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studies
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Part I. Epigenetics of aging using twins

1. Modeling the overall aging-associated changes (epigenetic
drift) in twins

—> similarities/divergence in twins with age will shed light to
familial and environmental influences

2. Twin models for the epigenetic clocks: Horvath and Levine
clocks

—> gaining insights to the variance components (A, D, C, E)

Part Il Aging-associated frailty syndrome

- a shared frailty model (between-within) in twins to account for
unmeasured familial confounding in relation to frailty syndrome
and mortality

- twin models (using latent growth curves) and epigenetics of frailty
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EPIGENETICS = mechanisms that have an effect on gene
expression that are not based on the nucleotide sequence and
can be inherited by cell division and even from parent to progeny

GENETICS EPIGENETICS
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Modifiable and reversible patterns
- but to what extent?
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www.frontiersin.org



DNA methylation - how does it work?

-oxidation
-TET1, TET2, TET3
-deamination and
base excision repair
-TDG, AID,
APOBEC

\

- active processes, excl. passive
demethylation
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DNA methylation - what does it do? ﬁ%@

*
'?NNO 1%\0

= direct and indirect regulation of gene expression

transcription

factor \/\
e

gene

Methyl binding
protein <::::::>
N
S

- cell differentiation, cell-type specific expression patterns

= repression of viral segments and repetitive elements, e.g.

transposons
= female X chromosome inactivation
= Imprinting of genes
= chromatin stabilization, interactions with nucleosomes

> Karolinska

Institutet




SR .

S g st Karolinska

2 7 Institutet
/VN AN

DNA methylation - facts

More than 28 million CpG sites in the human genome
- 80% are methylated

= Form CpG islands (CGl) that have a high CG content
- 25000 CGils in the human genome, 1kb in length
- Usually locate within or close to gene promoters

- CGils co-localize with promoters of all constitutively
expressed genes and with 40% of all promoters
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EWAS (epigenome-wide association study)
arrays

= Jllumina 27k array
= |llumina 450k array
= |llumina EPIC array (”850k array”)

= whole-genome sequencing
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From DNA to EWAS - what does it take? ﬁ

= The lllumina Infinium bead arrays:
27k (27k promoter sites ), 450k (~470 000 sites) and the
EPIC array (=850 000 sites, incl. 95% of the 450k content)

Gene CpG island Regulatory regions
300 000 distribution distribution distribution
3 [ ] EPIC/HM450 probes
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If they ask you anything you don’t know,
just say it's due to epigenetics

EWAS = epigenome-wide association study

Many diseases have an "epigenetic sighature”
- cancer
- autoimmune diseases, inflammatory diseases e.g. asthma

- aging
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Aging & methylation

Epigenetic drift/somatic epimutation

A.
Parental genomic
L ———

Germline
epimutation demethylation
E = =
Developmental tissue-specific epigenetic programming
B =

B_ Gametes —» Zygote —»  Embryo —» Fetus — Baby/child —» Adolescent —»  Adult — Elderly

N Paternal imprinting established 'p

OQ—w '

!

Matemal imprinting established
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Different types of methylomic alterations with age

1. Aging-associated epigenetic drift

- profound changes throughout the epigenome: global
hypomethylation and site-specific hypermethylation

Promoter
hypermethylation

Similarities
with cancer

DNA methylation

Global
hypomethylation

Age :
- reproducible across different cohorts, “programmed pattern”?
- maladaptive or even adaptive? Purpose? Not predictive of
mortality anyway

2. Epigenetic clock(s)

14



The Swedish Adoption/Twin Study of Aging (SATSA) fsgf-: Karolinska

The epigenetic drift in SATSA
= Longitudinal epigenome-wide association study on age

* Fitted a mixed effect model with
- Fixed effects: Age, sex and zygosity
- Random effects: Twin pair

= |dentified 1316 CpGs associated with age, with p-value < 1.3x10/

. cg16867657
30 © ELOVL2

25

—log1o(p)

1 2 3 4 5 6 7 8 9 10 11 12 13 14 16 18 20 22
Chromosome

15
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The Swedish Adoption/Twin Study of Aging (SATSA) 5%%@% Karolinska
2 3

Distance between twins

(Wang et al., bioRxiv https://doi.org/10.1101/226266) Institutet
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Euclidean distances between twins, on average in all sites (a) and in age-
associated sites (b)

= Differences within twin pairs increase with age
- DZs differ more than MZs
= Age-assoicated sites display a steeper slope than all CpGs

—> unique environmental factors come into play even more with age
All 390894 CpGs Age-associated 1316 CpGs

a : b

Zygosity
- MZ
- DZ

e : o (S Zygosity
< o o) MRl oL - MZ
- DZ

Distance between twins

50 60 70 80 90 100 ; v . ; ’ ;
Age 50 60 70 80 90 100

16



Epigenetic clock, epigenetic age
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= Horvath clock = an epigenetic biomarker of aging based on

