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Abstract

This paper proposes a test for whether data are over-represented
in a given production zone, i.e. a subset of a production possibility set
which has been estimated using the non-parametric Data Envelopment
Analysis (DEA) approach. A binomial test is used that relates the
number of observations inside such a zone to a discrete probability
weighted relative volume of that zone. A Monte Carlo simulation
illustrates the performance of the proposed test statistic and suggests
good estimation of both facet probabilities and the assumed common
inefficiency distribution in a three dimensional input space.
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1 Introduction

This paper introduces a test for whether observed data points are over-
represented in certain production zones, i.e. subsets of (input sets of) the
production space. The test is based on considerations of the relative volumes
of these zones, weighted by probability estimates of observation frequencies.
Specifically we consider the number of observations located in a certain zone,
relative to the number that could be expected based on its relative weighted
volume.
To motivate the need for such a test, consider for example the hypothesis

of rational inefficiency put forward by Bogetoft and Hougaard (2003). Given
a set of common and known input prices, one might expect all observations to
be located close to the cost minimizing input combination if the production
units are assumed to be rational. Within the rational inefficiency framework,
arguments are made, however, that it is still rational to be located inside the
cone dominated by the cost minimizing point since production units may de-
rive utility from the consumption of excess resources, leading to the notion of
rational inefficiency. Thus, according to the rational inefficiency hypothesis
one should expect over-representation of data point within this cone. If we
further assume that a Data Envelopment Analysis (DEA) estimated fron-
tier is a good approximation of the true underlying production possibilities,
rejection of a test for no over-representation of data points inside the cone
dominated by the cost minimizing input combination provides empirical sup-
port for the hypothesis of rational inefficiency. We in the following derive
such a test based on a Data Generating Process (DGP) suggested in Simar
and Wilson (2000) which has no tendency to prefer data points in this cone.
Hence, rejection of a null hypothesis of no over-presentation strictly speaking
challenges the relevance of this particular DGP for the data set at hand.1

Another potential use of the proposed test concerns benchmarks in DEA,
where the set of undominated observations is often considered as benchmark
units for the inefficient producers. However, not all benchmarks may be
equally influential. Our test can be used to determine whether a given bench-
mark unit dominates more observations than what is expected, i.e. provide
an alternative indication of robustness than that of Thanassoulis (2001).
Since the proposed test considers the number of points in certain zones

1A direct approach to test the rational inefficiency hypothesis should be based on a
DGP reflecting this hypothesis. This is left for future research.
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relative to the weighted volumes of those subsets of the production space,
what we call over-representation could also be viewed as higher (weighted)
data density. Empirical investigation of data density can be approached in
different ways. Statistical cluster analysis aims at identifying groups or clus-
ters of data points. Parametric cluster analysis (Fraley and Raftery 1998,
1999, McLachlan and Peel 2000) is based on the assumption that each group
of data points is represented by a density function belonging to some para-
metric family. The analysis then estimates the number of groups and their
parameters from the observed data. In contrast, non-parametric statistical
clustering approaches identify the center or mode of various groups and assign
each data point to the domain of attraction of a mode. These approaches
were originally introduced by Wishart (1969) and have subsequently been
expanded on by especially Hartigan (1975, 1981, 1985). Common for the
statistical cluster analysis approaches is that they aim at detecting the pres-
ence of clusters rather than considering differences in density in pre-specified
production zones.
Within the realm of DEA, data density is at least indirectly considered

in the recently quite popular bootstrapping approaches (see e.g. Simar and
Wilson 1998, 2000). For example a distinction is made between a homoge-
neous and a heterogeneous bootstrap, reflecting whether or not it is reason-
able to assume that the inefficiency distribution is independent of the choice
of output levels and of input mix. Bootstrapping in this context analyzes
the sensitivity of efficiency estimates to sampling variations of the estimated
frontier and is used as a tool for bias correction and statistical inference. As
such this literature has a different purpose than the one considered here.
In the present paper we remain within the non-parametric spirit of DEA

by relying only on the information contained within the observed data points.
We derive a binomial test that relates the number of observations inside
certain production zones to a discrete probability weighted relative volume
of these zones. This is done by considering the ratio between the volume of
the zone and the volume of the total production possibility set, where these
volumes are weighted by probability estimates of observations belonging to
given facets and efficiency levels. The ratio of volumes provides estimates
of expected frequencies which are then related to the observed frequencies
given as the ratio between the number of observations inside the zone and
the total number of observations.
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2 Methodology

Consider a set of n observed production plans N = {(xi, yi), i = 1, . . . , n}
originating from a production process where r inputs are used to produce
s outputs, i.e. (xi, yi) ∈ Rr+s

+ . Following the DEA tradition (cf. Banker,
Charnes and Cooper 1984) we impose the following set of maintained hy-
potheses on the true underlying production technology: Convexity, Ray Un-
boundedness (constant returns to scale), Strong input and output Dispos-
ability and Minimal Extrapolation. Furthermore, we need some additional
assumptions on the Data Generating Process (DGP). For the purpose of this
paper we follow an input oriented version of the DGP suggested in Simar and
Wilson (2000). We represent an input vector x in polar coordinates, which
means that the angles of an input vector x ∈ Rr

+ can be expressed as

ηi =

½
arctanxi+1/xi if xi > 0

π/2 if xi = 0
(1)

for i = 1, . . . r−1 and the modulus of the input vector is ω(x) = kxk2 ≡
√
xtx.

