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Obesity is a worldwide epidemic, with major health and 
economic costs. Here we estimate heritability for body mass 
index (BMI) in 172,000 sibling pairs and 150,832 unrelated 
individuals and explore the contribution of genotype–covariate 
interaction effects at common SNP loci. We find evidence 
for genotype–age interaction (likelihood ratio test (LRT) = 
73.58, degrees of freedom (df) = 1, P = 4.83 × 10−18), which 
contributed 8.1% (1.4% s.e.) to BMI variation. Across eight 
self-reported lifestyle factors, including diet and exercise, 
we find genotype–environment interaction only for smoking 
behavior (LRT = 19.70, P = 5.03 × 10−5 and LRT = 30.80, 	
P = 1.42 × 10−8), which contributed 4.0% (0.8% s.e.) to BMI 
variation. Bayesian association analysis suggests that BMI is 
highly polygenic, with 75% of the SNP heritability attributable 
to loci that each explain <0.01% of the phenotypic variance. 
Our findings imply that substantially larger sample sizes across 
ages and lifestyles are required to understand the full genetic 
architecture of BMI.

A fundamental question in biology is the degree to which observed 
variation in phenotype is due to environmental or genetic factors. 

Heritability (h2) is a simple dimensionless population-specific param-
eter of the proportion of phenotypic variation that is attributable to 
genetic factors1,2. Analogously, in populations of traditionally unre-
lated individuals, the SNP heritability (hSNP

2 ) is a population-level 
parameter of the proportion of phenotypic variation attributable to a 
set of SNP markers. In human populations, these parameters quan-
tify how much of the resemblance between relatives is due to shared 
genetic factors (as opposed to shared environmental factors)1,2, allow 
a comparison of traits within and across populations3, determine the 
efficiency of gene-mapping studies4, and provide the upper bound 
for prediction of the genetic risk of disease5.

Estimates of the heritability of BMI differ substantially across 
experimental designs (Table 1). Current literature suggests that family 
studies designed to have fewer biases and confounders result in esti-
mated BMI h2 values of ~0.4 (refs. 6–12), around half that from clas-
sical twin studies (between 0.6 and 0.8)7,13 (Table 1). In a population 
design, an estimate of hSNP

2  in distant relatives is unbiased by shared 
environment, as distant relatives are unlikely to share variation due to 
environmental factors14,15. Although not all additive genetic variance 
is captured by common SNPs, a comparison of hSNP

2  across traits can 
be informative. Studies have estimated hSNP

2  at common HapMap3 
loci to be 0.22 (s.e. = 0.02) for BMI16, approximately half that of height 
for the same data17 (0.50, s.e. = 0.04). Recently, a study using geno-
types imputed to a sequence reference and a design that fits multiple 
relationship matrices estimated from a range of SNP sets stratified 
by linkage disequilibrium (LD) and minor allele frequency (MAF)  
estimated hSNP

2  of BMI (0.27, s.e. = 0.03) to be half that for height 
(0.56, s.e. = 0.02) and found no evidence that differences in hSNP

2  
between the traits are explained by a greater contribution of untagged 
rare variants to BMI15. Additionally, previous studies suggest that 
dominance effects have little role in creating variation in height or 
BMI18. Taken together, population studies imply that estimates of h2 
for BMI are systematically inflated in classical twin studies.

The systematic inflation of estimated h2 values for BMI in classical 
twin studies may simply reflect confounding between shared environ-
ment and genetic effects. Alternatively, shared age and environments 
between twins could contribute to the discrepancy in estimates across 
experimental designs, if there are strong age- or environment-depend-
ent genetic effects. If this is the case, heritability estimates from popu-
lation studies of unrelated individuals might represent the average  
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genetic effects across ages and environmental or lifestyle factors, 
resulting in unobserved genetic variation. Here we use a large body 
of data on siblings and publicly available phenotype–genotype data 
sets of unrelated individuals to estimate the heritability of BMI across 
a range of experimental designs and explore the contribution of age- 
and environment-specific genetic effects to variation in BMI.

RESULTS
The heritability of BMI from siblings
We first used a combined sample of 172,000 pairs of 18-year-old, 
male full and half-siblings19,20, in an experimental design that is likely 
to have few biases and confounders, to estimate heritability of BMI 
across a range of relative pairs. The estimated h2 of BMI declined from 
0.770 (s.e. = 0.012) for monozygotic pairs and 0.637 (s.e. = 0.014) for 
dizygotic pairs in a classical twin design to 0.557 (s.e. = 0.057) for full 
siblings raised apart and 0.436 (s.e. = 0.037) for half-siblings raised 
apart (Fig. 1, Supplementary Tables 1 and 2, and Supplementary 
Note). In contrast, h2 estimates for height were 0.853 (s.e. = 0.012) 
for monozygotic twin pairs, 0.762 (s.e. = 0.010) for dizygotic twin 
pairs, and 0.763 (s.e. = 0.036) for half-siblings raised apart (Fig. 1 and 
Supplementary Table 1). These patterns are consistent with differ-
ences in phenotypic correlation of BMI and height between both full 
and half-siblings raised together and apart (Supplementary Table 1)  
and between paternal and maternal half-siblings (Supplementary 
Table 2). The estimate obtained from half-siblings raised apart is simi-
lar to that from previous studies of within-family segregation10,12, 
which avoided dependence on modeling assumptions regarding 
between-family variance by using realized genetic sharing (Table 1). 
Taken together, these results support a h2 for BMI of ~0.4 (refs. 6–12) 
and a systematic inflation of BMI heritability estimates in classical 
twin studies. We now explore whether genotype–age and genotype–
environment effects could contribute to this inflation or whether it 
is due simply to confounding between relatedness and the degree of 
shared developmental environment.

Genotype–covariate interactions in population studies
We present a framework for analyzing genome-wide gene–covari-
ate interaction effects within a population sample. We define geno-
type–covariate interaction as a change in SNP marker effects across 
a covariate that alters the proportion of phenotypic variance attribut-
able to the SNPs and/or results in a genetic correlation of <1 (Fig. 2).  
Throughout, we assume that a phenotype has been measured at t 
time points and that a covariate of interest changes with t. At each 
time point, we adjust for age and sex effects and standardize the phe-
notype to mean 0 and variance 1 with a rank inverse normal trans-
formation to correct for mean–variance relationships and adjust for 
heterogeneity in phenotypic variance. With an inverse normal trans-
formation, genotype–covariate interaction is detected if changes in 
genetic effects do not scale proportionally with changes in mean or 
phenotypic variance across ages (i.e., there is a change in hSNP

2  and/or 
the correlation of the SNP effects is <1). We repeated our analyses 
without transformation at each time point to examine heterogeneity 
of variance and to confirm that changes in hSNP

2  across time points 
reflect a change in variance tagged by SNPs rather than a change in 
environmental effects (residual variance) (Supplementary Note and 
Supplementary Fig. 1). Our combined approach: (i) estimates the 
variance explained by SNPs and the covariance among SNP effects 
across different points of measurement (along a continuous gradi-
ent or between factor levels), (ii) tests for gene–covariate interaction, 
and (iii) estimates the proportion of phenotypic variance contributed 
by genotype–covariate interaction effects, all of which are required 
to fully describe gene–covariate interaction (Fig. 2). The models we 
used, the parameters estimated, and the hypotheses we tested are 
described in Supplementary Table 3.

