasticity
εi ≡ wi

βi
μi
given by13 CSEi(μ) ≡ eβi−μiεiμεi = βi

μ
εi
i

μεi , i ∈ E. Since wi satisfies

(5) we know that CSEi(μ) ≥ �i(μ) for μ ∈
£
μi, μi+1

¤
, i ∈ E0. Hence, a known

value of wi at the i0th vertex (μi, βi) implies that the true curve is at least as
restricted as in (5). Notice that the i0th function runs through the i0th vertex
and unless all wi, i ∈ E are at their upper bound14, these vertex-wise CSE-
functions will in log-log space determine triangles being proper subsets of the
first set of triangles determined from (5).

4 Illustrative example15:
In this section we will illustrate the various concepts proposed above using num-
bers from 6 verticies, all being BCC-efficient. One of these vertices will violate

13 d lnCSEi(μ)
d lnμ

=
d ln

βi

μ
εi
i

μεi

d lnμ
=

d(βi+εi(μ−μi)
dμ

= εi, i ∈ E
14Actually, we do not allow this in (5) .
15To simplify the presentation coordinates of the vertices in the example are mostly integers.

Hence the vertices are not vectors with coordinates varying around (μi, βi) = (1, 1).
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the RUP-condition (6). For all other vertices we will choose marginal products
or equivalently a scale elasticity within the appropriate bound in (5). These
bounds correspond to four CSE-functions illustrated in Figure 4. Redrawing
this figure in log-log space will provide the set of triangles within which we
know that any true production curve must be located.
Five vertices (μi, βi) and marginal products wi are presented in row 2-3

in Table 1. The elasticity εi for each vertex and the bounding CSE-functions
CSEi(μ) are shown in the two last rows. An additional vertex violating the
RUP-condition (6) is z6 = (11, 12.1). z6 is on the boundary of the convex hull
of zi, i = 1, · · · , 6, but the envelopment of these points in log-log space will not
have z6 on the boundary16. Hence, no RUP-graph exists that passes through
zi, i = 3, 6, 4.

i 1 2 3 4 5
zi=(μi, βi) 5.5, 1 6, 4 8, 10 14, 14 22, 15
wi 2.90 ≤ 3 ≤ ∞ 2.12 ≤ 6 ≤ 10.62 0.75 ≤ 1 ≤ 3.98 0.15 ≤ 0.5 ≤ 0.60 0 ≤ 0.1 ≤ 0.10
εi= wi

μi
βi

16.5 9 0.8 0.5 0.147

CSEi(μ)
1

5.516.5μ
16.5 4

69μ
9 10

80.8μ
0.8 14

140.5μ
0.5 15

220.147μ
0.147

Table 1: Vertex-data for the motivating example
Table 2 presents the corresponding data for the four facets defined from the
data in Table 1. Notice, the facet-wise (the vertex-wise) elasticities are

denoted δj , j = 1, . . . , 4 (εi, i = 1, ..., 5).

Facet : 1 2 3 4
Slopej

4−1
6−5.5= 6

10−4
8−6 = 3

14−10
14−8 =

2
3

15−14
22−14=

1
8

δj

³
ln 4−ln 1
ln 6−ln 5.5

´
= 15.932

³
ln 10−ln 4
ln 8−ln 6

´
= 3.1851

³
ln 14−ln 10
ln 14−ln 8

´
= 0.601

³
ln 15−ln 14
ln 22−ln 14

´
= 0.152 64

Table 2: Facet-data for the motivating example

Notice, that εi are chosen within the bounds defined from δi, i = 1, . . . , 4,
i.e. δi−1 < εi < δi, i = 2, 3, 4. The frontier in (μ, β)-space is shown in Figure
1. Notice that in Figure 3 w1 = 3 which is a marginal product that anticipate
an S-shape of the true function with a convex segment covering μ ∈ [0, μ2 − φ]
for some φ ≤ μ2 − μ1. The �i()-functions for the four facets are illustrated in
Figure 4. The tangents of these four curves at the vertices constitutes the lower
and upper bounds on wi determined from (5).
Insert Figure 3 and 4 here.
Figure 3: 5 facets. z6 cannot be a point on the RUP-frontier.
Figure 4: �i()-functions at the four facets

16 �3(μ6) = �3(11) =

�
e
ln 10−(ln 8) ln 14−ln 10

ln 14−ln 8

�
11

ln 14−ln 10
ln 14−ln 8

= 12. 11 > 12 = β6.
ln 12.1−ln 12
ln 11−ln 8 = 0.02 61 ≯ ln 14−ln 12.1

ln 14−ln 11 = 0.604 79. Hence, 6 is violated.