Assume that, given a true technology P, each firm ‘draws’ an output vector
y ∈ Rs

+ from a distribution with density f(y). Conditioned on this output
vector the firm subsequently ‘draws’ an input mix vector η ∈ [0, π/2]r−1
from a distribution with density f (η|y). Finally, conditioned on the choice
of output and input mix vectors the firm ‘draws’ a modulus ω ∈ R1

+ from a
distribution with density f (ω|η, y). Specifically, we maintain that the DGP
satisfies the following assumptions:
The observations (xi, yi) ∈ Rr+s

+ , i = 1, . . . , n are realizations of i.i.d. ran-
dom variables with probability density function f(x, y), which has a support
over P ⊂ Rr+s

+ , where P is a production set defined by

P = {(x, y) | x can produce y} (2)

and S(y) = {x | (x, y) ∈ P} is the input set. We define the radial efficiency
measure θ(x, y) = min {θ | (θx, y) ∈ P}. For any given (y, η) , the corre-
sponding point on the boundary of P is denoted x∂ (y, η) and has a modulus

ω(x∂ (y, η)) = min
©
ω ∈ R1

+ : f (ω|η, y) > 0
ª

(3)

and the related radial efficiency measure θ(x, y) can be expressed as
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0 ≤ θ(x, y) =
ω(x∂ (y, η))

ω(x)
≤ 1. (4)

Note that the density f (ω|η, y) with support [ω(x∂ (y, η)),∞) induces a
density f (θ|η, y) on [0, 1]. The advantage of representing the input vector
in terms of polar coordinates is that the joint density f(x, y) can now be
described as a product of three densities

f(ω, η, y) = f (ω|η, y) f (η|y) f (y) (5)

where the ordering of the conditioning reflects the assumed sequence of the
DGP mentioned above.
Specifically, in the following we propose a test for whether data are over-

represented in certain subsets of a DEA-estimated technology with input
sets

SCCR(y0) = {x |
X
j∈N

λjxj ≤ x,
X
j∈N

λjyj ≥ y0, λj ≥ 0, j ∈ N}, (6)

for output level y0. Since the proposed test is based on volumes of production
zones, the technology must be bounded. Let θj be the radial inefficiency of
the j’th production plan and define the projected (possibly weakly) efficient
production plans (exj, yj) ≡ (θjxj, yj) , j ∈ N . Let θα be defined such that
Pr(θ ≤ θα) = α. In the following we will focus on the bounded family of
input sets given by

eS(y0, α) ={x |X
i∈N

λiexi + (θα)−1X
i∈N

eλiexi = x,X
i∈N

λiyi +
X
i∈N

eλiyi = y0, λi, eλi ≥ 0, i ∈ N } (7)

\ {x | (θα)−1
X
i∈N

eλiexi = x,
X
i∈N

eλiyi = y0, eλi ≥ 0, i ∈ N }

Choosing a small value for α means only ignoring production plans from
areas of the production space with low probability when considering only the
bounded set eS(y, α) ⊂ SCCR(y) instead of the full set SCCR(y).
Moreover, for some point (x0, y0) ∈ N , denote by
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K(x0, y0) = {x ∈ eS(y0, α)|x ≥ x0} (8)

the bounded cone of input combinations in eS(y0, α) dominated by x0.
The various concepts are illustrated in Figure 1 below. We have gener-

ated 200 data points according to a DGP from the Monte Carlo simulation
described in section 7. An envelopment is provided from 10 facets denoted
fi, i = 1, . . . , 10. Two of these facets, f9 and f5, are part of unbounded ex-
terior facets. These two facets are spanned by a CCR-efficient observation
and one of the two projected inefficient observations indicated by the two
arrows in Figure 1. The set eS(y0, α) is the intersection of the 13 halfspaces
corresponding to the 13 facets generating the boundary of the convex hull of
all 200 observation except for the subset below facet f13 but above the facets
fi, i = 1, . . . , 10 expanded by the factor (θα)−1 (approximately equal to 2 in
the figure).

2.1 The proposed test

As mentioned in the introduction we aim to identify over-representation of
data points in certain subsets of the input set, for instance a dominance cone
with vertex in an efficient production plan (x0, y0), e.g. a cost minimizing
observation.
The true probability p of a projected data point being located within the

bounded cone K(x0, y0) is given by,

p = p (y0) =

Z
(η,ω)∈K(x0,y0)

f(ω, η, y0)d (η, ω) (9)

Hence, we maintain that data reflects a DGP as specified in (5). By
using the constant returns to scale assumption, for sufficiently small α all
data points can be projected onto the input set eS(y0, α). Denote by
#K(x0, y0) = |{(xk, yk)k=1,...N : xk ∈ eS(y0, α) : ∃κ ∈ R+, κxk ≥ x0, κyk ≤ y0}|

(10)
the number of data points that can be projected into the bounded cone
K(x0, y0). Using an interpretation of the DGP as generating a binomial pop-
ulation, the sampling distribution of#K(x0, y0) is approximately normal with
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Figure 1: The bounded subset of the input set.
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mean np and variance np(1− p) (see e.g. Siegel and Castellan 1988). A null
hypothesis that p = po can be tested using the test statistic

