

Epigenetics of aging and frailty in twin studies

16th May 2018 Juulia Jylhävä, PhD Assistant professor Departement of Medical Epidemiology and Biostatistics Karolinska Institutet

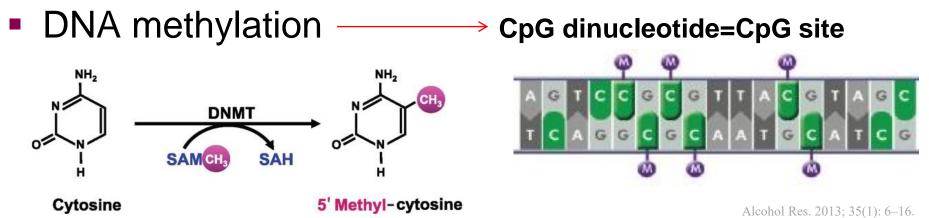
Part I: Epigenetics of aging using twins

1. Modeling the overall aging-associated changes (epigenetic drift) in twins

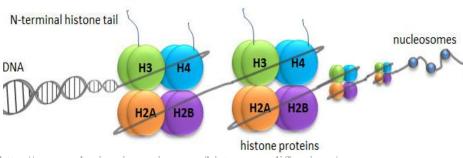
 \rightarrow similarities/divergence in twins with age will shed light to familial and environmental influences

2. Twin models for the epigenetic clocks: Horvath and Levine clocks

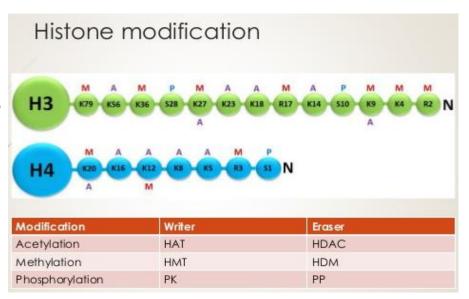
 \rightarrow gaining insights to the variance components (A, D, C, E)


Part II: Aging-associated frailty syndrome

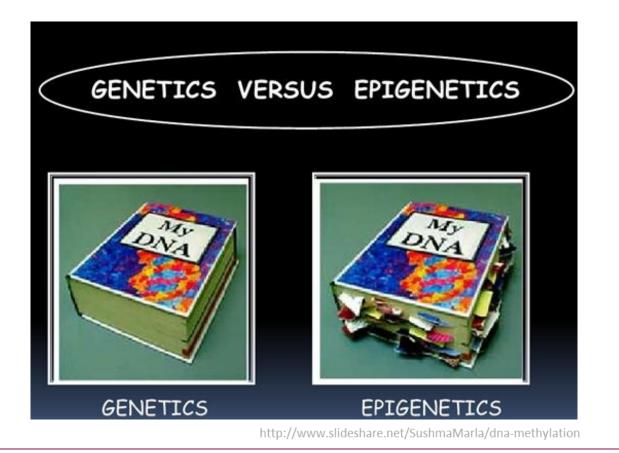
- *a shared frailty model* (between-within) in twins to account for unmeasured familial confounding in relation to frailty syndrome and mortality

