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Overview

@ Aims of multivariate twin analyses
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Prologue

Effect? J

Exposure—Outcome

@ Outcome: There are multiple outcomes! (eg. Telomere length, HDL, and
BMI).

@ What is the contribution of genetic and environmental factors to the
variation in outcome?

Y = Genes + Environment
ZY = ZGenes + ZEnvironmem

@ What kind of genetic and environmental influences to expect?
@ Are the same or different genes influencing the traits?
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Aims of multivariate twin analyses

Scope of study
@ Co-occurrence or co-morbidity of different diseases.

@ Inter-relations, interactions, confounding and moderation effects.

@ Genetic or environmental overlap between traits, that is, origin of
comorbidity

pleiotropic genetic effects
environmental overlap: prevention strategies impacting on multiple diseases.

@ Developmental changes (longitudinal data).

%



Overview

e Examples
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Example: MGMT methylation

@ Can we regulate the DNA repair gene; MGMT?
@ -analogy in 5aza-cytidine treatment for acute leukemia
@ Epigenetics: Key in evolutionary dynamics of cancer.

Chromosome 10 Cmm-]]ilb

131.265 mb 131.266 mb
131.2655 mb 131.2665 mb




Example: MGMT methylation

@ We consider 18 CpG sites at chromosome 10
@ -controls the DNA repair gene; MGMT
@ How are the 18 sites correlated?

@ How are they correlated within MZ pairs? - tells us maximum genetic
influence.

Chromosome 10 Cmm

131.265 mb 131.266 mb
131.2655 mb 131.2665 mb
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Example: Genetic relatedness of cancer sites

Brain and CNS cancer

@ Brain and CNS cancer per se: Less indication of genetic causes like
somatic mutations.

@ Brain and CNS cancers show genetic relatedness with certain cancer
loci.

@ Beh Genet 2015 Estimating Twin Pair Concordance for Age of Onset.
Scheike, Hjelmborg and Holst K.

@ JAMA 2016 Familial Risk and Heritability of Cancer. Mucci, Hjelmborg,
Harris, Kaprio et al.
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Example: Seven waves of BMI measurements
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BMI by age (fitted by a ‘gamm model’)
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plot(bmi_1_1 ~ bmi_1_2, data=mzData)
plot(bmi_1_1 ~ bmi_1_2, data=dzData)

i1t
2

Figure: Male BMI versus co twin BMI for MZ and DZ pairs at first
wave
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Overview

0 Classic multivariate models
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Outline - Multiple phenotypes measured in twins

Aims of Multivariate Analysis

@ Structural Equation Modeling

the full multivariate ACE model
the independent pathway model
the common pathway model
the growth curve model

the direction of causation model

@ Example: BMI in Finnish adult twins

Multivariate Modeling



Modelling

Univariate — multivariate
@ What is the contribution of genetic and environmental factors to the
variation in several outcomes?

Y = Genes + Environment
ZY = ZGenes + ZEnvironmem

@ What kind of genetic and environmental influences to expect?

@ Are the same or different genes influencing the traits?

@ The univariate models seen so far are generalized.

@ Structural equation models, SEM’s, are briefly introduced in the Appendix.

%



SEM - Univariate ACE Path Diagram representation



SEM - Path Diagram representation
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SEM - the full multivariate ACE model




Biometric analyses - polygenic model

@ Contributing factors to the variation in outcome:
- A IXa ZC ZC
ZY_<fZA Za >+<Zc ZC>+(
where r = 1 for MZ pairs and z = % for DZ pairs.

In particular, we obtain

@ Heritability:
2
K — 9A
YT Rroi+ol
@ Shared environmental effect:

2
R=— ¢
03+ 02 +02




Biometric analyses - polygenic model

Main assumptions
@ Equal environments assumption for MZ and DZ twins.
No gene-environment interaction and correlation.
No gene-gene interaction (link: epistasis).
Equal mean and variance of twin 1 and twin 2, MZ and DZ.