#K(x0,y0)−npo√
npo(1−po)

which is approximately N(0, 1) distributed. Unfortunately, f(ω, η, y0) and
thereby po is typically unknown, which implies that we have to rely on an
estimator of p.
For any set H let V (H) denote the volume of H. To simplify the pre-

sentation of the general idea let us initially assume that the projected data
are uniformly distributed over the (bounded) estimated input sets. This is a
restrictive assumption, but it allows us to directly use the ratios of volumes
as a simple estimator bp of p:

bp = V (K(x0, y0))
V ( eS(y0, α)) , (11)

where we in the following ignore the trivial cases bp ∈ {0, 1}.
The null hypothesis we want to test is that #K(x0, y0) − np = np̂ − np

i.e. that the difference between the fraction of observations within the cone
and the true probability p is the same as the difference between expected
number of observation within the cone (based on relative volumes) and the
true probability p.
Under the (restrictive) assumption that data is uniformly distributed over

the (bounded) input set S̃ we define the following test statistic,

z =
n(#K(x

0,y0)
n

− p)− n(p̂− p)p
V ar [#K(x0, y0)− np̂]

=
#K(x0, y0)− np̂p

V ar [#K(x0, y0)− np̂]

Unfortunately, bp has an unknown sampling distribution2 but bp will con-
verge towards p. In general we would not expect to see any high correlation
between the sampling distributions of #K(x0, y0) and np̂. Increasing sample
size will in many cases either not affect np̂ at all or have a rather small im-
pact because it will either not affect the piecewise linear DEA estimator ofeS(y0, α) at all or only make minor adjustments. This is especially true for
a large sample size in small dimensional input-output spaces. For the same
reason we will expect V ar [np̂] < V ar [#K(x0, y0)]. To summarize, we expect
the sampling distribution of #K(x0, y0)−np̂ to be approximately normal with

2An obvious approach to this problem would be using a resampling strategy to generate
information of this sampling distribution for a particular data set. Details of such an
approach is left for future research.
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mean zero and variance equal to αnp̂(1− po), α ∈ [1, 2]. Hence, we propose
to test the null hypothesis using the test statistic

z =
#K(x0, y0)− np̂p

αnp̂(1− p̂)
, α ∈ [1, 2] (12)

Rejecting this null hypothesis in a two-tailed test indicates that the num-
ber of observations inside the cone is either too big or too small relative to
the volume of the cone. Alternatively, we can formulate a one-tailed test
specifically for over-representation. Rejection of the null hypothesis of no
over-representation strictly speaking indicates lack of relevance of the par-
ticular DGP as specified in (5). Such a rejection could be followed by a
direct test of the rational inefficiency hypothesis using a DGP reflecting this
hypothesis.
Finally, it should be noted that the two volumes V ( eS) and V (K) depend

on the units of measurement whereas the number of observations inside the
cone #K, as well as the total number of observations, is independent of the
metrics. However, the ratio between the volumes p̂, as given by (11), is scale
invariant, i.e. the observed data points can be scaled with strictly positive
weights without changing p̂ (but clearly p̂ is not affinely invariant).

3 Discrete approximations of densities

Where the introduction of the proposed test above relied on the assumption
of the observations being uniformly distributed we now, perhaps more real-
istically, relax the distributional assumption on the radial efficiency score as
well as on the input mix (η). Let us simplify by considering the one output
case and assuming a common distribution of the efficiency scores of some
parametric form, i.e. f (ω|η, 1) = f (ω).3 Consider a discrete approxima-
tion of the distribution of efficiency scores given by I intervals (slices) of the
bounded support [θα, 1]: {[i1, i2], (i2, i3], . . . , (iI , iI+1]}, i1 = θα, iI+1 = 1 and
probability pθi , of belonging to the i’th slice for i = 1, . . . , I. To obtain a
reasonable precision of the discrete approximation we choose the intervals
such that the probabilities are approximately identical. We approximate the
probability Pr(θ ≤ ik) with

Pk−1
i=1 p

θ
i , k = 2, · · · , I + 1.

3This assumption is often used in the bootstrapping literature and is denoted a homo-
geneous bootstrap (see Simar and Wilson 2000, p. 64).

9



As we are now considering the case where multiple inputs are used to
produce a single output, let eΓ = {qi = θixi/yi}i∈N ⊂ Rr

+ be the projected
data points. Let conv(·) be the convex hull operator, and define the k’th
‘slice’ of the bounded technology eS(1, α) (in the following simply denoted byeS) as

eSk = conv{(ik+1)−1eΓ ∪ (ik)−1eΓ} \ conv{(ik)−1eΓ} (13)

Next, let us relax the assumption on the DGP regarding f (η|1) us-
ing the available (empirical) information from DEA, which has resulted in
j = 1, . . . , F different facets of the estimated frontier. The empirical facets
provide a natural discretization of the range of input mixes η. Let pfj be the
probability of getting an input mix which belongs to the cone spanned by
the j’th facet.
Note that the homogeneity assumption f (ω|η, 1) = f (ω) implies that

we approximate the probability p̂ij of getting an observation in the i’th slice
intersected by the cone spanned by the j’th facet with pθi × pfj .
Figure 2 illustrates the discretization of the efficiency distribution with

I = 10 and a DEA envelopment frontier with F = 10 facets, denoted fi, i =
1, . . . , 10. The dots represent 200 generated observations and the dots marked
by the two arrows are projected inefficient observations located on unbounded
exterior facets. Adding these two pseudo-observations to the data set results
in a bounded subset of the input possibility set with a "lower" envelope
consisting of points that dominates all inefficient observations among the
generated data.
The figure illustrates the situation where we have generated 200 data

points according to the DGP from the Monte Carlo simulation described in
section 7. The input mix is uniformly distributed with η ∈ [0.1, π/2− 0.1] .4
The density of the radial efficiency score in the Monte Carlo simulation is
assumed to be a uniform distribution on a support [0.5, 1]. 10 intervals are
used in the discrete approximation. Note that a uniform distribution of the
efficiency scores combined with of a uniform η does not imply that data
points are distributed uniformly on some bounded subset of SCCR.
Now, consider a bounded cone K(q0) ⊂ eS with vertex q0 ∈ eΓ. Let a I ×F

matrix be given as mij =
n
V (Kij(q0))
V (Sij)

o
where eSij is the i’th slice of the cone

4Note that a uniform distribution of η ∈ [0.1, π/2− 0.1] of course implies that projected
data points on the boundary are more sparse in the specialized regions closer to the axes
compared to the regions in the center with η close to π/4.