SNP heritability and the correlation of SNP effects across a covari-
ate. We first estimated a full multitrait restricted maximum likelihood 
model (MV-GREML) that estimates hSNP

2  at each point t and the 
genetic correlations among measurement points21. We tested whether 

Table 1  Overview of study designs estimating heritability of BMI

Study design
Heritability  

estimate (s.e.) Benefits Pitfalls  Reference

Classical twin designa 0.63 (0.01)  
0.75 (0.02)

High precision Limited by two correlation estimates  
Environmental sharing among different relatives 
difficult to separate  
Confounding by nonadditive sources of genetic 
variance

8,14,15

Family studiesb

Siblings raised together or  
apart

0.44 (0.04) High precision  
Low bias by environmental sharing

Large sample sizes required This study

Pedigree estimates 0.46 (0.06)  
0.39 (0.04)

High precision No separation of environmental sharing from 
genetic similarity

15,16

Within-family segregationc 0.42 (0.02)  
0.42 (0.17)

No confounding by population stratification  
Not reliant on assumptions of environmen-
tal sharing

Low precision due to high standard errors  
Large sample sizes required

12,13,18

Population studiesd

HapMap3 SNPs 0.22 (0.02) Unrelated individuals unlikely to  
share environments  
Unbiased by nonadditive genetic effects

Captures only variance attributable to loci in LD 
with genetic markers

17,20

Whole-genome imputation 0.27 (0.03) Unrelated individuals unlikely to  
share environments  
Unbiased by nonadditive genetic effects  
Imputation provides better genome  
coverage

Captures only variance attributable to loci in LD 
with genetic markers

19

aClassical twin studies estimate heritability using the observed and expected resemblance between twin pairs. bIn family studies, heritability is estimated from familial (pedigree) data, by mod-
eling the observed and expected resemblance between siblings or across wider-degree relatives (pedigree estimates). cStudies of within-family segregation avoid dependence on modeling  
assumptions about between-family variance by estimating heritability through correlating phenotypic similarity with realized genetic sharing estimated from genomic markers. dPopulation studies 
estimate the proportion of phenotypic variance attributable to genomic markers (SNP heritability).
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this model provides a better fit to the data than a GREML model  
with one genetic and one residual component by LRT (Online 
Methods). This test provides evidence for heterogeneity of the vari-
ance components across t measurement points (Supplementary Table 
3 and Supplementary Note).

Testing for genotype–covariate interaction. Next, through the use 
of a covariance function approach, we reanalyzed the data by mod-
eling the variance and covariance of genome-wide SNP effects across 
t measurement points with a reduced number of parameters (‘random 
regression’ REML model (RR-GREML))22–25. This approach provides 
a test for the presence of gene–covariate interaction by comparing the 
fit to the data from a RR-GREML model, where SNP effects differ 
across the covariate (through a first-order polynomial function, k = 1),  
to a RR-GREML model, where the SNP effects are constant across a 
covariate (zero-order polynomial function, k = 0), using LRT (Online 
Methods and Supplementary Table 3). This approach has been devel-
oped for repeated measures data of close relatives in animal breeding 
and evolutionary biology22–26, and here we applied it to population 
studies where unrelated individuals were measured at t points along 
a gradient, with each individual having only a single measurement. 
Repeated measures across life are not required in this setting, as esti-
mated genetic relationships among conventionally unrelated indi-
viduals measured at each point are used, resulting in inference that 
is unbiased by confounders such as common or shared environment, 
because phenotypes are measured on different people across t. Theory 
and the results of a simulation study indicate that MV-GREML and 
RR-GREML with a polynomial of k = t – 1 are equivalent models 
and that a RR-GREML approach provides an appropriate testing  

framework for gene–covariate interactions in population stud-
ies of conventionally unrelated individuals (see Online Methods, 
Supplementary Note and Supplementary Fig. 1).

Phenotypic variance contributed by interactive effects. Third, 
we estimated the proportion of phenotypic variance contributed by 
genotype–covariate interaction effects using a model proposed by 
Yang et al.27. We used this approach to estimate the coheritability of 
phenotype across t, estimate the proportion of variance attributable to 
genotype–covariate interaction effects (GCI-GREML model; Online 
Methods), and test for the presence of gene–covariate interaction by 
comparing the fit to the data of a GCI-GREML model (fitting a genetic 
variance component and a genetic interaction variance component) 
and a null GREML model (fitting a single genetic variance compo-
nent) by LRT (Supplementary Table 3). For each covariate, we also 
used GCI-GREML models to test for evidence of genotype–covariate 
interaction effects between pairs of measurement points. Theory and 
the results of a simulation study indicate that a GCI-GREML approach 
provides an appropriate testing framework for gene–covariate interac-
tions and estimates the variance contributed by genotype–covariate 
interaction effects (see Online Methods, Supplementary Note and 
Supplementary Fig. 2).

In our analyses of genotype–age and genotype–environment inter-
action effects, we conducted a total of 250 LRTs (Online Methods) 
and thus adopted a Bonferroni multiple-testing threshold, with  
P = 2.00 × 10−4.
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Figure 1  Systematic inflation of BMI heritability estimates in close 
relatives that share developmental environments. (a,b) Phenotypic 
correlations (a) and heritability estimates (b) from behavioral genetic 
models (see Online Methods) among different male sibling pairs taken 
from Swedish army conscription BMI (blue) and height (green) records 
from 1950 to 1969. In b, estimates are presented assuming assortative 
mating for both traits (see Online Methods), with transparent points giving 
the estimate when trait assortment is ignored or assumed absent. Error 
bars, s.e.
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scenarios of genotype–covariate interaction with shaded lines giving 
expected phenotypic values for five genotypes across five measurement 
points. (a) When there is no genotype–covariate interaction, differences 
among genotypes are constant across the covariate and the correlation of 
SNP marker effects (genetic correlation) = 1 across measurements.  
(b) Changing differences among genotypes with a constant ordering results 
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1 among measurements. (c) Changing ordering of genotypes, with a genetic 
correlation of 0 across all pairs of measurement points but constant genetic 
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The heritability of BMI across age
Longitudinal twin and extended family studies have examined genetic 
correlations across different ages for several complex traits, including 
BMI28,29 and height30, finding little evidence for changes in herit-
ability with age. In population studies, a meta-analysis of 320,485 
individuals tested for age-specific genetic effects and identified 15 
loci with age-specific effects on BMI, of which 11 had larger effects in 
people younger than 50 years old31. An estimate of hSNP

2 0 21= .  (s.e. = 
0.03) for BMI was reported, with no significant difference between age 
groups31, suggesting that individual loci may differ in the strength of 
their association with BMI across life span, but that these effects are 
not likely to contribute substantially to the phenotypic variance.