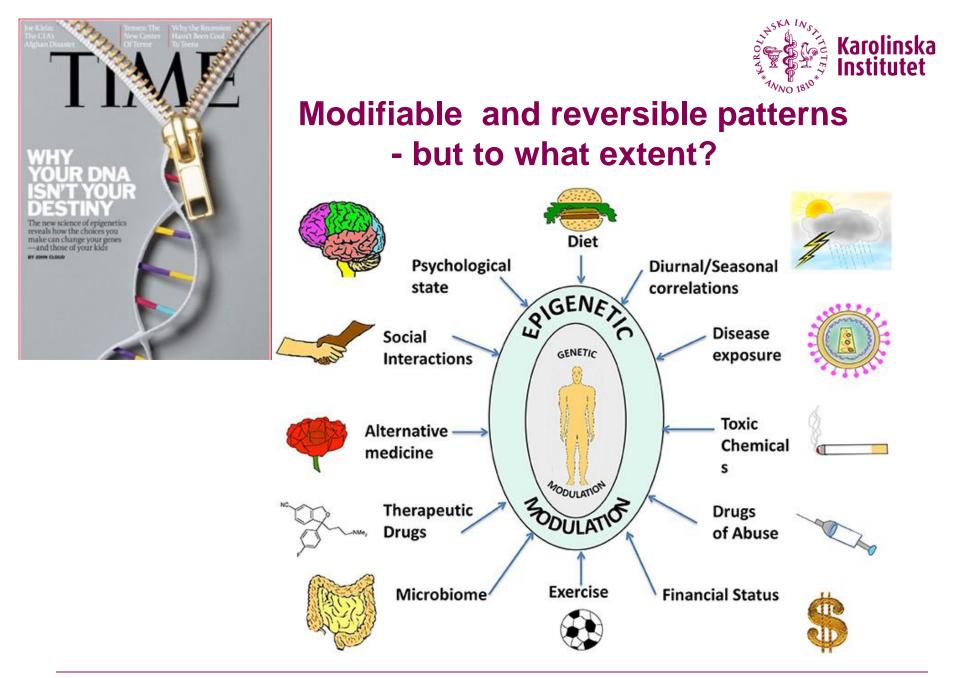

- twin models (using latent growth curves) and epigenetics of frailty

Types of epigenetic modifications

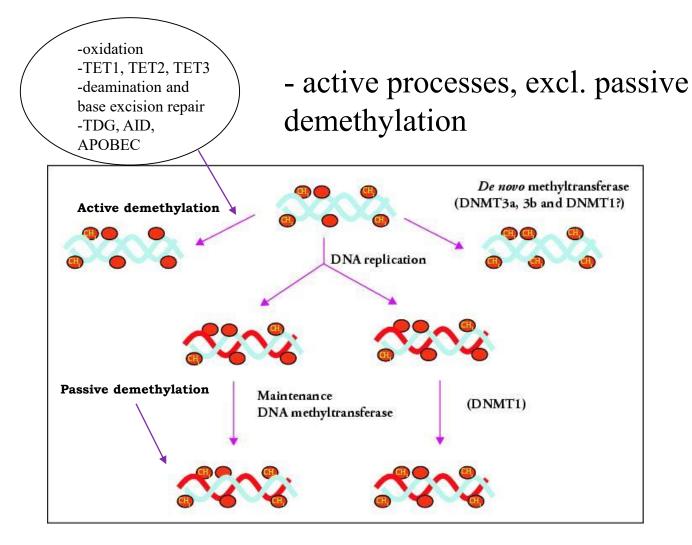


Histone modifications


http://www.whatisepigenetics.com/histone-modifications/

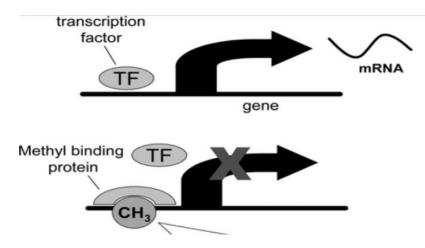

Small RNA species

EPIGENETICS = mechanisms that have an effect on gene expression that are not based on the nucleotide sequence and can be inherited by cell division and even from parent to progeny



www.frontiersin.org

DNA methylation - how does it work?



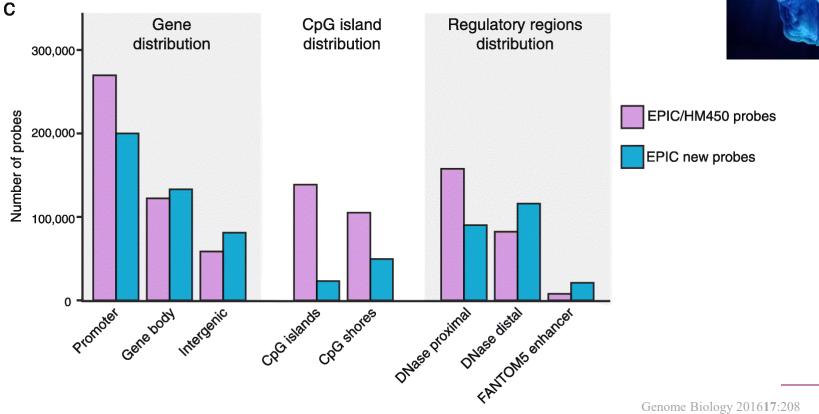
DNA methylation - what does it do?

direct and indirect regulation of gene expression

- cell differentiation, cell-type specific expression patterns
- repression of viral segments and repetitive elements, e.g. transposons
- female X chromosome inactivation
- imprinting of genes
- chromatin stabilization, interactions with nucleosomes

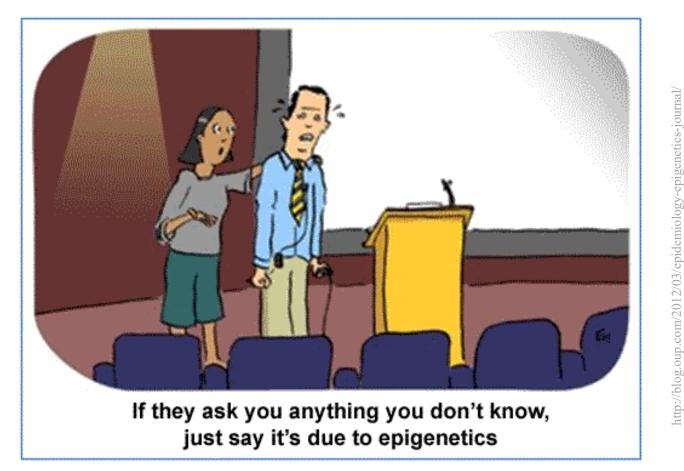
DNA methylation - facts

- More than 28 million CpG sites in the human genome
- 80% are methylated
- Form CpG islands (CGI) that have a high CG content
- 25 000 CGIs in the human genome, 1kb in length
- Usually locate within or close to gene promoters
- CGIs co-localize with promoters of **all constitutively** expressed genes and with 40% of all promoters



EWAS (epigenome-wide association study) arrays

- Illumina 27k array
- Illumina 450k array
- Illumina EPIC array ("850k array")
- whole-genome sequencing