Estimation and inference by maximum likelihood principle assuming
bivariate normality of paired observations (as before).



http://hmg.oxfordjournals.org/cgi/reprint/11/20/2463

Correlation matrix of seven waves in MZ pairs

x<-round(cov2cor (cov(mzData,use="complete")),1)

r 1 0.7 0.6 0.5 0.5 0.5 0.5 0.6 0.5 0.4 0.4 0.4 0.4 0.4
0.7 1 0.8 0.8 0.7 0.7 0.7 05 0.6 0.6 0.6 0.6 0.5 0.5
0.6 0.8 1 0.8 0.8 0.8 0.8 0.4 0.6 07 07 0.6 0.6 0.6
0.5 0.8 0.8 1 0.9 0.9 0.9 0.4 0.6 07 07 0.7 0.6 0.6
0.5 0.7 0.8 0.9 1 0.9 0.9 04 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.7 0.8 0.9 0.9 1 1 04 0.6 0.6 0.6 0.6 0.6 0.6
0.5 0.7 0.8 0.9 0.9 1 1 0.4 0.6 0.6 0.6 0.6 0.6 0.6
0.6 0.5 0.4 0.4 0.4 0.4 0.4 1 0.7 0.6 05 0.5 0.4 0.4
0.5 0.6 0.6 0.6 0.6 0.6 0.6 07 1 0.8 08 0.8 0.7 07
0.4 0.6 0.7 0.7 0.6 0.6 0.6 0.6 0.8 1 0.8 0.8 0.8 0.8
0.4 0.6 0.7 0.7 0.6 0.6 0.6 05 0.8 0.8 1 0.9 0.8 0.8
0.4 0.6 0.6 0.7 0.6 0.6 0.6 05 0.8 0.8 09 1 0.9 0.9
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Correlation matrix of seven waves in DZ pairs

x<-round(cov2cor(cov(dzData,use="complete")),1)

1 0.7 0.6 0.6 0.5 0.5 0.5 03 0.3 0.3 0.2 0.2 0.2 0.3 7
0.7 1 0.8 0.8 0.7 0.7 0.7 03 0.4 0.4 0.3 0.3 0.3 0.3
0.6 0.8 1 0.9 0.9 0.8 0.8 03 0.4 0.4 0.4 0.4 0.3 0.4
0.6 0.8 0.9 1 0.9 0.9 0.9 0.2 0.3 0.4 0.4 0.4 0.3 0.4
0.5 0.7 0.9 0.9 1 0.9 0.9 0.2 0.3 0.4 0.3 0.3 0.3 0.3
0.5 0.7 0.8 0.9 0.9 1 1 0.2 0.3 0.4 0.3 0.3 0.3 0.3
0.5 0.7 0.8 0.9 0.9 1 1 0.2 0.3 0.4 0.3 0.3 0.3 0.3
0.3 0.3 0.3 0.2 0.2 0.2 0.2 1 0.7 0.6 0.6 0.5 0.5 0.5
0.3 0.4 0.4 0.3 0.3 0.3 0.3 0.7 1 0.7 0.7 0.7 0.6 0.6
0.3 0.4 0.4 0.4 0.4 0.4 0.4 0.6 0.7 1 0.9 0.8 0.8 0.8
0.2 0.3 0.4 0.4 0.3 0.3 0.3 0.6 0.7 0.9 1 0.9 0.9 0.8
0.2 0.3 0.4 0.4 0.3 0.3 0.3 0.5 0.7 0.8 0.9 1 0.9 0.9
0.2 0.3 0.3 0.3 0.3 0.3 0.3 0.5 0.6 0.8 0.9 0.9 1 1
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Multivariate ACE model fitted to seven waves

mxCompare (CholAceFit,CholheFit) £ { seems important

B base comparison ep minus2LL df AIC  diffLL diffdf P
#2 1 CholACE <NA> 119 91335.02 25641 40053.02 Ira 1A Ik
## 2 CholACE CholAE 91 01389.54 26669 40051.54 54.51227 28 0.0019460567

o Common environmental effects seems important.

o Further model selection and check of assumptions in
Practicals to follow.

Multivariate Modeling



Multivariate ACE model fitted to seven waves

x<-round(CholAceFit$H2¢$result,2)

048 054 051 064 0.6 066 0.65]
054 044 054 063 058 0.63 064
051 0.54 048 062 06 062 063
T, = [064 063 062 06 061 063 063
06 058 06 061 052 058 059
0.66 0.63 0.62 0.63 058 052 0.55
065 0.64 0.63 063 059 055 053]

o Heritabilities of seven waves along diagonal.

o Bivariate heritabilities off the diagonal. It is 0.65 between
wave 1 and 7, hence 65 percent of phenotypic correlation is
mediated by shared genetic influence.