10



f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

f1
f2

f3

f4 f5

f6

f7

f8

f9

f10

First projected point

Second projected point

0 1 2 3 4 5
x1êy0

1

2

3

4

5
x2êy

Figure 2: The discretization of the efficiency distribution
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spanned by the j’th facet and Kij(q
0) = K(q0) ∩ eSij. Hence, to calculate a

more general estimator bbp of the probability of getting an observation within
the bounded cone K we use

bbp =
⎡⎢⎣ bpθ1...bpθI

⎤⎥⎦
T ⎡⎢⎣ m11 . . . m1F

... . . .
...

mI1 . . . mIF

⎤⎥⎦
⎡⎢⎣ bpf1
...bpfF
⎤⎥⎦ (14)

To formally test, in this more general setup, whether data points eΓ are
over-represented in the bounded cone K(q0) we simply use this more general
estimator bbp as given in (14) instead of the bp given in (12). Note that since
Kij(q

0) in some cases will contain very few data points one should keep in
mind that this test is only meaningful for situations where np̂ij(1 − p̂ij) is
not too small (Siegel and Castellan 1988 advocate that np̂ij(1− p̂ij) > 9).

4 Practical solution procedure

Consider a DEA where multiple inputs are used to produce a single out-
put and the "lower" envelope of the estimated input set has F different
facets. Further choose a disretization involving I different intervals of effi-
ciency scores. To get the estimator bbp in (14) we need i) an estimator bpfj of
pfj , ii) an estimator bpθi of pθi and iii) the I × F matrix given as {mij} for all
i, j.
For a given empirical data set N = {(xi, yi), i = 1, . . . , n} ⊂ Rr+1

+ the
tests described previously can be performed using the following procedure:

Step I: First identify the input set eS. Assuming constant returns to scale
enables a projection of all observations onto the level set of y = 1 by trans-
forming the observations {(xi, yi)}i∈N into the data points {xi/yi}i∈N ⊂ Rr

+

and calculating the corresponding efficiency scores θi, i ∈ N.

Step II: Let θα = mini∈N θi and let eΓ = {θixi/yi}i∈N . Define in accordance
with (7) the estimated input set as the convex hullbeS = conv{eΓ ∪ (θα)−1eΓ} \ conv{(θα)−1eΓ} (15)

Decompose beS into beSij,∀i, j using the following procedure. For the j’th
facet let eΓj be the subset of data points in eΓ belonging to facet j, i.e. ∪Fj=1eΓj =

12



eΓ. Hence, we can decompose beS into the following F convex subsets:beS = ∪Fj=1
beSj, wherebeSj = conv{eΓj ∪ (θα)−1eΓj}

Finally we can decompose each of these beSj into the following I convex
subsets:

beSj = ∪Ii=1
beSij, wherebeSij = conv{κi(θα)−1eΓj ∪ κi−1(θα)−1eΓj}, i = 1, . . . , I

where κi = 1 + I−i
I
((θα)−1 − 1) , i = 0, 1, . . . , I

Step III: Determine the volume V (beSij) using, for instance, the Qhull soft-
ware (www.qhull.org), which employs the Quickhull algorithm for convex
hulls, as suggested by Barber, Dobkin and Huhdanpaa (1996).

Step IIIa: Convex hull generation and calculation of volumes is typically
difficult if facets are over-determined, i.e. if facets are generated by more data

points than the dimension of the space. Hence generating the sets beSij fromeΓ = {θixi/yi}i∈N where all inefficient data points are projected to facets
complicates the subsequent use of Qhull to determine facets and volumes.
Hence for practical purpose we only project a subset of inefficient points to
the facets. To determine which points are needed the following procedure is
used:
Project all inefficient observations dominated by points on exterior facets

to the frontier. Inefficient observations dominated by points on interior facets
are ignored since they provide no additional information. Let ICCR ⊂ N be
an index set of CCR-efficient DMUs. Solve a modified CCR-DEA model
evaluating each of the projected data points where the objective function
minimizes the sum of input slacks and the evaluated DMU is excluded from
the set of potential peers. We only project DMUs having a strictly positive
sum of slacks, i.e. points that can not be expressed as a convex combina-
tion of other projected points or the points in ICCR. Such projected DMUs
are needed to delimit bounded representations of the relevant (unbounded)
exterior facets.
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Step IV: Select a point q0 to be the vertex of the bounded cone K(q0),
such that the intersection with the bounded input set eS is non-empty (an
obvious choice could be a cost minimizing observation). One way to calculate
V (K(q0)) would involve both identification of extreme points dominated by
q0 and identification of all the extreme points of the intersection between
the cone {q|q ≥ q0} and the input set eS. (see Muller and Preparata 1978).
However, an easier way to calculate V (K(q0)) using QHULL is based on
the so-called Minkowski-Weyl’s Theorem (see Appendix), which states that
every polyhedron has both a (halfspace) H-representation and a (vertex) V-
representation.