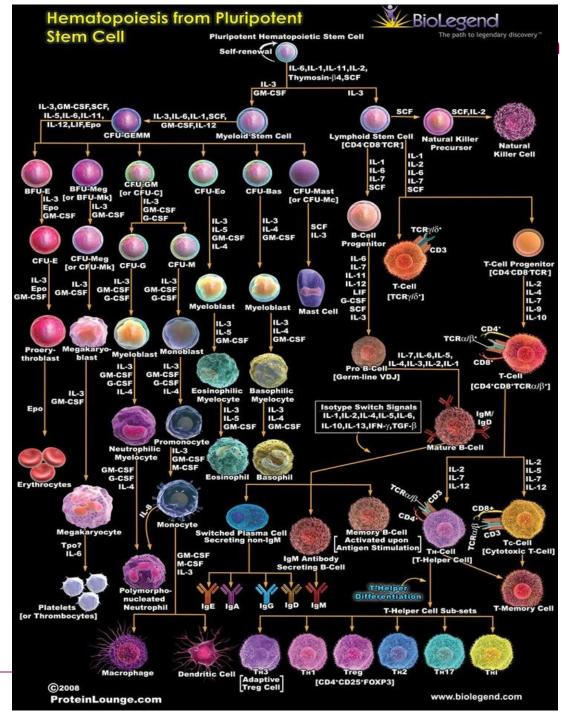

From DNA to EWAS – what does it take?

The Illumina Infinium bead arrays: 27k (27k promoter sites), 450k (~470 000 sites) and the EPIC array (~850 000 sites, incl. 95% of the 450k content)

EWAS = epigenome-wide association study

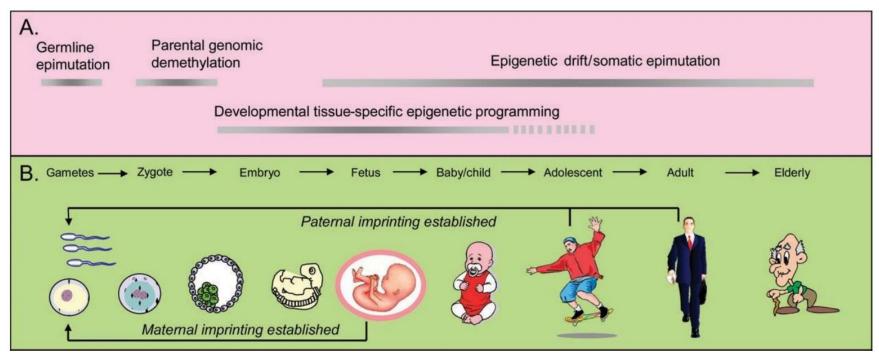
Many diseases have an "epigenetic signature"

- cancer
- autoimmune diseases, inflammatory diseases e.g. asthma
- aging


When using blood, correct for cell types!!

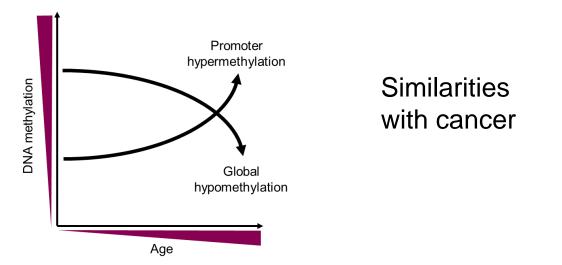
The Houseman algorithm: estimateCellCounts CD8T, CD4T, NK, Bcell, Mono, Gran

FACS


Also new methods available

QUIZ: why is adjustment for cell type proportions of utmost importance?

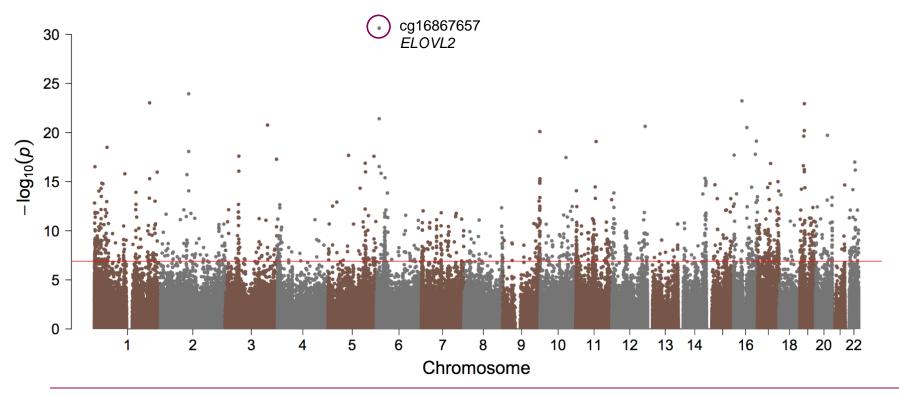
Aging & methylation



Different types of methylomic alterations with age

- 1. Aging-associated epigenetic drift
- profound changes throughout the epigenome: global hypomethylation and site-specific hypermethylation