9



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

5 Generation of an estimator of the true RUP-
curve:

We now propose a procedure to obtain an estimator of a smooth frontier curve
passing through all vertices not violating the RUP-condition (6) and with a
monotonic decreasing scale elasticity. The description of this procedure involves
a lot of tedious technical details which are included here with the sole purpose
of documenting the properties of this estimator. The details are only important
to the reader that is interested in the proofs of the properties. The basic idea
behind this apparently complicated function in (7) below is quite simple.
We assume that we have chosen a set of feasible wi, i ∈ E, within the bounds

(6), described in the previous section. The construction of this smooth curve
will follow a procedure, where pieces of the curve are splined together at each
of the vertices and at some specific point within the relevant triangle in log-log
space to be specified below.
Let us focus on the two vertices (μi, βi) ,

¡
μi+1, βi+1

¢
, i ∈ E0. The following

function fi (μ) in (7) defines a simple smooth estimator of the true production
function over the interval

£
μi, μi+1

¤
. fi() is a function with a monotone de-

creasing scale elasticity over the interval
£
μi, μi+1

¤
. Furthermore the graph of

fi() runs within the boundaries defined from the three CSE-function �i(μ) and
CSEj(μ), j = i, i+1 and attains a marginal product f 0i

¡
μj
¢
equal to the chosen

values wj , j = i, i+ 1. We will show that fi can be used to define an estimator
of the true frontier that satisfies the RUP law, by defining the graph of the
estimator of the frontier as the union of the graphs of fi, i ∈ E0. We define
fi, i ∈ E0 as follows:

fi(μ) =

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

⎛⎝³ βi
μ
εi
i

μεi
´ 1−0.5 (μ−μi)

lnμi,i+1−μi ×
µ

βi
μ
δi
i

μδi
¶ 0.5

(μ−μi)
lnμi,i+1−μi

⎞⎠ for μ ∈
£
μi, μi,i+1

¤
⎛⎝µ βi+1

μ
εi+1
i+1

μεi+1
¶ 1−0.5 (lnμi+1−μi)

μi+1−lnμi,i+1
×
µ
βi+1

μ
δi
i+1

μδi
¶ 0.5

(μi+1−μ)
μi+1−lnμi,i+1

⎞⎠ for μ ∈
£
μi,i+1, μi+1

¤
(7)

where μi,i+1 is the solution to:

CSEi(μi,i+1) = CSEi+1(μi,i+1)⇔ μi,i+1 =

µ
βi+1
βi

μεii
μ
εi+1
i+1

¶(εi−εi+1)−1
Recall that εi = wi

μi
βi
is the elasticity of the vertex-wise CSE-function,

CSEi(μ), while δi =
βi+1−βi
μi+1−μi

is the elasticity of the facet-wise CSE-function,

�i(μ). To derive this estimator (7) notice that moving to log-log space we have

lnCSEi(bμ) =
hbβi + εi (bμ− bμi)i , i ∈ E

ln �i(bμ) =
hbβi + δi (bμ− bμi)i = hbβi+1 + δi

¡bμ− bμi+1¢i , i ∈ E0
10
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The design of the proposed estimator fi(μ) in (7) is based on the following
idea: We construct in log-log space ln fi(μ) as an appropriate combination of
lnCSEi(bμ) and ln �i(bμ) in the interval £bμi, bμi,i+1¤ and of lnCSEi+1(bμ) and
ln �i(bμ) in the interval £bμi,i+1, bμi+1¤ , i ∈ E0. Specifically, let fi(μ) be determined
from

fi(μ) =

½
fi1(μ) for μ ∈

£
μi, μi,i+1

¤
, where ln fi1(bμ) = α11(bμ) lnCSEi(bμ) + α12(bμ) ln �i(μ)

fi2(μ) for μ ∈
£
μi,i+1, μi

¤
, where ln fi2(bμ) = α21(bμ) lnCSEi+1(bμ) + α22(bμ) ln �i(μ)