In the specific case where we use the estimator beS, to find the volume
of the intersection of the bounded cone and beSij we suggest the following
subprocedure:

• Use QHULL to generate a H-representation of beSij, as defined by the
extreme points (cf. the set-up in Olesen and Petersen 2003).

• Augment the H-representation of beSij with r halfspaces defining the
bounded cone. Each of these halfspaces is characterized by having one
normal vector component equal to zero and all halfspaces contain the
vertex of the cone.

• Use Qhull to calculate the volume of this H-representation of beSij∩K(q0).

Step V: The number of data points that can be projected onto the bounded
cone #K(q0) is determined by a simple count of data points in eS dominated
by q0.

Step VI: It is now possible to establish the null hypothesis of the binomial

test. The ratios between V (
beSij ∩ K(q0)) and V (

beSij) is an estimator of the

probability of a projected data point being located within beSij ∩K(q0) if the
location of the data points is determined by the relative probability weighted
volumes alone. With n observations this means that we should expect nbbp
observations inside the bounded cone, where bbp is given by (14) resulting in
the test statistic z given by (12) and corresponding test probability.
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It should be noted that the proposed algorithm is well defined and can
be performed using a standard LP-solver combined with QHULL, which is
sufficient for most data sets. The Monte Carlo studies reported below is
performed using a combination of CPLEX (step I, and saving results on
files) and a Mathematica code (step II-VI) reading the CPLEX results on
scores and dominating vertices and calling a QHULL-code for getting the H-
representation of each intersection with the bounded cone and each volume
calculation.

5 Monte Carlo simulations, 3 inputs and one
output

A minor change in the representation of the input vector x expressed in
polar coordinates is introduced for the Monte Carlo simulation. We express
an input vector x ∈ Rr

+ as ηi = arctanxi+1/x1 for xi > 0 and π/2 if xi = 0 for
i = 1, . . . r − 1 and the modulus of the input vector is ω(x) = kxk2 ≡

√
xtx.

Hence, for r = 3, x2 = (tan η1)x1 and x3 = (tan η2)x1. We assume that the
true isoquant has the following form xα11 xα22 xα33 = 10, where α1+α2+α3 = 1.
Hence, x1 = 10 (tan η1)

−α2 (tan η2)
−α3 . ω2 = x21+x

2
2+x

2
3 from which it follows

that ω2 = x21 + x21 (tan
2 η1) + x21 (tan

2 η1) = x21 [1 + (tan
2 η1) + (tan

2 η2)] or

ω = 10 (tan η1)
−α2 (tan η2)

−α3
hp
1 + (tan2 η1) + (tan

2 η2)
i
. Hence, we use a

DGP where5

• tan ηi ≡ xi+1
x1
∼ U

£
tan (0.1) , tan

¡
π
2
− 0.1

¢¤
, i = 1, 2

• θ−1 ∼ U [1, 2]

• ω = θ−110 (tan η1)
−α2 (tan η2)

−α3
hp
1 + (tan2 η1) + (tan

2 η2)
i

Figure 3 illustrates this DGP for one of the replications of the simulation.
In
³
tan η1 =

x2
x1
, tan η2 =

x3
x1

´
space 200 observations are generated uniformly

distributed on
£
tan (0.1) , tan

¡
π
2
− 0.1

¢¤2
. 36 facets are spanning the frontier,

where the last two facets (f35 and f36) are spanned bymore than 3 data points
(exterior facets).

5The conversion from polar coordinates to Euclidian coordinates follows as x1 =

ω

q£
1 +

¡
tan2 η1

¢
+
¡
tan2 η2

¢¤−1
, x2 = (tan η1)x1, x3 = (tan η2)x1.
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Figure 3: 200 observations generated in (x2/x1)− (x3/x1) space
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Results from the Monte Carlo simulation are reported in Table 1-4. We
have analyzed the sensitivity of the results from the simulation with regard to
two and five different estimators of pfj and p

θ
i , respectively. bpfj (1) is estimated

as the relative number of DMUs projected to the j’th facet6 and bpfj (2) is
estimated as the relative volume of the j0th facet in x2

x1
− x3

x1
space. bpθi (l), l =

1, 2 are estimated as the relative number of DMUs with scores corresponding
to each of the ten slices, where we for l = 1 disregard all scores of one and
use the original scores and for l = 2 use a set of bias corrected scores (for
bias correction, see Wilson (2008) and Simar and Wilson (1998)). bpθi (l), l =
3, 4 are estimated like bpθi (l), l = 1, 2 but using a kernel estimator of the
density with a Gaussian kernel and bandwidth in {0.1, 0.15, 0.2} using the
reflection method to avoid bias at the boundaries of the bounded support
for θ (Silverman 1986). Optimal bandwidth (approximately 0.15 for l = 3)
has been estimated using cross validation (see Daraio and Simar (2007), Ch.
4, and Silverman (1986), Ch. 3). The score function is rather flat on the
interval [0.1, 0.2] for l = 3. Hence in the tables we have included results from
more than one bandwidth in this interval. The optimal bandwidth for l = 4
is approximately 0.1. Finally, bpθi (5) = 0.1,∀i reflecting the "true" generation
of θ in the DGP. We use B ∈ {50, 100, 150, 164} replications in this Monte
Carlo simulation. For each replication and each combination of bpfj and bpθi we
estimate the probability bbp(l, k) in (14):

bbp(l, k) = £bpθi (l)¤t
"
V (Kij(q

0))