We estimated the genetic (co)variance of BMI captured by com-
mon HapMap3 SNP loci across adult life span in a large composite 
data set of 43,407 individuals measured between 18 and 80 years of 
age (AHTHEL composite cohort data, Supplementary Table 4). We 
divided the sample into five age groups, representative of different 
stages of adult life. We found no evidence for change in hSNP

2  for 
BMI across adult life span, and a first-order polynomial RR-GREML 
model did not provide a better fit to the data than a zero-order poly-
nomial RR-GREML model (LRT = 3.95, P = 0.139; Fig. 3). However, 
when using a GCI-GREML model, we found evidence for significant 
genotype–age interaction (LRT = 73.58, P = 4.83 × 10−18), with a 
SNP coheritability estimate of 21.1% (s.e. = 0.9%), and 8.1% (s.e. = 
1.4%) of BMI variance attributable to genotype–age interaction effects 
within this sample. This result was driven by a difference in SNP 
effects between young and old individuals. When we analyzed only 
young (18–40 years) and old (>66 years) individuals together (GCI-
GREML model, n = 14,106), the proportion of BMI variance attribut-
able to genotype–age interaction effects tagged by the SNPs was 11.7% 
(s.e. = 2.5%) within this sample (LRT = 27.71, P = 7.05 × 10−8). We 
found similar results without inverse normal transformation (SNP 
coheritability estimate: 0.210 (s.e. = 0.010), estimate of variance of  
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genotype–age interaction effects tagged by the SNPs: 0.081 (s.e. = 
0.015), LRT = 71.15, P = 1.61 × 10−17), confirming that changes in 
genetic effect for BMI are not created simply by a change in envi-
ronmental effects (residual variance) across time points but reflect 
changing SNP marker effects with age.

For comparison, we repeated our analyses for height in the AHTHEL 
data. We found no evidence for genotype–age interaction effects with 
inverse normal transformation (LRT GCI-GREML model = 0.132,  
P = 0.358, SNP coheritability estimate: 0.439, s.e. = 0.010, estimate of 
variance of genotype–age interaction effects tagged by the SNPs: 0.006, 
s.e. = 0.013) (Fig. 3) or without (LRT GCI-GREML model = 0.28,  
P = 0.298, SNP coheritability estimate: 0.436, s.e. = 0.011, estimate of 
variance of genotype–age interaction effects tagged by the SNPs: 0.006, 
s.e. = 0.012, LRT = 0.28, P = 0.298) (Supplementary Fig. 3).

We repeated our analysis of BMI for individuals aged 46–73 in the 
UK Biobank study and found no evidence for genotype–age interac-
tion effects (Supplementary Fig. 4) (LRT RR-GREML model = 1.02, 
P = 0.601, LRT GCI-GREML model = 0.846, P = 0.179, n = 107,488, 

estimate of variance of genotype–age interaction effects tagged by the 
SNPs: 0.001, s.e. = 0.005), supporting our findings in the AHTHEL 
sample in these age groups (GCI-GREML model of ages 41–53 and 
>66 in the AHTHEL sample, n = 20,599, LRT = 1.30, P = 0.128).

The heritability of BMI across environments
Environmental factors such as diet, exercise, and lifestyle influ-
ence BMI, and the risk of obesity varies across different human 
populations32. It is frequently proposed that these environmen-
tal factors interact with genetic predisposition for BMI33. Studies 
of genotype–environment interaction for BMI using a cross- 
sectional approach have found that the effects of a single environmen-
tal variable (e.g., diet34 or lifestyle35) may depend on a specific genetic 
polymorphism (for example, SNPs in the FTO gene)36–38 or a genetic 
predictor created from genome-wide significant loci39. However, these 
detected effects typically explain little variation, and the contribution 
of genotype–environment interaction effects to the phenotypic vari-
ance of BMI within a population has not been fully quantified.
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Figure 4  Genotype–environment interactions for BMI in 97,510 participants of the UK Biobank study across a range of lifestyle factors.  
(a–h) Estimates of the phenotypic variance captured by common HapMap3 SNP loci (SNP heritability) from MV-GREML models (error bars, s.e.) and 
RR-GREML models (dashed lines show s.e.) for each lifestyle factor. For the RR-GREML model estimates, we present the model of best fit to the data, 
as assessed by LRT (Table 2). Also shown are estimates of the correlation of SNP marker effects (genetic correlation) across groups for each lifestyle 
factor (s.e. given in parentheses).
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Using a series of eight self-report variables of diet, exercise, and 
lifestyle shown to explain a combined 14% of the phenotypic vari-
ation of age and sex-adjusted BMI in the UK Biobank sample (n = 
97,510; Supplementary Table 5 and Supplementary Fig. 5), we found 
evidence that a MV-GREML model provides a better fit to the data 
than a GREML model for all eight covariates (Table 2). This sug-
gests heterogeneity of the variance components across these environ-
mental variables. We then tested whether this heterogeneity reflects 
genotype–environment interactions for BMI and found evidence 
for genetic interaction effects with smoking behavior (LRT = 19.70,  
P = 5.03 × 10−5 from a RR-GREML model) (Table 2 and Fig. 4) that 
make a significant contribution of 4.0% (s.e. = 0.8%) to the phenotypic 
variance (LRT = 30.80, P = 1.42 × 10−8 from a GCI-GREML model) 
(Table 3). The sum across environmental covariates of the propor-
tions of variance attributable to genotype–covariate interaction effects 
estimated in the UK Biobank sample was 7.5% (range 1.00 × 10−4% 
to 4.0%) (Table 3).