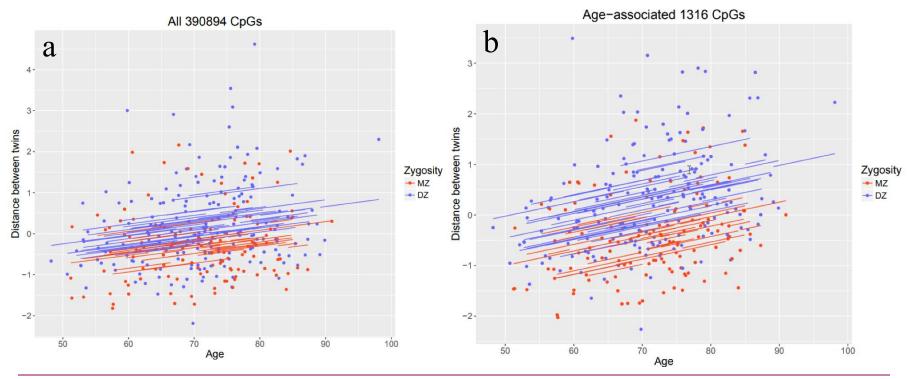
reproducible across different cohorts, "programmed pattern"?
 → maladaptive or even adaptive? Purpose? Not predictive of mortality anyway


2. Epigenetic clock(s)

The Swedish Adoption/Twin Study of Aging (SATSA)

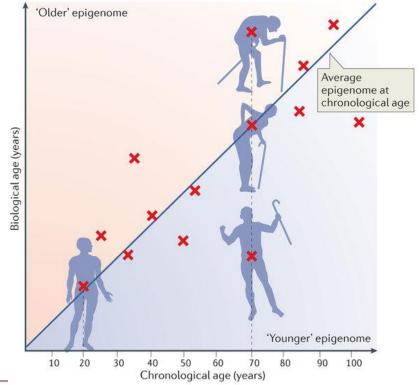
The epigenetic drift in SATSA

- Longitudinal epigenome-wide association study on age
- Fitted a mixed effect model with
 - \rightarrow Fixed effects: Age, sex and zygosity
 - → Random effects: Twin pair
- Identified 1316 CpGs associated with age, with p-value < 1.3×10⁻⁷


The Swedish Adoption/Twin Study of Aging (SATSA)

(Wang et al., bioRxiv https://doi.org/10.1101/226266)

Euclidean distances between twins, on average in all sites (a) and in ageassociated sites (b)


- Differences within twin pairs increase with age
- DZs differ more than MZs
- Age-assoicated sites display a steeper slope than all CpGs
- \rightarrow unique environmental factors come into play even more with age

Epigenetic clock, epigenetic age

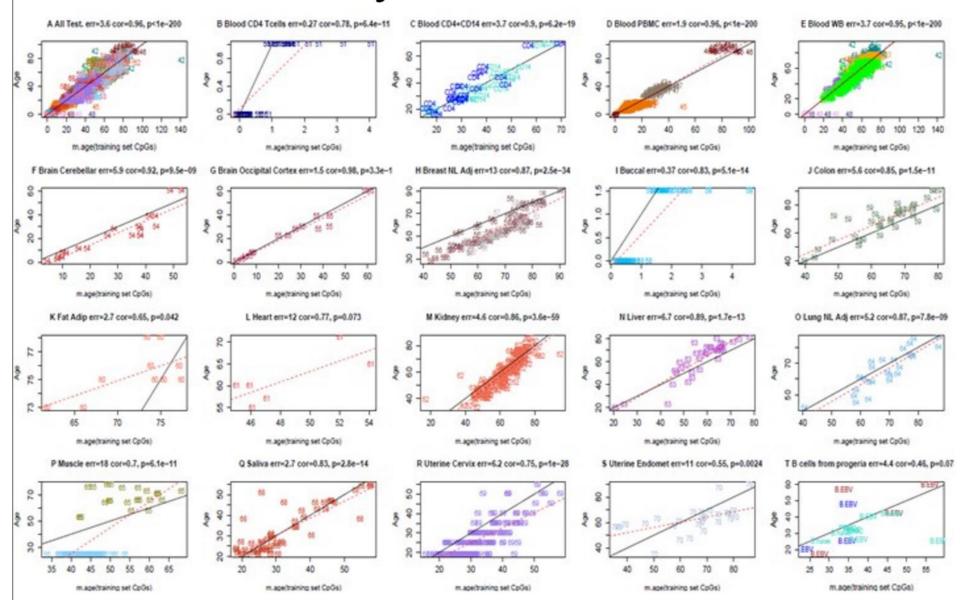
- Horvath clock = an epigenetic biomarker of aging based on DNA methylation levels
- a selection of CpG sites whose sum score of methylation levels is supposed to work as a biomarker reflecting biological aging
- chronological age ≠ biological age
- chronological age as a reference

Steve Horvath

Brad Swonetz/Redux/Eyevine

RESEARCH OPEN ACCESS

DNA methylation age of human tissues and cell types


Steve Horvath 🖾

 Genome Biology
 2013
 14:3156
 DOI: 10.1186/gb-2013-14-10-r115
 © Horvath; licensee BioMed Central Ltd. 2013

 Received:
 10 June
 2013
 Accepted: 4 October 2013
 Published: 10 December 2013

The Erratum to this article has been published in Genome Biology 2015 16:96

Accuracy across test data

The Horvath clock

Online calculator:

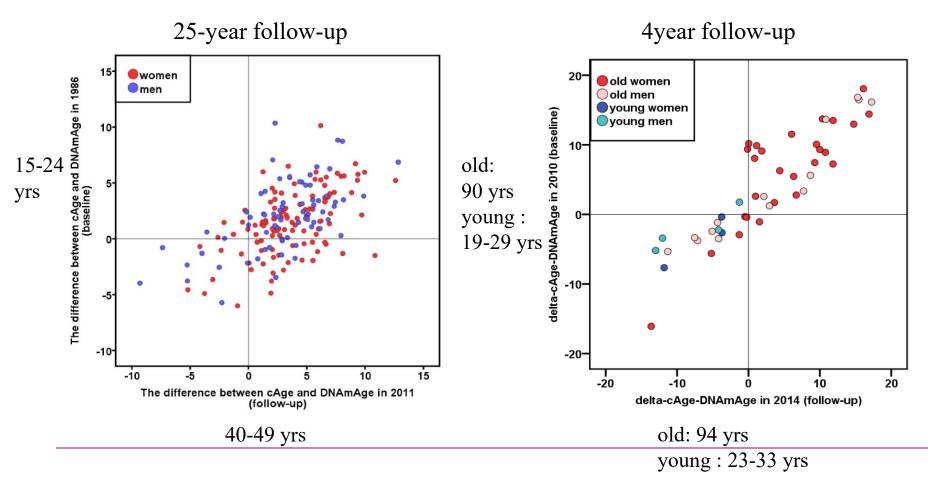
https://labs.genetics.ucla.edu/horvath/dnamage/

FAQ:

https://labs.genetics.ucla.edu/horvath/dnamage/ faq.htm

Wikipedia

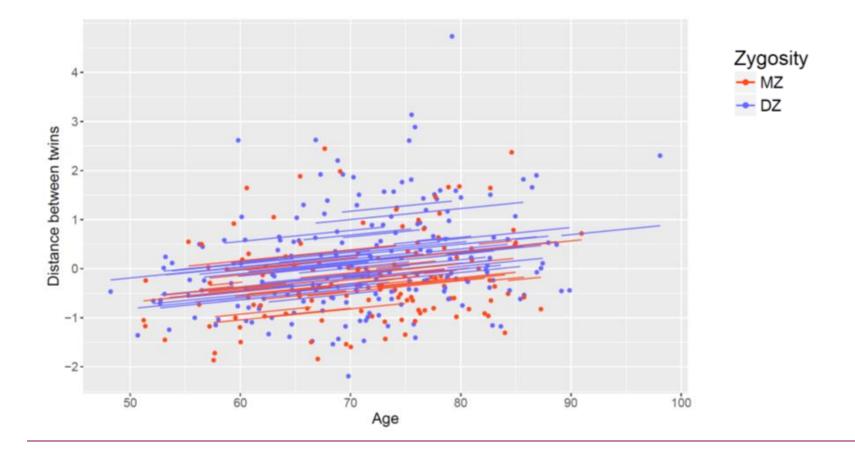
https://en.wikipedia.org/wiki/Epigenetic_clock



"The other" epigenetic clocks

- The Hannum predictor (Genome-wide methylation profiles reveal quantitative views of human aging rates. Moll Cell. 2013 Jan 24;49(2))
- 71 CpG sites
- Designed in blood, needs adjustment to work in other tissues
- The Weidener predictor (Aging of blood can be tracked by DNA methylation changes at just three CpG sites. Genome Biol. 2014 Feb 3;15(2))
- Uses only 3 CpG sites
- Works only in blood

Findings in two Finnish cohorts: Vitality 90+ and Young Finns study


Kananen L, Marttila S, Nevalainen T, Kummola L, Junttila I, Mononen N, Kähönen M, Raitakari OT, Hervonen A, Jylhä M, Lehtimäki T, Hurme M, Jylhävä J. *The trajectory of the blood DNA methylome ageing rate is largely set before adulthood: evidence from two longitudinal studies*. Age (Dordr). 2016 Jun;38(3):65

Euclidean distances between twins in the Horvath epigenetic clock CpGs (SATSA, Wang et al., bioRxiv https://doi.org/10.1101/226266)

The Horvath clock

Quiz

- Outside academia/research, for what other purposes could the Horvath clock or any other age-predicting clocks be used for?

"The big question is whether the clock measures a biochemical process that serves a purpose"

www.aging-us.com

AGING 2016, Vol. 8, No. 9

Priority Research Paper

DNA methylation-based measures of biological age: meta-analysis predicting time to death

-both Horvath and Hannum clocks predict all-cause mortality independent of other risk factors

Correlation with aging phenotypes

- Relatively few observations with aging traits
- Increased epigenetic aging reported in a rather small number of diseases, such as Parkinson's disease, progeroid diseases, Alzheimer, Down syndrome, HIV-1, osteoarthritis..
- tissue-specificity?

The DNAm PhenoAge = Levine clock

AGING 2018, Vol. 10, No.