We specify α11(bμ) and α12(bμ) as linear function with slopes − γ1
μi,i+1−μi

and
γ1

μi,i+1−μi
passing through (bμi, 1) and (bμi, 0) and α21(bμ) and α22(bμ) as linear

function with slopes − γ2
μi+1−μi,i+1

and γ2
μi+1−μi,i+1

passing through
¡bμi+1, 1¢ and¡bμi+1, 0¢.17 We get in log-log terms

ln fi1(bμ)
=
³
1− γ1

(μ−μi)
μi,i+1−μi

´ hbβi + εi (bμ− bμi)i+ γ1
(μ−μi)

μi,i+1−μi

hbβi + δi (bμ− bμi)i
=
h bβi + εi (bμ− bμi)i− γ1

μ−μi
μi,i+1−μi

[(εi − δi) (bμ− bμi)] , for μ ∈ £μi, μi,i+1¤
(8)

ln fi2(bμ)
=

µ
1− γ2

(μi+1−μ)
μi+1−μi,i+1

¶hbβi+1 + εi+1
¡bμ− bμi+1¢i+ γ2

(μi+1−μ)
μi+1−μi,i+1

hbβi+1 + δi
¡bμ− bμi+1¢i

=
hbβi+1 + εi+1

¡bμ− bμi+1¢i− γ2
μi+1−μ

μi+1−μi,i+1

£
− (δi − εi+1)

¡bμ− bμi+1¢¤ , for μ ∈ £μi,i+1, μi+1¤
(9)

We have the two functions evaluated at bμi,i+1 as
ln fi1(bμi,i+1) =

hbβi + εi
¡bμi,i+1 − bμi¢i− γ1

£
(εi − δi)

¡bμi,i+1 − bμi¢¤ (10)

ln fi2(bμi,i+1) =
hbβi+1 + εi+1

¡bμi,i+1 − bμi+1¢i− γ2
£
(δi − εi+1)

¡bμi+1 − bμi,i+1¢¤
Finally we have the scale elasticity along these two curves in

£
μi, μi,i+1

¤
and£

μi,i+1, μi+1
¤
derived as:

εi1 (μ) =
d ln fi1(bμ)

dbμ = εi − 2γ1
(bμ− bμi) (εi − δi)bμi,i+1 − bμi (11)

= εi − 2γ1 (bμ− bμi) (εi − δi) (εi − εi+1)¡bμi+1 − bμi¢ (δi − εi+1)

17 In other words

α11(eμ) = 1− γ1
(eμ− eμi)eμi,i+1 − eμi , and α12(eμ) = γ1

(eμ− eμi)eμi,i+1 − eμi
α21(eμ) = 1− γ2

�eμi+1 − eμ�eμi+1 − eμi,i+1 , and α22(eμ) = γ2

�eμi+1 − eμ�eμi+1 − eμi,i+1
11
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εi2 (μ) =
d ln fi2(bμ)

dbμ = εi+1 + 2γ2

¡bμi+1 − bμ¢ (δi − εi+1)bμi+1 − bμi,i+1 (12)

= εi+1 + 2γ2
¡bμi+1 − bμ¢ (δi − εi+1) (εi − εi+1)¡bμi+1 − bμi¢ (εi − δi)

As required εi1 (bμi) = εi and εi2
¡bμi+1¢ = εi+1. Hence the functions have

the correct scale elasticity at the vertices. An additional requirement is that
εi1
¡bμi,i+1¢ = εi2

¡bμi,i+1¢ which by the lemma below implies that fij() gets a
scale elasticity of δi at the points

¡
μi,i+1, fij(μi,i+1)

¢
corresponding to γ1 =

γ2 =
1
2 , where of course fi1(μi,i+1) = fi2(μi,i+1) by definition. Notice that

dεi1(μ)
dμ = −2γ1

(εi−δi)
μi,i+1−μi

1
μ < 0 and dεi2(μ)

dμ = −2γ2
(δi−εi+1)

μi,i+1−μi+1
1
μ < 0. Hence

fi (μ) has a monotonic decreasing scale elasticity. To determine γ1 and γ2, we
have the following lemma:

Lemma 5 Solving for (γ1, γ2) such that
1) ln fi1

¡bμi,i+1¢ = ln fi2 ¡bμi,i+1¢, and
2) εi1

¡bμi,i+1¢ = d ln fi1(μi,i+1)
dμ =

d ln fi2(μi,i+1)
dμ = εi2

¡bμi,i+1¢
where bμi,i+1 is defined from hbβi+1 − εi+1

¡bμi+1 − bμi,i+1¢i−hbβi + εi
¡bμi,i+1 − bμi¢i =

0
has the unique solution (γ1, γ2) = (0.5, 0.5)

Proof. (see Appendix).
To summarize, if the set of vertices z1, · · · , zn are located in such a way

that the RUP-condition (6) is satisfied then it follows that it is possible to
choose wi, i ∈ E, such that (5) is satisfied, since the RUP-condition implies that
εlbi < εubi ,∀i ∈ E. Furthermore, the following proposition is proved in Appendix:

Proposition 6 Replacing εi1 (μ) by εi1 (μ, β(μ, x, y)) we have from (2) that

εi1 (μ, β(μ, x, y)) =
d ln fi1(bμ (x, y))

dbμ = εi (x, y)−2γ1(x, y)
bμ (x, y)− bμibμi,i+1 (x, y)− bμi [(εi (x, y)− δi (x, y))]

The derivatives of εi1(x, y) evaluated at (Xo, Yo) with regards to xi, i = 1 · · · ,m
and yk, k = 1 · · · , s are given as follows:

∂εi1(x, y)

∂xj

¯̄̄̄
x=Xo,y=Yo

∈ Conek∈K1

(
−wio × vkj

(uk)
t
Yo

)
⊂ Rs+m

−

∂εi1(x, y)

∂yj

¯̄̄̄
x=Xo,y=Yo

∈ Conek∈K1

(
−wio × ukj

(vk)
t
Xo

)
⊂ Rs+m

−

where
¡
uk, vk

¢
k∈K1

are normal vectors to facets on which (x, y) are located

12
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Proof. (see Appendix).
Hence the proposed estimator in (7) satisfies the generalized RUP law in

(2)18. The following Figures illustrate how the estimator looks like based on the
data from Table 1.

Insert Figure 5 here
Figure 5: The estimator of the true curve (data from Table 1)

6 Applications of the proposed estimator.
We will now illustrate the usefulness of the proposed approach. Consider the
data exhibited in Figure 1 generated from a generalized production function [5],
a known S-shaped technology with two inputs and one output19 . The shape of
the true production function in Figure 2 illustrates that optimal scale size for
the input mix (2, 3) is found for λ× (2, 3), λ being well above one. In fact, all
seven observation have on purpose been located in the IRS region to simulate
the problems that occur when we lack information (observations) from the areas
above the optimal scale size.
Let us illustrate the usefulness of the proposed approach by looking for

reasonable upper and lower bounds for optimal scale size for DMU 7. The
section in μ, β space in Figure 2 consists of vertices A,B,C,D from interior facets
and E from an exterior facet. Hence, the splined elasticity curve relies on the
choice of wj , j ∈ {A,B,C,D}. The vertex E is only used to get a lower bound
for wD, since we for obvious reasons do not insist that the β (μ) curve passes
through E. The RUP regularity condition (6) is satisfied since (δ−1, δ0, δ1, δ2) =
(26.9855, 2.62092, 1.82544, 1.54984). As a first approach we estimate the various
optimal scale sizes by varying w = (wA, wB, wC , wD) in the following way:

wj = αjw
LB
j + (1− αj)w

UB
j , αj ∈ [ε, 1− ε] , j ∈ {A,B,C} (13)

wD = αDw
LB
D + (1− αD)w

UB
D , αD ∈ (0, 1− ε] (14)

where the lower and upper bound wLB
j and wUB

j are given in (5) and we will
argue that ε should not be less than 0.05. The estimated β (μ) curve must pass
above the point E. Hence αD used for wD is typical small, and since we only
have the information in the form of the weakly efficient point E below D we

18Sometimes a more strict S-shape is imposed in the sense that there exists μ∗ such that
the marginal product is monotonic increasing in [0, μ∗] and monotonic decreasing [μ∗,∞). We
have derived necessary conditions for this to emerge. These results are availible on request.
19F (x1, x2, y) = yαeβy+δ − xν1x

1−ν
2 ,α = 0.23, β = 0.4, δ = 0.21, ν = 0.2.