We repeated our analysis without inverse normal transformation 
and found widespread heterogeneity in variance, with higher phe-
notypic variance and variance tagged by common SNP loci for indi-
viduals who did not exercise, changed their diet for health reasons, 
varied their diet, watched a large amount of television, reported poor 
health, smoked heavily, did not report extreme alcohol consumption, 
and resided in low socioeconomic areas (Supplementary Fig. 6 and 
Supplementary Table 6). These conditions promote higher BMI on 
average within the population (Supplementary Table 5); therefore, 
these effects probably represent mean–variance scaling40, and, as we 
show above, when we correct for mean–variance relationships and 
adjust for heterogeneity in phenotypic variance, only smoking behav-
ior is found to influence SNP marker effects for BMI.

Gene-discovery studies of BMI
By itself, heritability is not informative about the number of causal 
loci or their effect sizes. Power is proportional to the amount of phe-
notypic variation explained by a variant, so if we assume the same 
number of genetic variants for both BMI and height, the variance 
explained is halved if the heritability is ~50% lower for BMI, implying 
that twice the sample size is required for detection. This may explain 
why, in the most recent genome-wide association study (GWAS) of 
BMI16 and height17, ~7-fold more variants were found to be robustly 
associated with height, even though larger sample sizes were used 
for BMI. Here we investigate this further using a recently proposed 
Bayesian mixture model that provides inference on genetic architec-
ture (Online Methods)41. Although the true effect size distribution 

and the pattern of correlation between unobserved causal variants and 
genotyped SNPs is unknown, a comparison of SNP numbers, effects, 
and variance explained across phenotypes for which the genotyped 
SNPs are the same enables a comparison of the distribution of effect 
sizes at causal variants tagged by those SNPs.

We applied this model to BMI and height in 107,488 individuals 
of European ethnicity in the UK Biobank study. We found that 75% 
of the hSNP

2  of BMI is attributed to loci that each explain <0.01% of  
the variance (Fig. 5). In contrast, 50% of the hSNP

2  of height was 
attributed to loci that each contribute >0.01% of the variance (Fig. 5).  
Therefore, more variation in BMI can be attributed to common loci 
of very small effect than to height, implying that BMI is likely more 
polygenic. With sample sizes approaching 1 million people in the near 
future, power will be 0.99 for loci that contribute 0.01%. However, 
loci with effects ≥0.01% cumulatively explain only ~25% of hSNP

2  
for BMI. For the remaining 75%, power at a sample size of 1 million is 
0.95 for loci contributing 0.005% but only 0.01 for those contributing 
0.001%, suggesting that smaller effect size loci may remain elusive 
in GWAS of BMI because many loci have far smaller effects than  
those for height.

DISCUSSION
Our findings are consistent with a narrow-sense heritability of 
BMI of ~40% and suggest that most BMI-associated loci are likely 
to explain less phenotypic variance than those for height, with the 
notable exception of FTO. It is often suggested that genotype–age 
and genotype–environment interaction effects are important for BMI, 
and here we found evidence for genotype–age interaction effects and 
genotype–environment interaction effects with smoking behavior, 
which explain 8.1% (s.e. = 1.4%) and 4.0% (s.e. = 0.8%) of the phe-
notypic variance of BMI, respectively. Self-report measures of envi-
ronmental covariates may be inaccurate, and potentially important 
variables may not be recorded at all, meaning that there are probably 
additional undetected covariates for which genotype–covariate inter-
action occurs. However, our results imply that additional undetected 
genotype–covariate interactions may each explain very little variation 
at the population level, contrary to previous studies34–37,39. First, with 
the exception of smoking behavior, we find no evidence of geno-
type–environment interaction at a set of environmental variables that 
explain a large amount (14%) of the phenotypic variation of age- and 
sex-adjusted BMI, with point estimates of the proportion of variance 
attributable to interactive effects of 1% or less for each factor (Table 3).  
Second, for variables such as age and recall of smoking behavior, 
which are likely to be accurately recorded and have large effects on 

Table 3  GCI-GREML estimation of genetic interaction variance for BMI in 97,510 participants of the UK Biobank study

Covariate V(G) V(GCI) V(GCI) extremes
LRT GCI-GREML extremes 

versus GREML LRT P value

Diet change 0.217 (0.006) 1.02 × 10−6 (0.007) 0.007 (0.009) 0.50 0.240

Diet variation 0.215 (0.006) 0.001 (0.007) 1.00 × 10−5 (0.010) 0.00 0.500

Self-reported health 0.218 (0.006) 0.002 (0.007) 0.029 (0.018) 2.77 0.048

Pack years smoking 0.196 (0.006) 0.040 (0.008) 0.042 (0.006) 19.20 5.89 × 10−6

Weekly periods of exercise 0.215 (0.005) 0.007 (0.009) 0.015 (0.027) 0.30 0.292

Weekly alcohol consumption 0.214 (0.005) 0.014 (0.009) 0.040 (0.018) 5.03 0.012

Weekly hours of television 0.215 (0.005) 0.011 (0.008) 0.053 (0.034) 2.51 0.057

Local poverty index (TDI) 0.216 (0.005) 1.00 × 10−6 (0.011) 0.003 (0.034) 0.01 0.465

Total 0.075 0.189

V(G), the coheritability estimate of the trait across environmental measures of the trait; V(GCI), estimate of the variance attributable to genotype–covariate interactive effects.  
We repeated the testing using only data from the extremes and present the estimate of V(GCI), the LRT statistics comparing a GCI-GREML model and a GREML model of the 
extremes, and the associated P value at 1 df.
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mean BMI, the genotype–covariate interaction effects we detected 
explain limited amounts of phenotypic variance. Therefore, although 
testing for genotype–covariate interaction effects at additional and 
improved measures of diet and exercise remains to be conducted, our 
results provide an expectation of small effect sizes.

When using a GCI-GREML model to test for the presence of geno-
type–covariate interaction among groups, if we assume two groups 
each with hSNP

2  for BMI of 0.25, a genetic correlation of 0.8, and 
equal sample size of 9,751 per group (97,510 UK Biobank individu-
als divided in decile groups), giving an expected proportion of vari-
ance attributable to genotype–covariate interaction effects of 0.05 
(Supplementary Note), then our power to detect an interaction at 
our multiple testing threshold of 2.00 × 10−4 is 50%. If hSNP

2  were  
0.3 and 0.2 in the two groups, with all other parameters being the 
same (5.4% phenotypic variance attributable to genotype–covariate 
interaction effects), our power would increase to 60%, and to 96% if 
the genetic correlation were 0.7 (or if 7.9% of the phenotypic variance 
were attributable to genotype–covariate interaction effects). However, 
when estimating a GCI-GREML model on the full data of 97,510 
individuals, power approaches 100% if 5% phenotypic variance is 
attributable to genotype–covariate interaction effects and is 96% at 
4%, and 65% at 3% variance explained. Therefore, given the number 
of tests conducted, power in this study is high to detect important 
genome-wide genotype–covariate interaction effects that explain 4% 
or more of the phenotypic variance, but substantially larger sample 
sizes will be required to detect interactive effects that explain small 
amounts of phenotypic variance.