Multivariate Modeling



Multivariate ACE model fitted to seven waves

x<-round(cov2cor(CholAceFit$ASresult),2)

1 081 062 065 063 062 0.62
081 1 088 092 0.89 0.86 0.86
062 088 1 1 1 097 097
2o, = |0.65 092 1 1 099 096 0.96
063 089 1 099 1 098 098
062 086 097 09 098 1 1
062 086 097 096 098 1 1

@ Genetic correlation of seven waves of BMI, that is,
correlation of genetic effects regardless of heritability.

@ -the likelihood that a gene found to be associated with one
trait is also associated with the other trait.

Multivariate Modeling



Independent pathway ACE model

4 The covariation between trats is caused by genetic and environmental factors Matrix model representation (one twin)
common to traits, each having its own paths to each trait

1(M2)0r05 (02) common factors specic genetic specific nshared
coeffcents coeficents environmental coeficients

| l

Pl Y E,
18 J o J|E
P Y E
12 v) B
observed common specifc genetic specific unshared
fraits. factors factors environmental factors

1(MZ)0r05 (02)
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Common pathway ACE model

2 The covariation between traits is caused by a single underlying latent phenotype, : : ;
thatis in tum influenced by genetic and environmental factors Matrix model representation (one twin)

1{M2)0r 05 (D2)

Iatentphenotype  common faciors - specfic genetc speciic unshared
coeficents  cneficents coeficints environmentalcoeficients
PIy (6 [/x 2 t AN (v E,
LN R NER Jul]on B
P3| |6 |[x z| \E¢ t Ay vy E;
{6\ 2 [REY v, \E,
observed common speciic genetc speaifcunshared
taits fadors factors environmental factors

1{M2)0r 05 (02)
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Which model to report?

#' \begin{itemize}

#'\item The multivariate model which has the lowest AIC.

#'\item Choosing among non-nested models can be delicate.
#'\item The CP model can be tested as a sub-model of the

#'S\textrm{nparIP}-\textrm{nparCP}=(\textrm{nfac}-1)*(\te
# ]

#'\item If S\chi"2S-test 1is not significant, the CP shoul

#'\end{itemize}
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The Growth Curve Model for Longitudinal Data

@ The multivariate models above allows for
» Magnitude of genetic and environmental influences at each time point
(wave).
» Extent to which genetic and environmental influences overlap across time
points.
@ Focus now on growth variables, eg. initial level (intercept) and rate of
change (slope) - to predict level at a series of time points.

Multivariate Modeling



The Growth Curve model

Latent Intercept “ Latent Slope

Observed
longitudinal
measures

Residuals

@ The growth curve model allows for

» modeling any number of time points (waves).
» modeling the individual trajectory.

UNIVERSITY OF [SOUTHERN DENMARK
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The Growth Curve model

Aims for the linear growth curve model

@ Are there inter-individual differences in initial level and rate of change? - Variance of
intercept and slope

@ Are initial level and rate of change associated within an individual? - Within-twin correlation
between intercept and slope

@ Do genetic or environmental factors explain inter-individual differences in initial level and
rate of change? - Cross-twin within-trait correlation of intercept and of slope in MZ and DZ
twins

@ Do genetic or environmental factors explain the within-individual association between initial
level and rate of change? - Cross-twin/cross-trait correlation between intercept and slope in
MZ and DZ twins

@ To what extent are inter-individual differences in each of the longitudinal measures
accounted for by initial level and rate of change? - Variance of residuals

%



The Growth Curve ACE model

@ The growth curve ACE model allows for
» Genetic and environmental influences on initial level and rate of change, and
on their mutual interplay modelling any number of time points.
» Very efficient: number of parameters does not increase with number of
measurements.

Multivariate Modeling



The Growth Curve ACE model

Aims for the linear growth curve ACE model

@ What is the contribution of genetic factors to inter-individual variation in initial level and rate
of change? - Heritability of intercept and slope.

@ What is the contribution of environmental factors to inter-individual variation in initial level
and rate of change? - Shared and unique environmental proportions of variance of intercept
and slope.