Research Paper

An epigenetic biomarker of aging for lifespan and healthspan

Morgan E. Levine¹, Ake T. Lu¹, Austin Quach¹, Brian H. Chen², Themistocles L. Assimes³, Stefania Bandinelli⁴, Lifang Hou⁵, Andrea A. Baccarelli⁶, James D. Stewart⁷, Yun Li⁸, Eric A. Whitsel^{7,9}, James G Wilson¹⁰, Alex P Reiner¹¹, Abraham Aviv¹², Kurt Lohman¹³, Yongmei Liu¹⁴, Luigi Ferrucci^{2,*}, Steve Horvath^{1,15,*}

- 513 CpGs
- better predictor for all-cause mortality, cancers, health span, physical functioning, and Alzheimer's disease than the Horvath clock

Variable		Units	Weight
Albumin	Liver	g/L	-0.0336
Creatinine	Kidney	umol/L	0.0095
Glucose, serum	Metabolic	mmol/L	0.1953
C-reactive protein (log)	Inflammation	mg/dL	0.0954
Lymphocyte percent	Immune	%	-0.0120
Mean cell volume	Immune	fL	0.0268
Red cell distribution width	Immune	%	0.3306
Alkaline phosphatase	Liver	U/L	0.0019
White blood cell count	Immune	1000 cells/uL	0.0554
Age		Years	0.0804

Twin modeling for the Horvath and Levine epigenetic clocks

The Longitudinal Study of Aging Danish Twins (LSADT)

- 43 pairs
 - 18 MZ, 25 DZ
- 10 years between waves
 - □ Time 1 = 76.2 years (SD=1.8)

Time 2 = 86.1 years (SD=1.8)

- 72% female
- all like-sex twin pairs
- bivarate Cholesky model using two measurement occasions as the outcomes
- For the Levine clock, only the Swedish sample was used

The Swedish Adoption/Twin Study of Aging (SATSA)

- □ 53 pairs
 - 22 MZ, 31 DZ
- □ Av. 9.6 years between waves
 - □ Time 1 = 62.9 years (SD=7.2)
 - □ Time 2 = 72.5 years (SD=7.2)
- 53% female

Horvath clock Twin correlations and phenotypic correlation

	Horvath clock Time1 (95% Cl)	Horvath clock Time2 (95% Cl)	Phenotypic correlation (95% CI)
MZ	0.17 (-0.14-0.45)	0.50 (0.22-0.70)	0 54 (0.25, 0.64)
DZ	0.44 (0.21-0.62)	0.23 (-0.02-0.45)	0.54 (0.35-0.64)

Cross-twin cross-trait correlations (CTCT) MZr: 0.38 DZr: 0.30

Quiz

What do the CTCT correlations tell you?

Levine clock Twin correlations and phenotypic correlation

	Levine clock Time1 (95% Cl)	Levine clock Time2 (95% Cl)	Phenotypic correlation (95% CI)	
MZ	0.56 (0.15-0.80)	0.41 (-0.03-0.71)	0 20 (0 00 0 20)	
DZ	0.09 (-0.27-0.43)	0.29 (-0.07-0.58)	0.20 (0.00-0.39)	

- Phenotypic correlation of 0.2 would suggest that the individuals change more in their Levine clock (DNAm PhenoAge) with age that in the Horvath clock

Cross-twin cross-trait correlations (CTCT) MZr 0.24 DZr 0.10

Variance components for the Horvath clock: bivariate ADE model

Parameter estimates (% of variance explained + SEs) form the bivariate ADE model

- increase in genetic influences with age

	a²	d²	e²	rA	rD	rE
Time 1	0.35 (0.13)	0.01 (0.05)	0.65 (0.12)	1.00 (0.00)	1.00 (0.00)	0.31 (0.13)
Time 2	0.29 (0.24)	0.21 (0.27)	0.50 (0.12)			

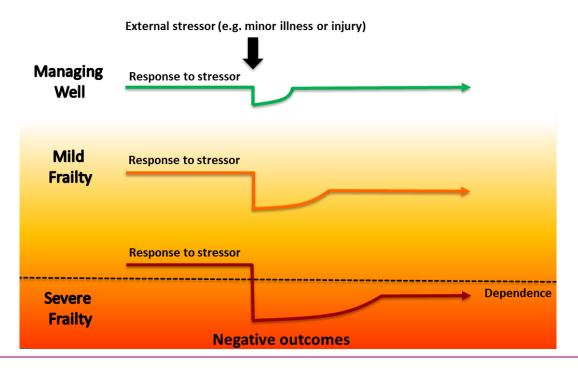
Quiz What do the correlations (rA, rD, rD) tell you?

Variance components for the Levine clock: bivariate ADE model

Parameter estimates (% of variance explained + SEs) form the bivariate ADE model

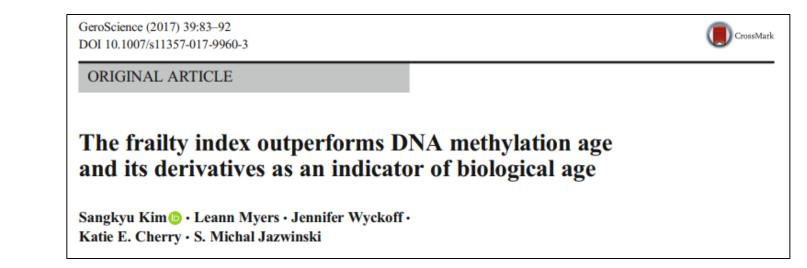
	a²	d²	e²	rA	rD	rE
Time 1	0.06 (0.26)	0.41 (0.33)	0.52 (0.21)	1.00	0.99	-0.12
Time 2	0.40 (0.20)	0.01 (0.11)	0.59 (0.16)	(0.00)	(0.00)	(0.22)

- small decrease in genetic influences with age, still the same genetic factors that act upon the Levine clock throughout aging
- however, a great amount of new unique environmental influences
- QUIZ: how would you interpret the negative correlation rE?