Other factors may also influence h2 of BMI across study designs. In 
both the pedigree and the within-family design, nonadditive genetic 
variation may contribute to the heritability estimate2. We tested exam-
ined dominance variance for BMI within the UK Biobank sample and 
found no evidence of this (dSNP

2 0 002= . , s.e. = 0.004, P = 0.492), in line 
with a recent study18. Additionally, rare variants may have a greater 
influence on BMI variation, but a recent study found that imputed rare 
variants explain only ~4% of the variance15. Furthermore, assortative 
mating creates a correlation at height- and BMI-associated loci among 
couples42, which may inflate h2 across study designs, but it is not clear 
whether mate choice is historically consistent or whether equilibrium 

has been reached. Finally, the contribution of autosomal sex-specific 
genetic effects to variation in BMI is a longstanding question43,44; 
however, although there is mixed evidence from classical twin studies 
for a cross-sex correlation less than unity6,13, gene-discovery studies45 
and population studies31,46,47 have found no evidence for sex differ-
ences in h2, sex-specific effects at autosomal genetic variants, or a 
cross-sex genetic correlation less than unity. Therefore, we suggest 
that genotype–age and genotype–environment effects may contribute 
to the inflation of BMI heritability estimates in classical twin studies, 
in combination with stronger common environment effects in close 
relatives than more distant ones.

Future research could focus on early-life obesity and the maternal 
effects that may contribute to variance and improve understanding of 
the biological mechanisms that promote disease in early adult life. The 
framework we present here can be used to study any form of geno-
type–covariate interactive effects across binary or continuous vari-
ables, such as sex, population, or early-life conditions. In this case, we 
show that untangling the full genetic architecture of BMI via GWAS 
will require substantially larger sample sizes across ages and lifestyle 
factors than are currently available and a better understanding of the 
effects that contribute to between-person variability in obesity.

URLs. UK Biobank documentation, http://www.ukbiobank.ac.uk/
wp-content/uploads/2014/04/UKBiobank_genotyping_QC_docu-
mentation-web.pdf and http://www.ukbiobank.ac.uk/wp-content/
uploads/2014/04/imputation_documentation_May2015.pdf; GCTA, 
http://cnsgenomics.com/software/gcta/; HapMap3, ftp://ftp.ncbi.nlm.
nih.gov/hapmap/; Imputation, https://github.com/CNSGenomics/
impute-pipe; HAPI-UR, https://code.google.com/p/hapi-ur/; 
Impute2, https://mathgen.stats.ox.ac.uk/impute/impute_v2.html; 
Plink1.9, https://www.cog-genomics.org/plink2; BayesR, https://
github.com/syntheke/bayesR; MTG2, https://sites.google.com/site/
honglee0707/mtg2.

Methods
Methods, including statements of data availability and any associated 
accession codes and references, are available in the online version of 
the paper.

Note: Any Supplementary Information and Source Data files are available in the 
online version of the paper.
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Figure 5  A Bayesian mixture model of common HapMap3 SNP markers 
for BMI and height in 107,488 participants of the UK Biobank study. 
BayesR model estimates of the proportion of genetic variance contributed 
by SNPs with different mixture distributions of effect sizes for BMI (blue) 
and height (green) are shown; error bars, 95% credible intervals of the 
posterior distribution.
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ONLINE METHODS
Estimating heritability of BMI and height from sibling data. To explore the 
robustness of twin-based heritability estimates for BMI and height to the inclu-
sion of other types of siblings, we used a large sample of Swedish brothers born 
during 1950–1969. The sample contains seven types of siblings: monozygotic 
twins (n = 1,154), dizygotic twins (n = 1,601), full siblings reared together 
(n = 151,699 for BMI, n = 151,789 for height), full siblings reared apart (n = 
1,033), half-siblings reared together (n = 4,874 for BMI, n = 4,880 for height), 
and half-siblings reared apart (n = 11,547 for BMI, n = 11,566 for height). To 
obtain this sample, we combined data from Swedish administrative records, 
taking information about BMI and height from Swedish conscription records. 
The samples have previously been used to investigate the heritability of educa-
tional attainment and cognitive skills20. Sample construction draws heavily on 
previously published work20,48,49; details can be found in the Supplementary 
Note. Supplementary Table 1 reports pairwise correlations of BMI and height 
for sibling pairs. The phenotypic correlations were calculated after residual-
izing the original variable on indicator variables for region of residence (25 
in total) and year of birth. From these correlations, we assumed a commonly 
applied model of additive genetic variance, common environmental variance, 
and individual-level environmental variance (ACE model) for both BMI and 
height. The common environment component was estimated from the differ-
ence between full and half-siblings who were raised together and apart as 

C
d dFS d HS d

d d

FS HS

FS HS

=
+

+

/ /

( / ) ( / )
,

s s

s s

2 2

2 21 1
 

where dFS is the difference in correlation between full siblings raised together 
and those raised apart; dHS is the difference in correlation between half-sib-
lings raised together and those raised apart; sdFS

2  and sdHS
2  are the sampling 

variances of dFS and dHS, respectively. We assumed assortative mating at equi-
librium, with a correlation among spousal pairs (ρp) of 0.16 for BMI and 0.2 
for height, as reported in a previous study42. We then used the coefficients 
presented previously2 to estimate h2 of BMI for different relative pairs as h2 
MZ twin pairs = ρMZ – C; h2 DZ twin pairs = 2(ρDZ – C) / AMFS; h2 full sib-
lings raised together = 2(ρFS – C) / AMFS; h2 full siblings raised apart = 2ρFS 
/ AMFS; h2 half-siblings raised together = 2(ρHS – C) / AMHS; h2 half-siblings 
raised apart = 2ρHS / AMHS. AMFS = 1 + ρph2 and AMHS = 1 + 2ρph2 + ρp

2h2. 
This provides a full method of moments approach comparable to that gained 
from a maximum likelihood ACE approach. We then repeated the estimation 
assuming the absence of assortative mating to show that our conclusions are 
not driven by assortative mating approximations (Supplementary Tables 1 
and 2 and Fig. 1). Standard errors (s.e.) are approximated as 1 2−( )ˆ /r P , with 
P the number of pairs, and thus for example the s.e. of the heritability estimate 
for MZ twin pairs is 1 2− ( )( )−rFS C P/ .