Inputs and output from 7 DMUs are:⎡⎣ X1

X2

Y

⎤⎦ =
⎡⎣ 0.9 0.5 1.1 0.2 2.2 2.8 3.0
1.63 1.36 1.55 2.15 2.04 1.40 2.04
0.65 0.35 0.65 0.55 1.2 0.8 1.3

⎤⎦
The second input is generated from F (x1, x2, y) = 0

13
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may choose αD very small, if we believe that E is very inefficient in relation to
the true frontier. This is illustrated below in figure 7-8 with the splined β(μ)
curve for αj = 0.9 (0.5), j = A,B,C and αD = 0.5 in Figure 7 and αD = 0.001
for the non-dashed curve in Figure 8. Comparing with the true curve in Figure
2 we see that we here need a very small αD = 0.001 to get a splined curve close
to the true in the area below the point D where we have very little information
available.
Setting αj, j 6= D below 0.5 does as expected not have much effect. The cur-

vature of the β (μ) increases at μ = 1 which means that the scale elasticity of
DMU 7 decreases, but optimal scale size is only slightly below μ = 1. Increasing
αj , j 6= D up towards 0.95 pushes optimal scale size towards approximately 2.5.
Increasing αj , j 6= D above 0.95 is of course possible, but provide a questionable
β (μ). The design of the proposed approach is to use information from neigh-
boring facets (in log-log space) to extract information of possible shapes of the
"true" scale elasticity curve. Choosing αj close to one (or zero) is in conflict
with this design since it implies that we only use the information from one end
of the "facets" created by the three CSE-function going through the facet end-
points with the prespecified elasticity at each endpoint. At present we do not
have a general analysis on how to restrict the choice of αj . A more elaborated
Monte Carlo study could probably provide some guidelines and could determine
how sample size affects how much flexibility we have in the choice of wj , i.e. the
size of the intervals of feasible wj . Notice however, that restricting αj seems
to be of less importance if the analyzed input and output mix provides efficient
vertices both above and below the vertex determined from DEA as being at
the optimal scale. In relation to the analysis of DMU 7, letting αA approach
one implies that we almost entirely rely on the CSE-function going through the
endpoints of the facet from B to A in Figure 2. For the example presented here
restricting αj to the interval [0.05, 0.95] seems appropriate.
So far we have focussed on "manual" adjusting the choices wj , as proposed

in (13,14) for determining the bounds for the optimal scale. As an alternative
a grid search could be performed, by estimating optimal scale for choices of
(wA, wB, wC , wD) equal to all combinations of equidistant numbers in each of
the intervals

£
(1 + ε)× wLB

j , (1− ε)wUB
j

¤
, j ∈ {A,B,C,D}. The bounds then

follows as the maximum and the minimum optimal scale among these solutions.
A grid search with precision 0.01 of the location of optimal scale size for DMU 7
using ε = 0.05 estimates the lower and upper and lower bound of optimal scale
size as 0.99 and 2.13. The upper bound corresponds to αj = 0.05,∀j. The true
optimal scale size is approximately 1.4 (see Figure 2).
Figure 7 illustrates the two spline elasticity curves for α = 0.9 (full line) and

α = 0.5 (dashed line). In the first case we have optimal scale size (ε = 1) for μ
approximately equal to 1.28 while it is close to one for α = 0.5.

Insert Figure 6,7 and 8
Figure 6: The spline elasticity curves for α ∈ {0.5, 0.9}
Figure 7: The splined β (μ) curve, αj = 0.9(0.5), j = A,B,C
Figure 8: The splined β (μ) curve, α = 0.5 and α = 0.9