@ Same or different genes influencing initial level and rate of change? - Genetic correlation
between intercept and slope. For BMI: 0.50

@ Same or different environments influencing initial level and rate of change? - Shared and
unigue environmental correlations between intercept and slope

Multivariate Modeling



The Growth Curve ACE model - extensions

General Biometric (AE)

@ Easy extension of linear to quadratic model:
» - loadings of the quadratic factor equal the respective squared loadings of
the linear factor.
» - the quadratic factor covaries with both initial level and linear factor%'

Multivariate Modeling



Overview

@ Appendix: SEM- Structural Equation Models
@ Linear regression
@ Factor models
@ Clustered data
@ Structural equation model

UNIVERSTT
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CHAPTER ONE

Introduction

Most researchers applying statistics think in terms of modeling the individ-
ual observations. In multiple regression or ANOVA (analysis of variance),
for instance, we learn that the regression coefficients or the error variance
estimates derive from the minimization of the sum of squared differences of
the predicted and observed dependent variable for each case. Residual
analyses display discrepancies between fitted and observed values for every
member of the sample.

The methods of this book demand a reorientation. The procedures
emphasize covariances rather than cases." Instead of minimizing functions
of observed and predicted individual values, we minimize the difference
between the sample covariances and the covariances predicted by the
model. The observed i minus the predicted covari: form the

iduals. The fund: 1 hypothesis for these 1 i

is that the covariance matrix of the observed variables is a
of parameters. If the model were correct and if
ters, the population covariance matrix would be exac!
of this book is about the equation that formalizes

thesis:

S =3(0)

In (1.1), = (sigma) is the population cova
ables, 0 (theta) is a vector that contains the 0

'As is clear from several places in the book, indis
covariances and estimates of parameters. Thus, wil
check for outliers. In addition, in many cases (e.g
on individuals and minimizations based on

lead to the same parameter estimates.




SEM models

@ The focus in SEM is the basically the covariance matrix, ¥ = ¥(9).
@ Great many statistical methods can be formulated via SEM.




A linear regression model

@ E(Y|Xi,....Xp) =a+ 1 X1 + ...+ BpXy is the regression model, say.

@ E(Y|Xi =1)— E(Y|X; =0) = 34 is the effect of treatment X; given
covariates Xa, . .., Xp.




-simulating data

@ E(Y|X,Z,U) =a+ xX+ BuU+ 5zZ is the true model, say.

set.seed (727)

n=10000

U=rnorm (n)

G=rbinom(n,1,0.5)

Z=rbinom(n,1,0.5)
alp0=1;alpl=0.75;alp2=-0.5;alp3=0.3
mu=alpO+alpl*xGtalp2+Ut+talp3*Z
X=rnorm(n,mu, 1)

bet0=1;betl1=0.5;bet2=-1;bet3=0.3
thet=bet0+betl*X+bet2+U+bet3*Z
Y=rnorm(n, thet, 0.5)

e E(Y|X,Z,U)=1+05X— U+ 0.3Z is the true model.
@ Can we estimate the effect of X? - that is gx = 0.5?




-as path-diagram




-in Stata

use datLinModel.dta, clear
sum

regress Y X Z U
sem (X ->Y, ) (2 ->%Y, ) (U ->Y, ), nocapslatent



summary (1lm(Y~X+Z+U) )

ki
##
##
##
##
ki
##
##
##
##
##
ki
##
##
##
##
ki
##
##
##

Call:
Im(formula = ¥ ~ X + Z + U)
Residuals:

Min 10 Median 30 Max
-1.77234 -0.33678 -0.00383 0.33905 1.87276
Coefficients:

Estimate Std. Error t value Pr(>|t])

(Intercept) 1.003710 0.009549 105.11 <2e-16 x#*x*
X 0.496471 0.004659 106.56 <2e-16 **%*
Z 0.303819 0.010042 30.25 <2e-16 *x*
U -1.001372 0.005441 -184.06 <2e-16 *x*
Signif. codes: 0 'x%xx' 0.001 '"xx' 0.01 'x' 0.05 '.'" 0.1
Residual standard error: 0.4966 on 9996 degrees of freed

Multiple R-squared: 0.8875,Adjusted R-squared: 0.8875
F-statistic: 2.629e+04 on 3 and 9996 DF, p-value: < 2.2



SEM models

@ We can estimate the effect of X - that is 8x = 0.5
@ The focus in SEM is basically the covariance matrix, X = ¥(6).
@ Simple linear regression, Y = X + ¢, corresponds in SEM to
Bzoi + 02 ﬂa)z( >
Yy = €
Y < ok ok
@ -now, find parameters 5 € 6 minimizing the difference between the
sample covariance matrix and the one predicted by the model, the
right-side.
@ Statistical regression models can be formulated via SEM.