Large population samples. We utilize large publicly available phenotype– 
genotype data sets of unrelated individuals in a series of experimental designs 
that are unbiased of environmental confounding to test for changes in the 
genetic basis of BMI across ages and environments and to compare the under-
lying genetic architecture of both traits.

AHTHEL composite cohorts. We accessed data from four cohorts through 
dbGaP: The Atherosclerosis in Communities (ARIC) study, the Nurses Health 
Study (NHS), the Health Professionals Follow-up Study (HPFS), and the Health 
and Retirement Study (HRS). We combined this with data from the TwinGene, 
the Estonian Genome Center of University of Tartu Study (EGCUT), and the 
LifeLines studies (Supplementary Table 4). A summary description of the 
sample sizes, genotyping platforms, quality-control criteria for the genotype 
data, and imputation process has been described previously15. We selected 
1,233,988 HapMap3 SNPs from the imputed genotype data.

To avoid including close relatives in the sample, we estimated the genetic 
relatedness for pairs of individuals in the combined data set at the HapMap3 
SNPs and removed one of each pair of individuals with estimated genetic 
relatedness r > 0.05. We retained 43,407 unrelated individuals of European 
descent15 where age and sex were known (Supplementary Table 3). BMI and 
height were recorded for every individual, and within each cohort, we adjusted 
both phenotypes for age (factor with levels for each age between 20 and 84) 

and sex differences. BMI and height phenotypes 5 s.d. away from the mean 
were not included in the analyses. Both phenotypes were then converted to 
z-scores with 0 mean and variance 1 within each cohort so that when the data 
were combined all mean cohort effects were removed.

The UK Biobank Study. The UK Biobank Study is a prospective cohort 
study of more than 500,000 individuals from across the United Kingdom. 
Participants, aged between 37 and 73, were invited to one of 22 centers across 
the United Kingdom between 2006 and 2010. After quality-control (QC) 
procedures were applied (see URLs), the interim UK Biobank data release 
contained genotypes for 152,736 samples that passed sample QC (~99.9% of 
total samples). We used the imputed genotype data provided as part of the data 
release where imputation was from a merged reference panel from the UK10K 
and 1000 Genomes data (see URLs), providing a data set with 73,355,667 SNPs, 
short indels, and large structural variants in 152,249 individuals. Selecting out 
only SNPs with imputation info score >0.3 and minor allele count ≥5 gave ~40 
million SNPs in 152,249 individuals.

Principal component analysis and self-declared ethnicity were used to 
derive a ‘white British’ subset of samples. In addition, samples were excluded 
if they had (i) at least one identified closely related sample (r > 0.1); (ii) a 
genetically inferred gender that did not match the self-reported gender; or 
(iii) ~500 extreme heterozygosity or missing genotype outliers. These filters 
resulted in a data set with 112,338 individuals, and further exclusion of one 
individual from a pair with r > 0.05 using GCTA (see URLs) resulted in a final 
sample of 107,488 individuals with measures of BMI and height. From this 
sample, we then selected out 1,162,900 HapMap3 SNPs. We selected only the 
first recorded measures of BMI and height and adjusted both phenotypes for 
age (factor with levels for each age between 40 and 73) and sex differences. 
BMI and height phenotypes 5 s.d. away from the mean were not included in 
the analyses. Both phenotypes were then converted to z-scores with 0 mean 
and variance of 1.

Estimating genetic variance and covariance across a gradient.  MV-GREML. 
Consider a population study where a phenotype, y, is measured on different 
individuals at different points along a continuous gradient (age, lifestyle factor, 
or a measure of the environment): 

y X1 1 1 1 1 1= + +b Z g e

y2 2 2 2= + +X b g eZ 2 2


yt t t t t t= + +X b Z g e ( )1

where yi is a vector of phenotypes measured at point i (i = 1, …, t) along a 
continuous gradient, bi is a vector of fixed effects, gi is a vector of additive 
genetic values for individuals, and ei are the residuals. The random effects, gi 
and ei , are assumed to be normally distributed with mean zero, and X and Z 
are incidence matrices relating the individual measurements to the fixed and 
random effects respectively, with Zi of dimension Ni x N, containing 0 columns 
for individuals not measured for a given phenotype, with N the number of 
individuals.

The variance–covariance matrix of all the observations can be written as 

V y

Z A Z I Z A Z

Z A Z Z A
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


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

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where A is a genomic relationship matrix calculated from the SNP markers 
with l,kth elements: 

Al k
j

M j l j j k j

j jN

x p x p

p p,
, ,

( )
,=

−( ) −( )
−=

∑1 2 2

2 11

where xj is a SNP marker dosage describing the number of minor alleles (0,1,2) 
of SNP j, pj is the minor allele frequency of SNP j, M is the number of mark-
ers and I is an identity matrix of dimension N × N. The parameters σgt

2  and 
σet
2  denote the additive genetic variance tagged by SNP markers and residual 

(1)(1)

(2)(2)
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variance respectively and σgi t,  denotes the additive genetic covariance tagged 
by SNP markers among phenotypic measurements at different points along 
the continuous gradient. For the data we apply this model to, individuals only 
have one measurement at a single time point, so there is no residual cov-
ariance, however, σgi t,  is estimated because individuals across the points of 
measurement along the continuous gradient vary in their similarity at SNP 
markers, which provides a direct estimate of the genome-wide correlation of 
SNP effects across a continuous gradient. This results in an estimated genetic 
variance-covariance matrix G: 

G=















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As described50, the log likelihood of equation (1) is 
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and equation (1) can be estimated using residual maximum likelihood and a 
direct average information algorithm (AIREML)50.