14
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7 Conclusion and future research.
In this paper we have evaluated the non-parametric estimation procedure used
in DEA to determine optimal scale for various mix of inputs and outputs. Recent
contributions in the literature [1] have criticized DEA for being ambiguous in
determining optimal scale size. We claim that DEA is well suited to estimate
optimal scale size if two additional maintained hypotheses are introduced. We
have shown that this implies that the DEA-frontier is consistent with smooth
curves along rays in input and in output space that obey the Regular Ultra
Passum (RUP) law (Frisch 1965).
The critical remarks from Førsund and Hjalmarsson touch upon an impor-

tant aspect of DEA: it is problematic that DEA only provides point-estimates
of where the optimal scale is located for different input-output mix. Consider
an example where we focus on two input-output mix, the first belongs to a small
DMU and the second to a large DMU, and both DMUs are scale efficient. To
simplify, assume that there are no other scale efficient DMUs (this could be a
consequence of only a small sample at hand) and that any convex combination
of these two scale efficient DMUs belongs to the optimal scale curve. In this
case we are the left with the conclusion that all scales are indeed optimal when
DEA is used as estimation procedure.
In this paper we regard the DEA convex hull estimator as an inner approx-

imation to the true production correspondance. We argue that we should look
for all smooth curves passing through almost all vertices emerging in a given
section of the production possibility set T , i.e. the vertices that emerge when
we intersect T with a two-dimensional hyperplane spanned by a given input
and a given output vector. We have constructed a subset of all such curves
and propose to use these curves to determine upper and lower bounds on the
location of optimal scale. In terms of the simplistic example above with a small
and a large DMU both being scale efficient mentioned using this procedure we
would probably see a large upper bound for optimal scale for the small DMU
and/or a small lower bound for the large DMU20.
A peculiar characteristic of all such smooth curves is the fact that not all

BCC vertices can be guarantied to be located on such curves. In some cases
we simply cannot construct a curve with a monotone decreasing scale elastic-
ity passing through all vertices. Some vertices deemed efficient by the BCC-
model will be inefficient after adding the RUP-law as a maintained hypothesis.
Maintaining the RUP-law will add structure to the estimation process and will
constrain the flexibility of the BCC model.
A typical DEA based classification of DMUs being or not being at the op-

timal scale size is based on point estimates of the scale efficiency of each BCC
efficient DMU. An important contribution of this paper is that we have provided
a method which allow us to determine in what interval optimal scale is located.
We have derived a necessary condition for a smooth curve passing through all
vertices to obeys the RUP-law. If this condition is satisfied then upper and
20A closer analysis of the data used in ([1]) is the topic for another paper, and we will not

comment futher here.
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lower bounds for the marginal product at each vertex have been presented. We
have shown that any choice of marginal products at these vertices corresponds
to a smooth curve with monotonic decreasing scale elasticity. We have provided
a proof that specifies a specific procedure to construct such a curve. Finally we
have illustrated how such curves can be used to get reasonable upper and lower
bound for the location of the optimal scale size
In the last section we have illustrated the usefulness of the proposed approach

using synthetic data all generated in the area of the input space strictly below
optimal scale size. To illustrate how optimal scale is affected by the choice of
marginal products at each vertex, we have varied the marginal products between
lower and upper bounds, but avoided getting too close to the bounds.
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8 APPENDIX
Condition 7 The RUP-condition. A necessary condition for a given two di-
mensional input output projection of a production function to satisfy the reg-
ular ultra passum law is that for any pair of adjacent facets

¡
μi−1, βi−1

¢
−

(μi, βi) , (μi, βi)−
¡
μi+2, βi+2

¢
we must have

lnβi−lnβi−1
lnμi−lnμi−1

>
lnβi+1−lnβi
lnμi+1−lnμi

.

Proof. Let two facets be give as
¡
μi−1, βi−1

¢
− (μi, βi) , (μi, βi)−

¡
μi+2, βi+2

¢
and let the two constant elasticity function (CSE-functions) be given as:

CSEfacet
i−1 (μ) =

µ
e
lnβi−1−(lnμi−1)

ln βi−ln βi−1
lnμi−lnμi−1

¶
μ
ln βi−ln βi−1
lnμi−lnμi−1 ,

dCSEfacet
i−1 (μi)

dμ
=

βi
μi

lnβi − lnβi−1
lnμi − lnμi−1

CSEfacet
i (μ) =

µ
e
lnβi−(lnμi)

lnβi+1−ln βi
lnμi+1−lnμi

¶
μ
lnβi+1−ln βi
lnμi+1−lnμi

, dCSE
facet
i (μi)

dμ
) =

βi
μi

lnβi+1 − lnβi
lnμi+1 − lnμi

It is argued that we have to choose the marginal product wi at (μi, βi) such
that wi is less than (greater than) the slope of the tangent to the CSE-function
covering facet

¡
μi−1, βi−1

¢
− (μi, βi) (the facet(μi, βi) −

¡
μi+2, βi+2

¢
) in both

cases evaluated at (μi, βi), i.e.