Sumary from the bivariate models - what purpose do the results serve?

- Moderate heritability for both clocks
- Small increase in genetic influences for the Horvath clock with age
- Small decrease in genetic influences for the Levine clock with age
- No new genetic influences for both clocks with age
- New environmental influences come into play with aging for both clocks!

Aging-associated frailty What is it and why does it matter?


- a state of increased vulnerability and loss of capacity to maintain homeostasis after a stressor event
- significant risk factor for mortality and other adverse outcomes
- marker of biological age

Frailty and the epigenetick clock

Breitling et al. Clinical Epigenetics (2016) 8:21 DOI 10.1186/s13148-016-0186-5	Clinical Epigenetics
RESEARCH	Open Access
Frailty is associated with the epigenetic CrossMark clock but not with telomere length in a German cohort	
Lutz Philipp Breitling ^{1*} , Kai-Uwe Saum ¹ , Laura Perna ¹ , Ben Schöttker ^{1,3} , Bernd Holleczek ² and Hermann Brenner ^{1,3}	

How to assess frailty

- various ways (20+ scales!)
- the Rockwood frailty index (FI) and the Fried frailty phenotype most commonly used
- the FI is a continuous scale measure that provides good sensitivity and resolution also at the lower and middle ends of the frailty continuum
- \rightarrow FI = frailty

Frailty (FI) and mortality

Between-within *frailty model* (gamma BW) for mortality

Screening Across the Lifespan Twin study (SALT) N=43,000; MZs, DZs same and opposite sex

- 32,146 twins in complete pairs available for analysis

Statistics in Medicine

Research Article

Between-within models for survival analysis

Arvid Sjölander 🗙, Paul Lichtenstein, Henrik Larsson, Yudi Pawitan

First published: 03 March 2013 | https://doi.org/10.1002/sim.5767 | Cited b

Article

Regression standardization and attributable fraction estimation with between-within frailty models for clustered survival data

Statistical Methods in Medical Research 0(0) 1-24 © The Author(s) 2017 Reprints and permissions: sagepub.co.uk/journals/Permissions.nav DOI: 10.1177/0962280217727558 journals.sagepub.com/home/smm

Elisabeth Dahlqwist, Yudi Pawitan and Arvid Sjölander

The between-within (BW) model

- Control for the familiar unmeasured confounding between *frailty syndrome* and mortality

- genetics and early life exposures contribute to the associations?

Gamma BW model:

 $h(t_{ij}|X_i, \text{cluster } i) = h_0(t_{ij})\widetilde{u}_i \exp(\beta_B \bar{x}_i + \beta_W x_{ij})$

*h*0(*tij*): baseline hazard

i: twin pair

j: individual twin

u: shared frailty (cluster specific), following gamma distribution

x: frailty index

 $x \overline{}$ mean frailty index within each twin pair

 βB : between-cluster effect, quantifying the degree of shared confounding βw : within-cluster effect, quantifying the exposure-survival association within twin pairs

Time-varying effects under the generalized survival model framework

$$\log\left(-\log\left(S(t_{ij}|x_{ij},u_i)\right)\right) = s_0(t_{ij};\gamma) + \log(u_i) + \beta_B \bar{x}_i + x_{ij} s_1(t_{ij};\beta_W) + \delta_{B_m} \bar{C}_m + \delta_{W_m} C_{i_m}$$

 $s1(tij;\beta W)$: time-dependent within twin-pair effect (smooth function) $s0(tij;\gamma)$: baseline survival (smooth function) *C*: covariates (sex, BMI, education, smoking)

- detailed dissection of the age-varying HRs using splines
- also testing for sex-interaction with the time-varying HRs
- both all-cause and cause-specific mortality as outcomes

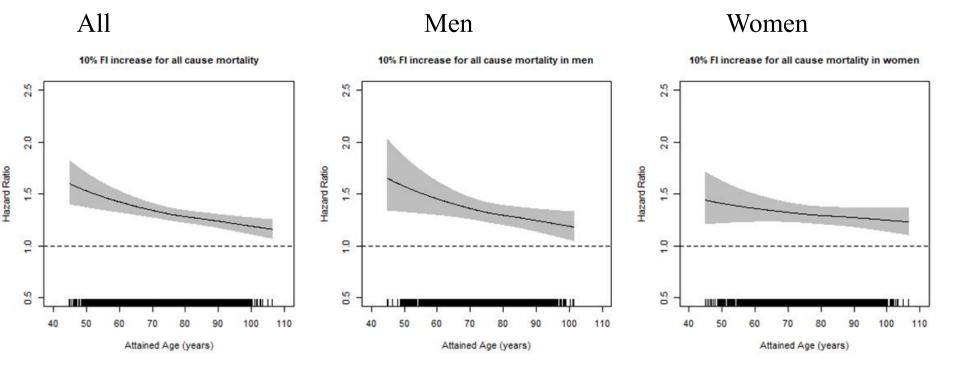
Assessing the public health relevance of the exposure (FI): the attributable fraction (AF)

$$AF(t) = 1 - \frac{\Pr(T_0 \le t)}{\Pr(T \le t)}$$

where

 $Pr(T \le t) = 1 - S(t)$ is the factual probability of an event at or before time T = t, $Pr(T_0 \le t)$ is the counterfactual probability of an event at or before time t**had the exposure been eliminated from the population at baseline**