RR-GREML. Testing for genome-wide interaction effects across a gradient 
requires testing for differences among the elements of G. This can be done in a 
single LRT framework through the use of a covariance function approach22–26 
where G is modeled with a reduced number of parameters using the model 

y Xb Z e= + +α ( )4

where y is a vector of observations measured on individual, b is a vector of 
fixed effects, α is a vector of additive genetic random regression coefficients, 
and e is the residual error. Z is a design matrix containing the elements Φ 
pertaining to the t measurement points in the data. The matrix Φ of order  
t x k contains orthogonal polynomial coefficients evaluated at t standardized 
measurement points and is calculated as Φ = M′ where  is the matrix of 
polynomials of order k × k and M is the standardized covariate to 0 mean and 
values between −1 and 1. The continuous covariate is standardized as: 

m t t
t t

= − + −
( ) −







1 2 min
min
( )

max ( ) . 
The corresponding variances are var a( ) = ⊗K A , where K of order k con-

tains the variance–covariance component α and is estimated directly from 
the data within the random regression model22–26 of equation (4), which has 
been used in animal and plant breeding and evolutionary biology when testing 
repeated measures data containing close relatives. The residual variances are 
estimated as a diagonal matrix R of dimension t × t, which is appropriate, as 
independent individuals are used across the t points. As previously described 
in ref. 50, an AIREML algorithm is used to estimate K and R. A genetic covari-
ance function of order k, where k < t can then be estimated as: 

ˆ ( )G K= ′Φ Φ 5

For example, for a covariate with five measurement points and k = 1, 
K =  σgI

2 , Λ=[ ]0 7071.  and M=[ ]′1 1 1 1 1, , , , , where σgI
2  is a single parameter 

representing a constant estimate of σg
2  across the five measurement points. In 

this example if k = 2 then 

K =




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
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σ

σ

σ
g

g g
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2

2 ,
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
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.

.  

(3)(3)

(4)(4)

(5)(5)

and 

M= − −










1 1 1
1 0 5 0

1 1
0 5 1. . ,

'

where σgI
2  is an intercept parameter, σgS

2  is a slope parameter representing the 
change in σg

2  across the five measurement points, and σg gI S is the covariance 
of intercept and slope terms.

The model of equation (4) reduces a t dimensional problem of equation 
(1) into a k dimensional problem, with the resulting random regression coef-
ficients being transformed into estimates of Ĝ  in equation (5). A model of  
k = t − 1 is equivalent to the full t × t multivariate MV-GREML model but with 
a reduced number of parameters. Here we always first fit the full MV-GREML 
model of equation (1) to estimate G and then reanalyze the data using the 
RR-GREML model of equation (4) to test for changing patterns of genetic 
variance-covariance across t points. To present the results, we use the estimates 
in K̂  to calculate Ĝ  and we calculate the approximate s.e.m. using var K̂( ) , 
which are given in the inverse of the AI matrix51. Equations (1) and (4) were 
fit to the data using the software program MTG2 (ref. 50; see URLs).

We conduct model testing by comparing the model fit to the data of equa-
tion (4) with a zero-order polynomial (k = 0) to equation (4) with a first-order 
polynomial (k = 1). To do this we use a 

LRT log log= − −( )2 1 2LK LKmodel model ,

where logLK is the model log likelihood. The value obtained from a LRT 
approximates a chi-square distribution with degrees of freedom equal to the 
number of additional parameters that are estimated in model 2 as compared 
to model 1, and from this we obtain a P value. A zero-order polynomial RR-
GREML model estimates a single genetic parameter, and a first-order poly-
nomial RR-GREML model estimates three parameters (intercept, slope, and 
covariance of the slope and intercept); thus, we use 2 df in our LRT, which is the 
most conservative approach52. This testing approach determines whether there 
is significant evidence of a change in genetic (co)variance across measurement 
points, which tests whether there is evidence of genotype–covariate interac-
tion across the entire range of measurement points. We also provide Akaike 
information criterion (AIC = − +2 2logLK p) with p the number of param-
eters estimated from the model and smaller values indicating improved fit  
to the data.

GCI-GREML. Third, we also reanalyze the data to estimate the propor-
tion of phenotypic variance contributed by genotype–covariate interaction 
effects, using a model proposed by Yang et al.27. This approach estimates the 
coheritability of the phenotype across t measurement points, and estimates the 
proportion of variance attributable to genotype–covariate interaction effects 
(GCI-GREML model) simultaneously using the model 

y Xb Zg Zg e= + + +gci ( )6

where ggci is a vector of genotype–covariate interaction effects for  
individuals and 

V ZA Z ZA Z I= + +g gciσ σ σg gci e
2 2 2' ' ,

with A Ag gci=  for individuals in the same measurement point and Agci =0  
for individuals of different measurement points. This approach provides a test 
for the presence of gene–covariate interaction by comparing the fit to the data 
of a GCI-GREML model (fitting a genetic variance component and a genetic 
interaction variance component) and a null GREML model (fitting a single 
genetic variance component) by LRT. We show through theory that a GCI-
GREML approach provides an appropriate testing framework for gene–covari-
ate interactions and estimates the variance contributed by genotype–covariate 
interaction effects (Supplementary Note).

We have considered a covariate to be discrete or continuous but with sam-
pling points along the distribution. If that is not the case and a covariate is 
truly continuous in nature with individuals represented across all values, then 
it is required that the data be ‘blocked’ into groups to create a series of points 
at which sufficient sample size is available to provide reasonable estimates of 
the variance parameters.

(6)(6)
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Genotype–age interaction effects for BMI. We divided the AHTHEL sample 
into five age groups with the aim of having groups representative of differ-
ent stages of adult life (Supplementary Table 4). We first estimate the full 
multivariate REML model of equation (1) for both BMI and height, and we 
then reanalyzed the same data using equation (4), with five residual variance 
components and k = 1 to test for any change in additive genetic (co)variance 
across ages. We then estimated equation (6) both across the entire data set 
and then between each pair of age groups. This gives a total of 26 LRT (2 
MV-GREML versus GREML tests, 2 RR-GREML k = 1 versus RR-GREML k 
= 0 tests, 2 GCI-GREML versus GREML tests for the entire data set, and 22 
GCI-GREML versus GREML tests for each pair of age groups). In this sam-
ple, individuals were only measured once, and thus the residual covariance 
was set to 0 in all models. In all models, we included the first 15 principal 
components of the HapMap3 SNP data as fixed effects to control for popula-
tion stratification. To correct for mean–variance relationships, and to adjust 
for heterogeneity in phenotypic variance before testing for the presence of 
gene–covariate interactions, we standardized BMI measures within each age 
group with a rank inverse normal transformation to remove differences in 
phenotypic mean and variance across age. This means that we estimate geno-
type–age interaction effects on the heritability scale and that we will detect 
genotype–age interaction only if the genetic effects change in a way that does 
not scale proportionally with any changes in phenotypic variance across ages. 
To test heterogeneity in variances across age for both BMI and height, we then 
repeat the analyses without rank inverse normal transformation within each 
age group, with a further 4 LRTs (2 RR-GREML k = 1 versus RR-GREML k = 
0 tests, 2 GCI-GREML versus GREML tests for the entire data set).