DNA methylation levels

- a selection of CpG sites whose sum score of methylation
levels is supposed to work as a biomarker reflecting biological

aging
= chronological age # biological age
= chronological age as a reference

Biological age (years)

[ ‘Older’ epigenome

— N
Average
epigenome at
chronological age

X

' “Younger' epigenome

10 20 30 40 50 60 70 80 90 100
Chronological age (years)

Nature Reviews | Molecular Cell Biology
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Steve Horvath

Brad Swonetz/Redux/Eyevine
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The Horvath clock

= Online calculator:
https://labs.genetics.ucla.edu/horvath/dnamage/
= FAQ:

https://labs.genetics.ucla.edu/horvath/dnamage/
fag.htm

= Wikipedia
https://len.wikipedia.org/wiki/Epigenetic_clock



https://labs.genetics.ucla.edu/horvath/dnamage/
https://labs.genetics.ucla.edu/horvath/dnamage/faq.htm
https://en.wikipedia.org/wiki/Epigenetic_clock
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”The other” epigenetic clocks

* The Hannum predictor (Genome-wide methylation profiles

reveal quantitative views of human aging rates. Moll Cell. 2013 Jan
24;49(2))

- 71 CpG sites

- Designed in blood, needs adjustment to work Iin
other tissues

* The Weidener predictor (Aging of blood can be tracked by

DNA methylation changes at just three CpG sites. Genome Biol. 2014
Feb 3;15(2))

- Uses only 3 CpG sites
- Works only in blood
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Findings in two Finnish cohorts: Vitality 90+
and Young Finns study

Kananen L, Marttila S, Nevalainen T, Kummola L, Junttila I, Mononen N, Kdhonen M, Raitakari OT,
Hervonen A, Jylhda M, Lehtimdki T, Hurme M, Jylhdva J. The trajectory of the blood DNA methylome

ageing rate is largely set before adulthood: evidence from two longitudinal studies. Age (Dordr). 2016
Jun;38(3):65

25-year follow-up 4year follow-up
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Euclidean distances between twins in the Horvath epigenetic clock
CpGs (SATSA, Wang et al., bioRxiv https://doi.org/10.1101/226266)

Zygosity

- DZ

Distance between twins

50 60 70 80 90 100

24



The Horvath clock ﬁ%gf ot

Quiz
- Qutside academial/research, for what other

purposes could the Horvath clock or any other
age-predicting clocks be used for?
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“The big question is whether the
clock measures a biochemical
process that serves a purpose”

www.aging-us.com AGING 2016, Vol. 8, No. 9

Priority Research Paper

DNA methylation-based measures of biological age: meta-analysis
predicting time to death

-both Horvath and Hannum clocks predict all-cause mortality
independent of other risk factors
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Correlation with aging phenotypes

= Relatively few observations with aging traits

* [ncreased epigenetic aging reported in a rather small
number of diseases, such as Parkinson’s disease,
progeroid diseases, Alzheimer, Down syndrome, HIV-1,
osteoarthritis..

- tissue-specificity?




355 s,

. = Karolinsk
The DNAmM PhenoAge = Levine clock ;@%&g Insttutet

o 1w

www.aging-us.com AGING 2018, Vol. 10, No. 4

i+ Research Paper

An epigenetic biomarker of aging for lifespan and healthspan

Morgan E. Levine’, Ake T. Lu’, Austin Quach’, Brian H. Chen’, Themistocles L. Assimes’, Stefania
Bandinelli®, Lifang Hou®, Andrea A. Baccarelli®, James D. Stewart’, Yun Li®, Eric A. Whitsel’”, James
G Wilson'®, Alex P Reiner'?, Abraham Aviv'?, Kurt Lohman®?, Yongmei Liu™, Luigi Ferrucci®’, Steve
Horvath™**"

- 513 CpGs

Variable Units Weight

- better predlctor for Albumin Liver o/l -0.0336
. Creatinine Kidney umol/L 0.0095

all-cause mortallty’ Glucose, serum Metabolic mmol/L 0.1953
cancers, health Span,  Ceeactive protein (log) Inflammation mg/dL 0.0954

h . 1 f t- . Lymphocyte percent Immune %o -0.0120

p ySICa unc 10n1ng’ Mean cell volume Immune fL 0.0268
and Alzheimer's Red cell distribution width Immune % 0.3306

. Alkaline phosphatase Liver U/L 0.0019
dlsease than the White blood cell count Immune 1000 cells/ul 0.0554