A single factor model

Aims
@ -is there a factor common to the observables?
@ -an underlying latent disease?
@ -a latent feature explaining eg. the questionaire outcome?




-simulating data

@ Xj =0+ X +¢,j=1,23,4,is the true model (with contraints for
identifiability).

set
set
gen
gen
gen
gen
gen

seed 83216
obs 500
X:

x1
X2
x3
x4

drop X

= round

round (100
round (100
(100

round (rnormal (0, 10))
= round (100

+ X + rnormal (O,

+ X + rnormal (O,

+

10))

+ X + rnormal (0, 10))
10))

10

7+xX + rnormal (0,

))



-estimated path-diagram




-in Stata

webgetsem sem_1fmm

use http://www.stata-press.com/data/rl15/sem_1fmm
summarize

sem (x1 x2 x3 x4 <- X)



-standardized estimates

Results
@ -is there a factor common to the observables?
@ -amount of variation explained by X.

@ Goodness of fit: No significant deviation from saturated model, X% =1.48,
p=0.48




-submodels: constraining effects for xo and x3

sem (X -> x1, ) (X —> x2, ) (X -> x3, ) (X —> x4, )
estimates store modelA
sem (X -> x1, ) (X -> x2@myb, ) (X -> x3@myb, ) (X -> x4, )

estimates store modelB
lrtest modelA modelB



A two factor model

Aims
@ cognitive and affective arousal: Test in children (Visual Similes Test II).
@ -are there intrinsic factors common to the observables?
@ -underlying latent features?




-standardized estimates

Results
@ -two factors, affective and cognition are common to the observables.
@ -amount of variation explained by these factors.
@ -correlation of latent factors, r = 0.81.
@ Goodness of fit: See equation-level fit in exercises.




-in Stata

webgetsem sem_2fmm

use http://www.stata-press.com/data/rl5/sem_2fmm

sem (Affective -> al a2 a3 a4 a5) (Cognitive -> cl c2 c3 c4
sem, standardized

estat eqggof

estat gof, stats(all)

sem (Affective -> al a2 a3 a4 ab5) (Cognitive -> cl c2 c3 c4
cov (AffectivexCognitive@O0)



A hierarchical model

sssssss

Aims
@ -effect of intervention for childrens learning?
@ -an individual belongs to a class in a school.
@ Data: 403 children in 20 classes within eight schools.
@ Test scores for interveened and controls in boxplot by classes by schools.




-in Stata

use datKiDMmodel.dta, clear

sum
gsem (test <- trtGrp Ml[idSchool] M2[idSchool>idClass])

mixed test trtGrp || idSchool: || idClass:, var mle



Stata outcome

Coet.

sta. Err.

z  E>lz| [95% Conf. Interval]
test

creezp 7.71712  .687478  11.23  0.000 6.369688  9.064552

M1[idSchool] 1 (constrained)

M2 [idSchool>idClass] 1 (constrained)
_cons 48.45822  .4862124  99.66  0.000 47.50526  49.41118
var(M1[idSchool]) | 5.69e-31  5.72e-16 . .
var(M2[1dSchool>idClass]) |  1.941449  .7411311 9187285 4.102652
var(e.test)| 8.179487  .5907216 7.099902  9.423229




A hierarchical model

sssssss

Results

@ -effect of intervention for childrens learning: 5 = 7.71 points higher if
intervention (p < 0.001)

@ -considerable variation between classes, around 20%
(=1.94/(1.94 + 8.18)).




SEM - General form

SEM

@ A general SEM is of form, |n = Bn + '€ + ¢ |, where ) and ¢ denotes
endogenous and exogenous variables respectively, B and I' are matrices
of coefficients and ¢ denotes errors.

@ -this induces the covariance matrix, X(6), to be compared with the
observed covariance matrix from the sample.

@ -indeed the purpose of programs LISREL, Mx, OpenMx, M-Plus, lava,
Stata SEM, ... ..

%
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