βi
μi

lnβi − lnβi−1
lnμi − lnμi−1

≥ wi ≥
βi
μi

lnβi+1 − lnβi
lnμi+1 − lnμi

No feasible wi exists if the RUP condition is violated.

Example 8
∙
6 6 8 14 15 + t 22 + t
2 4 10 14 15 15

¸T ∙
6 6 8 14 (14 + 1.5 + t) 22 + t
2 4 10 14 (14 + 1) 15

¸T
Insert Figure A1

The following picture illustrate how the function
³
ln(14)−ln(10)
ln(14)−ln(8)

´
−
³

ln(15)−ln(14)
ln(15+t)−ln(14)

´
behaves for t ∈ [−1, 2]. Hence for the two adjacent facets [(x1, y1)− (x2, y2) , (x2, y2)− (x3, y3)] =
[(8, 10)− (14, 14) , (14, 14)− (15 + t, 15)] we have the condition violated if t ∈
[0, 0.7]
Insert Figure A2

Proposition 9 Replacing εi1 (μ) by εi1 (μ, β(μ, x, y)) in (2) we have

εi1 (μ, β(μ, x, y)) =
d ln fi1(bμ (x, y))

dbμ = εi (x, y)−2γ1(x, y)
bμ (x, y)− bμibμi,i+1 (x, y)− bμi [(εi (x, y)− δi (x, y))]

The derivatives of εi1(x, y) eavluated at (Xo, Yo) with regards to xi, i = 1 · · · ,m
and yk, k = 1 · · · , s are given as follows:

17
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∂εi1(x, y)

∂xj

¯̄̄̄
x=Xo,y=Yo

∈ Conek∈K1

(
−wio × vkj

(uk)
t
Yo

)
⊂ Rs+m

−

∂εi1(x, y)

∂yj

¯̄̄̄
x=Xo,y=Yo

∈ Conek∈K1

(
−wio × ukj

(vk)
t
Xo

)
⊂ Rs+m

−

where
¡
uk, vk

¢
k∈K1

are normal vectors to facets on which (x, y) are located

Proof. The function β(μ, x, y) is derived implicitly from

F (μx, β(μ, x, y)y) = 0

F (μx1, μx2, · · · , μxm, β()y1, β()y2 · · ·β()ys) = 0

∂β(μ, x, y)

∂μ
= −

∂F ()
∂x1

x1 + · · ·+ ∂F ()
∂xm

xm
∂F ()
∂y1

y1 + · · ·+ ∂F ()
∂ys

ys

∂β(μ, x, y)

∂xi
= −

∂F ()
∂xi

μ
∂F ()
∂y1

y1 + · · ·+ ∂F ()
∂ys

ys
, i = 1, · · · ,m

∂β(1, x, y)

∂xi
= −

∂F ()
∂xi

∂F ()
∂y1

y1 + · · ·+ ∂F ()
∂ys

ys
, i = 1, · · · ,m

since β(1, x, y) = 1

Alternatively, we might define μ(β, x, y) implicitly from

F (μ(β, x, y)x, βy) = 0

F (μ()x1, μ()x2, · · · , μ()xm, βy1, βy2 · · ·βys) = 0

∂μ(β, x, y)

∂β
= −

∂F ()
∂y1

y1 + · · ·+ ∂F ()
∂ys

ys
∂F ()
∂x1

x1 + · · ·+ ∂F ()
∂xm

xm

∂μ(β, x, y)

∂yk
= −

∂F ()
∂yk

β

∂F ()
∂x1

x1 + · · ·+ ∂F ()
∂xm

xm
, k = 1, · · · , s

∂μ(1, x, y)