We then repeated the analysis of BMI in the UK Biobank sample, which 
contained individuals measured between the ages of 46 and 73, dividing indi-
viduals into deciles of the age distribution to create 10 groups of approximately 
equal sample size. The age ranges were: (i) 9,655 individuals aged 40 to 44; 
(ii) 10,379 individuals aged 45 to 48; (iii) 9,205 individuals aged 49 to 51; (iv) 
13,669 individuals aged 52 to 55; (v) 7,689 individuals aged 56 and 57; (vi) 
8,590 individuals aged 58 and 59; (vii) 11,211 individuals aged 60 and 61; (viii) 
11,019 individuals aged 62 and 63; (ix) 14,559 individuals aged 64 to 66; and (x) 
11,612 individuals aged 67 and above. We included the first 15 principal com-
ponents supplied by the UK Biobank as fixed effects in each model to control 
for population stratification. To correct for mean–variance relationships and to 
adjust for heterogeneity in phenotypic variance before testing for the presence 
of gene–covariate interactions, we standardized BMI measures within each 
age group with a rank inverse normal transformation to remove differences in 
phenotypic mean and variance across age. Again, this means that we estimate 
genotype–age interaction effects on the heritability scale and that we will detect 
genotype–age interaction only if the genetic effects change in a way that does 
not scale proportionally with any changes in phenotypic variance across ages. 
We first estimate the full multivariate REML model of equation (1), and we 
then reanalyzed the same data using equation (4), with ten residual variance 
components and k = 1 to test for any change in additive genetic (co)variance 
across ages. Finally, we then also estimated equation (6) across the whole data 
set and among the pairs of age groups. This gives a total of 48 LRT.

Genotype–environment interaction effects for BMI. We identified a series of 
self-reported lifestyle factors that influence BMI variation in the UK Biobank 
data, using a linear model (Supplementary Table 5). Prior to analysis we 
adjusted BMI for sex and age and standardized the values to a z-score. This 
resulted in a set of 97,510 individuals who had full phenotypic records at all 
11 lifestyle factors that significantly influenced BMI. To ensure that all mean 
effects were removed, we then adjusted BMI by each of the 11 lifestyle factors 
by taking the standardized residuals from the linear model.

We then used the lifestyle factors identified as significantly influencing BMI 
and estimated the correlation among measures (Supplementary Fig. 5). On 
the basis of correlations, we combined alcohol consumption variables of weekly 
frequency of alcohol intake with weekly number of drinks consumed into a 
single alcohol consumption variable, grouped the self-report exercise variables 
of moderate and vigorous weekly exercise into a single exercise variables, and 
combined binary smoking variable and number of pack years as a proportion 
of life span to give a single pack year variable. This gave a total of eight lifestyle 

variables; a full description of the construction of these variables and their 
groupings is given in the Supplementary Note. We then estimated equation 
(1), equation (4), and equation (6) for each of the eight variables, giving a total 
of 163 LRT. We included the first 15 principal components supplied by the UK 
Biobank as fixed effects in each model to control for population stratification. 
For each of the eight lifestyle variables, we correct for mean–variance relation-
ships and adjust for heterogeneity in phenotypic variance before testing for 
the presence of gene–covariate interactions, by standardizing the residual BMI 
measures within each group with a rank inverse normal transformation. Again, 
this means that we estimate genotype–environment interaction effects on the 
heritability scale and that we will only detect interaction effects if the genetic 
effects change in a way that does not scale proportionally with any changes in 
mean or in phenotypic variance across lifestyle factors. To test heterogeneity 
in variances across environments we then repeat the MV-GREML and RR-
GREML analyses without standardizing the phenotype within each group, 
using eight LRT for the RR-GREML analyses.

Comparing the genetic basis of BMI and height in a Bayesian mixture 
model. To model the genetic architecture of BMI and height, we used a 
Bayesian mixture model that fits all genomic markers simultaneously. In 
GWAS, genomic marker effects are analyzed one at a time, which fails to 
account for the effects of other SNPs, resulting in increased error variance 
and decreased power to detect true associations. Additionally, because SNPs 
are treated as fixed effects and multiple testing occurs, stringent association 
thresholds result in many false negatives and over-estimated effect sizes for 
SNPs declared genome-wide significant. Together, this results in only a frac-
tion of the heritability explained by genome-wide significant SNPs and low 
predictive power in personalized medicine.

An alternative approach is estimating the effects of all genomic markers on 
a phenotype together, which requires variable selection, either by discarding 
unimportant predictors, or by shrinking their effects toward 0, because there 
are typically more genomic markers than there are individuals within a sam-
ple. Here we use the Bayesian mixture model, BayesR41,53 to dissect genetic 
variation for BMI and height and to shed light on the genetic architecture 
underlying these complex traits. All SNPs are fit in the model simultaneously, 
with effects drawn from a prior distribution that matches the true distribution 
of SNP effects54. We do not know the true distribution of effects, but a mixture 
of normals can approximate a wide variety of distributions41,55. Fitting all SNPs 
together using mixture distributions is expected to give greater power to detect 
associations, find fewer false negatives, give unbiased estimates of the larger 
SNP effects, and provide information about the genetic architecture of the trait 
from the hyper-parameters of the distribution of SNP effects41,55. We a priori 
assumed a mixture of five zero-mean normal distributions of SNP effects (β), 
where the relative variance for each mixture component is fixed as 

p N N
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j g g
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b p p p p
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with π the mixture proportions which are constrained to unity and s g
2

 the 
additive genetic variance captured by the SNPs. Sparseness is induced by the 
zero effect and variance of the first mixture. s g

2  is estimated as a hyper-
parameter from the data.

We estimate this model in the UK Biobank data. To remove redundant 
marker information from the data41, we estimated LD among HapMap3 SNP 
markers and selected SNPs with LD R2 < 0.7. This gave 434,491 SNPs and 
107,488 individuals. We did not conduct specific hypothesis testing for each 
SNP; rather, we assessed the proportion of variance tagged by SNPs that is 
attributable to each mixture component.

Estimating dominance variance for BMI in the UK Biobank. To model the 
amount of phenotypic variance captured by dominance effects we used the 
model of Zhu et al.18, where a univariate GCTA-GREML approach14 is taken 
to simultaneously estimate the proportion of variation in BMI variance that 
can be attributable to additive effects at common HapMap3 SNPs, hSNP

2  and 
the proportion of variation that can be attributable to dominance effects at 
common HapMap3 SNPs, dSNP

2 .

(7)(7)
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Data availability. Data from the EGCUT and LifeLines studies can be obtained 
from the authors on request. We also used data from the database of Genotypes 
and Phenotypes (dbGaP), available under accession codes phs000090 (ARIC 
study), phs000091 (NHS and HPFS), and phs000428 (HRS).
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