V ( eSij)
# hbpfj (k)i , k = 1, 2, l = 1, . . . , 5

and the corresponding zlk in (12). Since data in the simulation is gener-
ated from a DGP that does not reflect any tendency to having an over-
representation of data points in the restricted cone we expect to see an em-
pirical distribution of the values of zlk closely resembling a standard N(0,1)
distribution. The results from the simulations show in general that bpfj (1)
performs rather poorly compared to bpfj (2) when combined with bpθi (5). Usingbpfj (2) in combination with the true information on the score distribution of
the DGP (bpθi (5)) provides a test statistic z25 that very nicely recovers the

6Efficient DMUs spanning the facets are added with a fraction to each facet reflecting
how many facets such a DMU is spanning. The estimator reflects only the generated 200
DMUs.
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characteristics of the DGP.

Results are presented for the accuracy of the proposed test statistic. The
summary statistics and the empirical coverage accuracy of both z31 and z32
with bandwidth equal to 0.2 are behaving reasonably, partly recovering the
characteristics of the DGP. Hence, these are the test statistics with the best
characteristics. The results in Table 1 and 2 show that the test statistic z32
(based on the kernel based score distribution from the non bias-corrected
scores bpθi (3) in combination with bpIj(2)) is almost unbiased but apparently
the smoothening from the kernel induces a variance above one even for a
sample size above 150. Combining bpθi (3) with with bpIj(1) for the test statis-
tic z31 decreases the bias of the variance but at the expense of a somewhat
positive biased mean value. Comparing z32 in Table 2 with z52 for increas-
ing bandwidth one can observe that increasing the smoothening implies a
decrease of the variance towards the expected value of one.

Table 2 presents empirical coverage accuracy of simple percentile intervals
for the 10 different estimators zlk from nominal standard N(0, 1) confidence
intervals. Hence, coverages at the nominal level of α ∈ {0.8, 0.9, 0.95, 0.97, 0.99}
show the relative numbers of the estimator zlk that fall within the intervals£
−Φ−1

¡
α
2

¢
,Φ−1

¡
α
2

¢¤
. The empirical coverage accuracy of z52 shows a nice

recovering of the DGP, but as mentioned above this test statistic relies on the
use of the true information of the distribution of the scores. Replacing this
true information with the kernels based information in z32 with a bandwidth
of 0.2 provides a coverage somewhat below the nominal value, which is to
be expected because the variance is biased upwards even for a sample size
above 150. Figure 4 shows the variance for z32 for increasing sample size and
suggests that the variance is indeed biased. Hence the Monte Carlo study
seems to suggest (accepting the premises in the form of the used assumption
behind the DGP) that testing Ho using z32 we should refrain from rejecting
Ho at e.g. 5 percent confidence with |z32| > 1.96. We should allow |z32| to
be as extreme as Φ−1(0.9875) = 2.24. This result is in accordance with the
discussion of the characteristics of the testor suggested in section 2.1. The
estimator

p
np̂(1− p̂) of the standard deviation of the test statistic z seems

indeed to be downward biased as expected.

Table 3 and 4 present the summary statistics and coverage accuracy for z32
and z52 for varying sample size and bandwidth. We again see that increasing
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Summary Statistics, Monte Carlo results

zij Mean V ariance Min Max Skewness

z11 -1.58144 0.623905 -4.23251 0.372523 -0.0990964
z12 -1.75651 0.757589 -4.16705 0.993659 0.209076

z21 0.304115 0.600193 -1.88618 2.84391 0.457486
z22 0.154575 0.721779 -1.92377 3.16947 0.442015

bandwidth = 0.1
z31 0.183046 1.48998 -3.65963 3.19543 -0.235727
z32 0.0255714 1.80728 -3.59005 2.9542 -0.17745

bandwidth = 0.15
z31 0.194465 1.30411 -3.45035 2.93507 -0.250046
z32 0.0365467 1.5956 -3.31926 2.84367 -0.181991

bandwidth = 0.2
z31 0.197774 1.13229 -3.21822 2.66221 -0.251012
z32 0.0427142 1.40117 -3.03304 2.72701 -0.174128

−
z51 0.213105 0.796296 -2.61312 2.31405 -0.228829
z52 0.0566723 1.01885 -2.46096 2.43443 -0.0902907

Table 1: Summary statistics of the testors
zl,1 facet probabilities estimated from relative number of projected data points

zl,2 facet probabilities estimated from relative volume of facets

zl,k, l = 1, 2 score interval probabilities estimated from empirical score distributions

zl,k, l = 3, 4 score interval probabilities estimated from kernel density score distributions

z5,k score interval probabilities equal to 0.1
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Simulation Monte Carlo results

Nominal levels 0.8,0.9,0.95,0.975,0.99

zij 0.8 0.9 0.95 0.975 0.99

z11 0.349693 0.509202 0.699387 0.797546 0.91411
z12 0.294479 0.429448 0.552147 0.699387 0.822086

z21 0.889571 0.944785 0.969325 0.981595 0.981595
z22 0.895706 0.95092 0.969325 0.97546 0.993865

bandwidth = 0.1
z31 0.717791 0.815951 0.90184 0.92638 0.96319
z32 0.680982 0.773006 0.834356 0.907975 0.95092

bandwidth = 0.15
z31 0.723926 0.846626 0.91411 0.93865 0.98773
z32 0.693252 0.797546 0.877301 0.92638 0.95092

bandwidth = 0.2
z31 0.760736 0.883436 0.92638 0.969325 0.98773
z32 0.723926 0.815951 0.889571 0.932515 0.96319

−
z51 0.846626 0.920245 0.96319 0.98773 0.993865
z52 0.809816 0.889571 0.932515 0.969325 1.