∂yk
= −

∂F ()
∂yk

∂F ()
∂x1

x1 + · · ·+ ∂F ()
∂xm

xm
, k = 1, · · · , s

since μ(1, x, y) = 1

In (**) we have derived εi1 (μ) as a function of the radial factor μ. Now let
us more carefully specify how εi1 (μ) depend on (x, y). Hence we replace the
argument μ with μ, β(μ, x, y). Hence, denoting lnμ = bμ and using (**) we have
εi1 (μ, β(μ, x, y)) =

d ln fi1(bμ)
dbμ = εi (x, y)−2γ1(x, y)

bμ (x, y)− bμibμi,i+1 (x, y)− bμi [(εi (x, y)− δi (x, y))]
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and using that evaluating the derivatives of εi1 (μ, β(μ, x, y)) at (Xo, Yo) implies
that μ = β = 1 or bμ (Xo, Yo) = bμi = 0 we get
∂εi1(x, y)

∂xj

¯̄̄̄
x=Xo,y=Yo

=
∂εi(x, y)

∂xj

¯̄̄̄
x=Xo,y=Yo

=
∂

∂xj

µ
wio

μ

β(μ, x, y)

¶¯̄̄̄
x=Xo,y=Yo

= −wio

μ

β(1, x, y)2
∂β(μ, x, y)

∂xj

¯̄̄̄
x=Xo,y=Yo

=

µ
−wio

1

12

¶Ã
−
−vkj 1
(uk)

t
Yo

!
= −wio

vkj

(uk)

where
¡
uk, vk

¢
is the normal vector to the facet relevant to the movement

Xo, Yo → (Xo +∆ej , Yo). The derivatives with regard to the outputs yk, k =
1, . . . , s are

∂εi1(x, y)

∂yj

¯̄̄̄
x=Xo,y=Yo

=
∂εi(x, y)

∂yj

¯̄̄̄
x=Xo,y=Yo

=
∂

∂yj

µ
wio

μ(β, x, y)

β

¶¯̄̄̄
x=Xo,y=Yo

=

µ
wio

β

¶
∂μ(β, x, y)

∂yj

¯̄̄̄
x=Xo,y=Yo

=
³wio

1

´Ã
−

ukj 1

(vk)
t
Xo

!
= −wio

ukj

(vk)
t
Xo

< 0

where
¡
uk, vk

¢
is the normal vector to the facet relevant to the movement

Xo, Yo → (Xo, Yo +∆ej).

Lemma 10 Solving for (γ1, γ2) such that
1) ln fi1

¡bμi,i+1¢ = ln fi2 ¡bμi,i+1¢, and
2) εi1

¡bμi,i+1¢ = d ln fi1(μi,i+1)
dμ =

d ln fi2(μi,i+1)
dμ = εi2

¡bμi,i+1¢
where bμi,i+1 is defined from hbβi+1 − εi+1

¡bμi+1 − bμi,i+1¢i−hbβi + εi
¡bμi,i+1 − bμi¢i =

0
has the unique solution (γ1, γ2) = (0.5, 0.5)

Notice that bμi,i+1 is defined from hbβi+1 − εi+1
¡bμi+1 − bμi,i+1¢i = hbβi + εi

¡bμi,i+1 − bμi¢i.
Furthermore, we have

d ln fi1(bμ)
dbμ ¡bμi,i+1¢ = εi − 2γ1 (εi − δi) (= δi if γ1 = 0.5) (15)

d ln fi2(bμ)
dbμ ¡bμi,i+1¢ = εi+1 + 2γ2 (δi − εi+1) (= δi if γ2 = 0.5)

Solving the system∙
− (εi − δi)

¡bμi,i+1 − bμi¢ (δi − εi+1)
¡bμi+1 − bμi,i+1¢

2 (εi − δi) 2 (δ1 − εi+1)

¸ ∙
γ1
γ2

¸
=

" hbβi+1 − εi+1
¡bμi+1 − bμi,i+1¢i− hbβi + εi

¡bμi,i+1 − bμi¢i
εi − εi+1

#
requires or (γ1, γ2) = (0.5, 0.5), since

(δi − εi)
¡bμi,i+1 − bμi¢+ (δi − εi+1)

¡bμi+1 − bμi,i+1¢
=

Ãbβ2 − bβ1bμ2 − bμ1 − bβ1 − bβ12bμ1 − bμ12
!
(bμ12 − bμ1) +

Ãbβ2 − bβ1bμ2 − bμ1 − bβ2 − bβ12bμ2 − bμ12
!
(bμ2 − bμ12) = 0

19



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 

(εi − δi) + (δi − εi+1) = εi − ε
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