Horvath clock Age Years 0.0804

28
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The Longitudinal Study of The Swedish Adoption/Twin

Aging Danish Twins (LSADT) Study of Aging (SATSA)

0 43 pairs o 53 pairs
o 18 MZ, 25 DZ o 22MZ,31DZ
o 10 years between waves o Av. 9.6 years between waves

o Time 1 =76.2 years (SD=1.8) o Time 1 =62.9 years (SD=7.2)
o Time 2 =86.1 years (SD=1.8) o Time 2 =72.5 years (SD=7.2)
0 72% female o 53% female

- all like-sex twin pairs

- bivarate Cholesky model using two measurement occasions as the
outcomes
* For the Levine clock, only the Swedish sample was used
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Horvath clock
Twin correlations and phenotypic correlation

Phenotypic
correlation
(95% CI)

Horvath clock Timel Horvath clock Time2

(95% CI) (95% CI)

0.17 (-0.14-0.45) 0.50 (0.22-0.70)

0.54 (0.35-0.64)
0.44 (0.21-0.62) 0.23 (-0.02-0.45)

Cross-twin cross-trait correlations (CTCT)
MZr: 0.38
DZr: 0.30
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Quiz

What do the CTCT correlations tell you?

31
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Levine clock
Twin correlations and phenotypic correlation

Phenotypic
correlation
(95% CI)

Levine clock Timel | Levine clock Time2

(95% Cl) CEXe)

MZ 0.56 (0.15-0.80) 0.41 (-0.03-0.71)
0.20 (0.00-0.39)

DZ 0.09 (-0.27-0.43) 0.29 (-0.07-0.58)

- Phenotypic correlation of 0.2 would suggest that the individuals
change more 1n their Levine clock (DNAm PhenoAge) with age that
in the Horvath clock

Cross-twin cross-trait correlations (CTCT)
MZr 0.24
DZr 0.10
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Variance components for the Horvath clock:
bivariate ADE model

Parameter estimates (% of variance explained + SEs) form the bivariate ADE model

- increase in genetic influences with age

Tlmel 0.35 0.01 0.65

(0 13) (0.05) (0.12) 1.00 1.00 0.31
_ 0.29 0.21 0.50 (0.00) (0.00) (0.13)
Time 2

(0.24) (0.27) (0.12)

Quiz
What do the correlations (rA, rD, rD) tell you?
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Variance components for the Levine clock:
bivariate ADE model

Parameter estimates (% of variance explained + SEs) form the bivariate
ADE model

-
SRR 0.06 041 052

(0.26)  (0.33)  (0.21) 100  0.99 0.12
IR 0.40 001 059 (0.00) (0.00)  (0.22)
MaE 020) (0.11) (0.16)

- small decrease in genetic influences with age, still the same genetic
factors that act upon the Levine clock throughout aging
- however, a great amount of new unique environmental influences

- QUIZ: how would you interpret the negative correlation rE?
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Sumary from the bivariate models
- what purpose do the results serve?

Moderate heritability for both clocks

Small increase in genetic influences for the Horvath clock with
age

Small decrease in genetic influences for the Levine clock with
age

No new genetic influences for both clocks with age

New environmental influences come into play with aging for both
clocks!
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Aging-associated frailty
What is it and why does it matter?

a state of increased vulnerability and loss of capacity to maintain
homeostasis after a stressor event

significant risk factor for mortality and other adverse outcomes
marker of biological age

External stressor (e.g. minor illness or injury)

!

Managmg Response to stressor

Well |

Mild Response to stressor

36



Frailty and the epigenetick clock

Breitling et al. Clinical Epigenetics (2016) 821

DOI 10.1186/513148-016-0186-5 C||n|{:a| Eplgenetlcs

RESEARCH Open Access

Frailty is associated with the epigenetic ~ ®
clock but not with telomere length in a
German cohort

Lutz Philipp Breitling'”, Kai-Uwe Saum', Laura Perna', Ben Schottker'”, Bernd Holleczek® and Hermann Brenner'
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Na

X .= Karolinska

EX 7 Institutet
4’\’No 1%‘0

GeroScience (2017) 39:83-02
DOL 10.1007/511357-017-9960-3

@ Crosshark

ORIGINAL ARTICLE

The frailty index outperforms DNA methylation age
and its derivatives as an indicator of biological age

Sangkyu Kim{ - Leann Myers - Jennifer Wyckoff -
Katie E. Cherry - 5. Michal Jazwinski

37
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How to assess frailty

= various ways (20+ scales!)