- Analyzed under the BW model and extended for time-varying AFs (fraction at any given age)
- The FI was categorized to "low FI" and "high FI" using the medians as cut-off
- To recap: AF(t) measures the proportion of events that would have been prevented before time T=t, had the whole population been unexposed

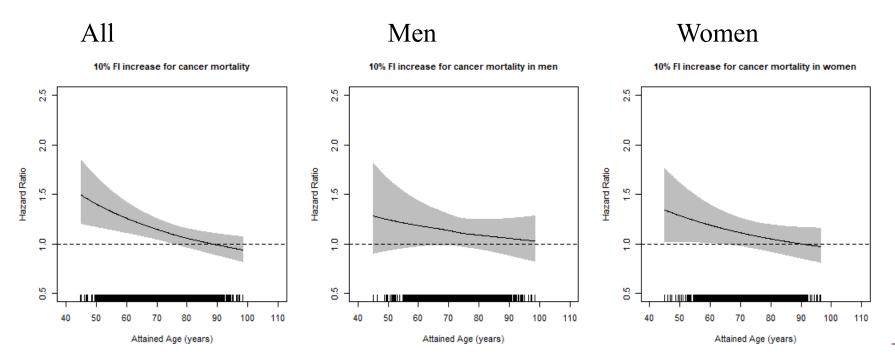

43

All-cause mortality

- MZs and DZs (same and opposite sex) tested for the frailty term

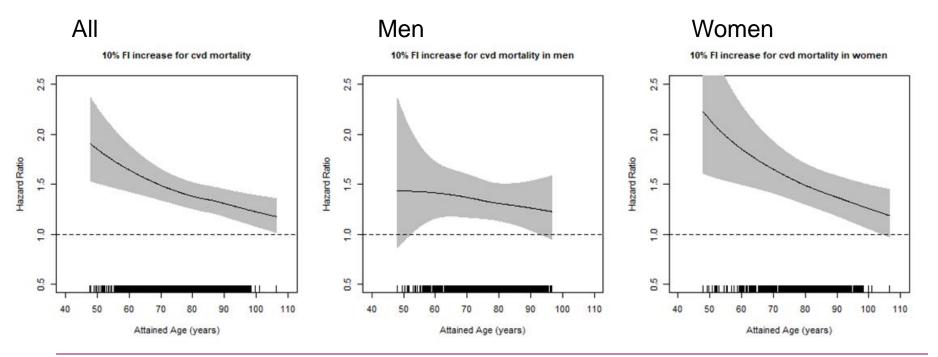
- \rightarrow analyzed together
- however, sex differences were observed \rightarrow models stratified for sex

On average, HR for 10% increase in FI is associated with 50% increased mortality risk at midlife, the risk declines towards the old ages



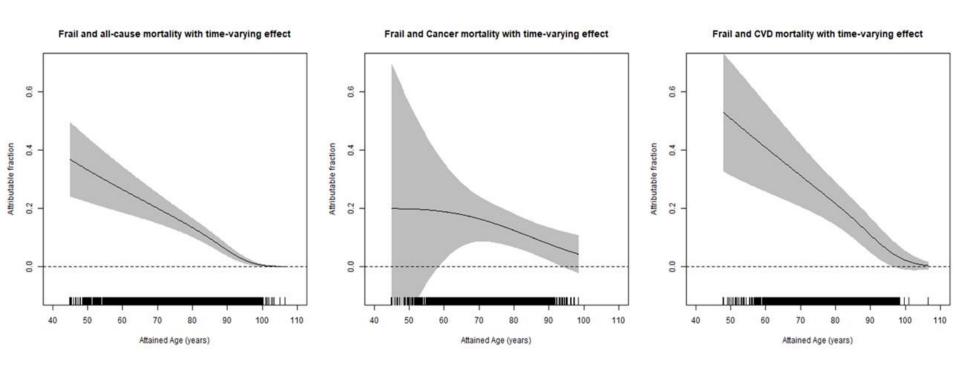
Cause-specific mortality: CANCER - adjusted for baseline cancer diagnosis

Overall, a significant risk at midlife in the whole population and in women, but the HRs become non-significant towards the old ages



Cause-specific mortality: cardiovascular disease (CVD) - adjusted for baseline CVD status

FI strognly predictive of CVD-mortality, especially in women


- 10% increase in FI is associated with 50-80% increase in CVD mortality

AFs for all-cause, cancer and CVD mortality

A very simple quiz: how would you intrepret the results?

We also tested deaths due to

- dementia (N.S)
- diabetes (N.S, low power)
- respiratory causes (significnat, but low power)

Ongoing & upcoming

- Heritability of frailty
- Two previous studies have demonstrated moderate heritability, depending on the measure used to assess frailty
 Dato et al. Age (Dordr). 2012 Jun; 34(3): 571–582 and
 Young et al. Twin Res Hum Genet. 2016 Dec;19(6):600-609.
- What we can do: longitudinal analysis using LGM across 30 years of serial assessment for FI in SATSA (N=1,831)
- Epigenetics of frailty
- EWAS hits and their heritability

Thank you!

Questions?