Table 2: The accuracy of the coverage of the testors
zl,1 facet probabilities estimated from relative number of projected data points

zl,2 facet probabilities estimated from relative volume of facets

zl,k, l = 1, 2 score interval probabilities estimated from empirical score distributions

zl,k, l = 3, 4 score interval probabilities estimated from kernel density score distributions

z5,k score interval probabilities equal to 0.1
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Summary Statistics, Monte Carlo results

zij Mean V ariance Min Max Skewness

bandwidth = 0.1, B = 50, 100, 150, 164
z32 -0.0423542 1.76272 -3.22304 2.8622 0.122281
z32 -0.112964 1.80697 -3.37765 2.9542 0.0683355
z32 -0.004464 1.81732 -3.59005 2.9542 -0.193337
z32 0.0255714 1.80728 -3.59005 2.9542 -0.17745

bandwidth = 0.2, B = 50, 100, 150, 164
z32 -0.00535393 1.32712 -2.68905 2.32881 0.0971093
z32 -0.0768455 1.39895 -2.94285 2.61226 0.0459719
z32 0.0211947 1.41388 -3.03304 2.61226 -0.203502
z32 0.0427142 1.40117 -3.03304 2.72701 -0.174128

B = 50, 100, 150, 164
z52 0.0242642 0.925966 -2.01797 1.87989 0.114405
z52 -0.048325 1.0211 -2.36023 2.23369 0.126139
z52 0.0445987 1.03427 -2.46096 2.26337 -0.136333
z52 0.0566723 1.01885 -2.46096 2.43443 -0.0902907

Table 3: Summary statistics of selected testors for varying sample size
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Simulation Monte Carlo results

Nominal levels 0.8,0.9,0.95,0.975,0.99

zij 0.8 0.9 0.95 0.975 0.99

bandwidth = 0.1, B = 50, 100, 150, 164
z32 0.68 0.76 0.84 0.92 0.96
z32 0.7 0.78 0.84 0.9 0.94
z32 0.68 0.773333 0.833333 0.906667 0.953333
z32 0.680982 0.773006 0.834356 0.907975 0.95092

bandwidth = 0.2, B = 50, 100, 150, 164
z32 0.74 0.82 0.9 0.96 0.98
z32 0.75 0.82 0.88 0.93 0.96
z32 0.726667 0.813333 0.886667 0.933333 0.966667
z32 0.723926 0.815951 0.889571 0.932515 0.96319

B = 50, 100, 150, 164
z52 0.8 0.9 0.98 1. 1.
z52 0.8 0.88 0.93 0.99 1.
z52 0.806667 0.886667 0.933333 0.973333 1.
z52 0.809816 0.889571 0.932515 0.969325 1.

Table 4: The coverage of the testors for varying sample size
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Figure 4: Variance for z32 for increasing sample size.

the bandwidth tends to decrease the variance of z32 towards one. We have
also experimented with a kernel estimation of the bias corrected empirical
score distribution. These results are not encouraging. The bias correction
(Wilson (2008), Simar andWilson (1998)) apparently imply a structural over-
representation of scores in the lower part [0.5, 0.75] of the support compared
to the upper part [0.75, 1]. As illustrated in table A1 and A2 in Appendix this
structural error implies that both the summary statistics and the coverage
accuracy are far from being satisfactory. It is beyond the scope of this paper
to analyze why the bias correction has this peculiar impact on the kernel
based density estimation, and this is left for future research.

6 Final remarks

This paper has introduced the idea of testing for over-representation of data
points in specific production zones. The approach was then operational-
ized based on discrete approximations of the densities of both the efficiency
scores and the input mixes (angles). The test is non-parametric and being
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ratio-based it is scale (but not affinely) invariant. It relates to estimated
technologies using only standard assumptions of convexity, ray unbounded-
ness and minimal extrapolation. For practical applications the assumption of
ray unboundedness (constant returns to scale in production) probably seem
limiting, but in fact the DEA literature is full of empirical studies where the
constant returns to scale assumption seems justified, at least within a reason-
able range of input-output values. Furthermore, well-established theoretical
approaches, like the DEA based Malmquist index of productivity change,
rely on constant returns to scale (see e.g. Wheelock and Wilson 1999).
That the practical test procedure in this paper is presented in a multiple

input-single output setting alone, is simply for notational and computational
convenience. The idea can easily be generalized to the multiple output sce-
nario, but note that the increased dimensionality increases the probabilities
of getting thinly populated combinations of facets and slices (for a given
sample size), which reduces the strength of the test.
Several takeaways are available from the Monte Carlo simulation. Based

on different choices of both facet probabilities and of probabilities of the dis-
crete approximation to the assumed common inefficiency distribution we have
illustrated the performance of the proposed test statistic. The best estimator
of the common inefficiency distribution is apparently the estimator based on
a kernel density estimation from the empirical score distribution (denotedbpθi (3)) which has not been bias corrected. The estimator of probabilities of
input mix or rather of the discrete approximation to the (assumed) common
mix distribution based on the relative volumes of the facets in x2

x1
− x3

x1
space

(that is bpfj (2)) apparently performs slightly better than the estimator based
on the relative number of DMUs projected on to each facet (that is bpfj (1)).
The combination of bpfj (1) and bpθi (3) provides however a test statistic with the
best coverage, but this test statistic has a somewhat positively biased mean
value. Finally, it seems that the variance of the test statistic from the com-
bination bpθi (3) and bpfj (2) is somewhat biased even for sample sizes above 150
in a three dimensional input space. Further research is needed to determine
if that is in fact a general tendency, but the result seems to suggest caution
when testing Ho using this test statistic.