* the Rockwood frailty index (FI) and the Fried frailty
phenotype most commonly used

* the Fl is a continuous scale measure that provides
good sensitivity and resolution also at the lower and
middle ends of the frailty continuum

- FIl = frallty

38
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Between-within frailty model (gamma BW) for
mortality

Screening Across the Lifespan Twin study (SALT)
N=43,000; MZs, DZs same and opposite sex

- 32,146 twins in complete pairs available for analysis

Wno 1%‘0

in Medlcme
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Research Article

Between-within models for survival analysis
Arvid Sjolander s, Paul Lichtenstein, Henrik Larsson, Yudi Pawitan

published: 03 March 2013 | https://doi.org/10.1002/sim.5767 | Cited b

SMMR

Article
Seatistical Methods in Medical Research
0ja) 1-24
Regression standardization and Meormes s et
attributable fraction estimation TS
- - - - journals sagepub comhome’smm
with between-within frailty models §SAGE

for clustered survival data

Elisabeth Dahlqwist, Yudi Pawitan and Arvid Sjélander

39
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The between-within (BW) model
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- Control for the familiar unmeasured confounding between frailty
syndrome and mortality

- genetics and early life exposures contribute to the associations?

Gamma BW model:
h(t;;|X;, cluster i) = ho(t;;)Texp(BeXx; + Buwxi;)

ho(tij): baseline hazard

i: twin pair

J: individual twin

u: shared frailty (cluster specific), following gamma distribution

x: frailty index

x : mean frailty index within each twin pair

fB: between-cluster effect, quantifying the degree of shared confounding
pw: within-cluster effect, quantifying the exposure-survival association
within twin pairs

40



eﬁ“ N,

-2 Karolinska
a? g 7 Institutet

Time-varying effects under the generallzed
survival model framework

log (—log (S(ti}-|xij,ui))) =S, (tij; ]/) + log(u;) + fgx; + xijsl(t”; Bw) + ‘53,,1(:;;1 + 6y, Ci

s1(tij;fW): time-dependent within twin-pair effect (smooth function)
sO(tij;y): baseline survival (smooth function)
C: covariates (sex, BMI, education, smoking)

- detailed dissection of the age-varying HRs using splines
- also testing for sex-interaction with the time-varying HRs
- both all-cause and cause-specific mortality as outcomes

41
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exposure (Fl): the attributable fraction (AF)

Pr(7y < 1)

AR =1=F75

where

Pr(T<t) =1-S(t) is the factual probability of an event at or before time T=t,
Pr(To<t) is the counterfactual probability of an event at or before time t
had the exposure been eliminated from the population at baseline

= Analyzed under the BW model and extended for time-varying
AFs (fraction at any given age)

= The Fl was categorized to "low FI” and "high FI” using the
medians as cut-off

= To recap: AF(t) measures the proportion of events that would

have been prevented before time T=t, had the whole population
been unexposed
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- MZs and DZs (same and opposite sex) tested for the frailty term

- analyzed together
- however, sex differences were observed - models stratified for sex
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On average, HR for 10% increase in FI is associated with 50% increased
mortality risk at midlife, the risk declines towards the old ages

10% Fl increase for all cause mortality 10% Fl increase for all cause mortality in men 10% Fl increase for all cause mortality in women
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Cause-specific mortality: CANCER
- adjusted for baseline cancer diagnosis

Overall, a significant risk at midlife in the whole population and in
women, but the HRs become non-significant towards the old ages

All Men Women

10% Fl increase for cancer mortality 10% Fl increase for cancer mortality in men 10% Fl increase for cancer mortality in women
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Cause-specific mortality: cardiovascular disease

(CVD)

- adjusted for baseline CVD status

FI strognly predictive of CVD-mortality, especially in women
- 10% increase in Fl is associated with 50-80% increase in CVD mortality

All

10% Fl increase for cvd mortality
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10% Fl increase for cvd mortality in men
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Women

10% Fl increase for cvd mortality in women
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AFs for all-cause, cancer and CVD mortality

A very simple quiz: how would you intrepret the results?

Frail and all-cause mortality with time-varying effect

Aftained Age (years)

Attributable fraction
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Frail and Cancer mortality with time-varying effect
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Frail and CVD mortality with time-varying effect

Attained Age (years)
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We also tested deaths due to
- dementia (N.S)

- diabetes (N.S, low power)
- respiratory causes (significnat, but low power )
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Ongoing & upcoming

= Heritability of frailty

- Two previous studies have demonstrated moderate heritability,
depending on the measure used to assess frailty

Dato et al. Age (Dordr). 2012 Jun; 34(3): 571-582 and
Young et al. Twin Res Hum Genet. 2016 Dec;19(6):600-609.

- What we can do: longitudinal analysis using LGM across 30
years of serial assessment for Fl in SATSA (N=1,831)

= Epigenetics of frailty
- EWAS hits and their heritability
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Thank yout

= Questions?
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