24



References

[1] Banker, R.D., A Charnes and W.W. Cooper (1984), Some models for
estimating technical and scale inefficiencies in Data Envelopment Analy-
sis, Management Science, 30, 1078-1092.

[2] Barber, C.B., D.P. Dobkin and H.T. Huhdanpaa (1996), The Quick-
hull Algorithm for Convex Hulls, ACM Transactions on Mathematical
Software, 22, 469-483.

[3] Bogetoft, P. and J.L. Hougaard (2003), Rational inefficiencies, Journal
of Productivity Analysis, 20, 243-271.

[4] Daraio, C. and Simar, L. (Eds) (2007), Advancex Robust and Nonpara-
metric Methods in Efficiency Analysis - Methodology and Applications,
Springer New York.

[5] Fraley, C. and A. Raftery (1998), HowMany Clusters? Which Clustering
Method? — Answers Via Model-Based Cluster Analysis, The Computer
Journal, 41, 578-588.

[6] Fraley, C. and A. Raftery (1999), Mclust: Software for Model-Based
Clustering, Journal of Classification, 16, 297-306.

[7] Hartigan, J.A. (1975), Clustering Algorithms, John Wiley & Sons, New
York.

[8] Hartigan, J.A. (1981), Consistency of Single-Linkage for High-Density
Clusters, Journal of the American Statistical Association, 76, 388-294.

[9] Hartigan, J.A. (1986), Statistical Theory in Clustering, Journal of Clas-
sification, 2, 63-76.

[10] McLachlan, G.J. and D. Peel (2000), Finite Mixture Models, Wiley Se-
ries in Probability and Statistics.

[11] Muller, D.E. and Preparata, F.P. (1878), Finding the Intersection of two
Convex Polyhedra, Theoretical Computer Science, 7, 17-236.

[12] Olesen, O.B and N.C. Petersen (2003), Identification and use of efficient
faces and facets in DEA, Journal of Productivity Analysis, 20, 323-360.

25



[13] Silverman, B. W. (1986). Density Estimation for Statistics and Data
Analysis, London: Chapman and Hall

[14] Siegel S. and N.J. Castellan (1988), Nonparametric Statistics for the
Behavioral Sciences, McGraw-Hill.

[15] Simar, L. and P.W. Wilson (1998), Sensitivity analysis of efficiency
scores: How to bootstrap in nonparametric frontier models, Manage-
ment Science, 44, 49-61.

[16] Simar, L., and P.W. Wilson (2000), Statistical inference in nonpara-
metric frontier models: The state of the art, Journal of Productivity
Analysis, 13, 49-78

[17] Thanassoulis (2001), Introduction to the Theory and Application of
Data Envelopment Analysis: A foundation text with integrated soft-
ware, Kluwer Academic Publishers.

[18] Wheelock, D.C. and P.W. Wilson (1999), Technical Progress, Ineffi-
ciency, and Productivity Change in U.S. Banking, 1984-1993, Journal
of Money, Credit and Banking, 31, 212-234.

[19] Wilson, P. W. (2008), "FEAR 1.0: A Package for Frontier Efficiency
Analysis with R," Socio-Economic Planning Sciences 42, 247—254

[20] Wishart, D. (1969), Mode Analysis: A Generalization of Nearest Neigh-
bor which Reduces Chaining Effects, in Cole, A.J. (Ed), Numerical Tax-
onomy, Academic Press, 282-311.

Appendix

The Minkowski-Weyl Theorem: For a subset P of Rn, the following state-
ments are equivalent:
(a) P is a polyhedron which means that there exist some fixed real matrix A
and a real vector b such that {P = x : Ax ≤ b}
(b) There are finite real vectors v1, v2, . . . . vs and r1, r2, . . . , rt in Rn such that

P = conv {v1, v2, . . . . vs}+ cone {r1, r2, . . . , rt}

Results based on bis corrected scores:
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Summary Statistics, Monte Carlo results

zij Mean V ariance Min Max Skewness

bandwidth = 0.1
z41 1.66901 1.85947 -2.31623 4.72554 -0.128694
z42 1.52079 2.17503 -2.23857 4.73 -0.0813843

bandwidth = 0.2
z41 0.987224 1.26812 -2.46287 3.46981 -0.170587
z42 0.837708 1.53803 -2.27749 3.66136 -0.0971653

Table A1 Summary statistics of the testors (bias corrected scores)

Simulation Monte Carlo results

Nominal levels 0.8,0.9,0.95,0.975,0.99

zij 0.8 0.9 0.95 0.975 0.99

bandwidth = 0.1
z41 0.386503 0.496933 0.539877 0.619632 0.730061
z42 0.429448 0.478528 0.570552 0.680982 0.754601

bandwidth = 0.2
z41 0.558282 0.699387 0.785276 0.865031 0.920245
z42 0.601227 0.699387 0.785276 0.846626 0.907975

Table A2 The accuracy of the coverage of the test statistics (bias corrected scores)
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