Analysis of continuous twin data Univariate analysis

Jacob Hjelmborg

University of Southern Denmark

Spring 2018

Biostatistics (Institute of Public Health)

Overview

Introduction

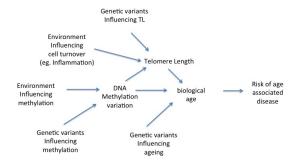
- 2) Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx
- Summary
- 7 Further Aims
- Appendix

Prologue

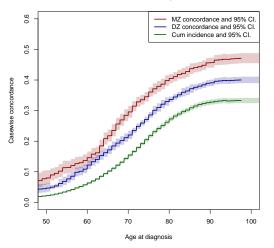
Welcome!

Analysis of Twin Data in Health Science:

The Course homepage - click here



All Cancer



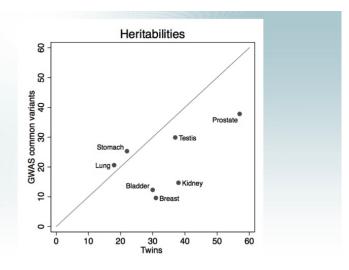
All sites - first diagnosis

L. Mucci, J. Hjelmborg, T. Scheike, K. Holst, A. Skytthe, H. Adami, N. Holm, K. Christensen, J. Harris, J. Kaprio et al. JAMA (2016)

Cancer site	Cumulative		concordant/	Familial risk ² Familial ris	
	risk ¹ (%)	disco MZ	rdant DZ	(95% CI) – MZ twins	(95% CI) – DZ twi
Overall cancer	32.4%	1383/5887	1933/11461	45.9% (44.1%-47.7%)	37.1% (35.7-38.4
Head and neck ³	0.8%	5/191	6/361	6.0% (2.4-14.4%)	5.1% (2.2-11.3%
Esophagus	0.4%	0/87	0/183		
Stomach	1.6%	14/338	15/648	6.8% (3.9-11.4%)	4.4% (2.6-7.3%
Small intestine	0.1%	0/32	0/59	-	
Colon	2.9%	30/577	31/1156	10.9% (7.4-15.8%)	7.9% (5.4-11.4%
Rectum and anus	1.9%	14/440	13/771	6.6% (3.7-11.4%)	5.8% (3.4-9.7%
Liver	0.5%	0/124	2/208		
Gallbladder, extrahepatic bile duct	0.5%	1/110	1/187	0.5% (0-4.7%)	0.3% (0-1.0%)
Pancreas	1.1%	4/234	6/508	4.3% (1.5-11.6%)	3.7% (1.5-8.6%
Nose, sinuses	0.1%	0/21	0/36		
Larynx	0.2%	2/53	1/113	8.4% (2.3-26.4%)	2.7% (1.1-6.1%
Lung, trachea and bronchus	3.2%	50/682	74/1366	17.5% (13.4-22.5%)	13.4% (10.8-16.6
Pleura	0.1%	1/22	0/38		
Bone	0.1%	0/20	0/35		
Melanoma of skin	1.2%	11/342	6/585	19.6% (11.5-31.3%)	6.1% (2.7-13.2%
Skin, non-melanoma	3.0%	16/395	10/618	14.5% (7.5-26.2%)	4.6% (2.4-8.6%
Connective and soft tissues	0.2%	0/57	0/110	-	
Breast	9.4%	124/1175	141/2223	28.1% (23.9-32.8%)	19.9% (17.0-23.2
Cervix uteri	1.0%	1/210	3/324		
Corpus uteri	2.2%	9/272	6/481	7.0% (3.4-14.0%)	3.6% (1.6-8.0%
Uterus, other	0.1%	0/24	0/36		
Ovary	1.6%	6/234	4/427	8.7% (4.0-17.9%)	2.9% (1.1-7.4%
Other female genital organs	0.4%	0/47	1/84	-	
Penis and other genital organs	0.1%	0/15	0/34	-	
Prostate	10.5%	197/807	148/1719	38.0% (33.9-42.2%)	22.0% (18.8-25.7
Testis	0.5%	5/90	3/123	13.8% (5.7-29.6%)	6.0% (1.9-16.9%
Kidney	0.8%	5/196	2/374	6.7% (2.8-15.1%)	1.8% (0.4-6.8%
Bladder, other	2.2%	18/471	13/870	9.9% (6.2-15.5%)	5.5% (3.1-9.7%
urinary organs					
Eye	0.1%	2/30	0/64	-	
Brain, central	0.9%	1/343	3/522	1.7% (0.5-6.2%)	1.8% (0.3-12.0%
nervous system					
Thyroid	0.2%	0/85	1/132	-	
Hodgkin's disease	0.1%	0/57	0/69	-	
Multiple myeloma	0.4%	0/114	0/174	-	
Non-Hodgkin lymphoma	0.7%	1/254	3/466	-	
Leukemia, acute	0.3%	0/77	0/139	-	
Leukemia, other	0.6%	5/128	3/259	15.2% (6.1-33.2%)	4.1% (1.3-11.9%

	NorTwin	Can 2014	Lichtenstein 2000
	Heritability (%, 95% Cl)	Shared environment (%, 95% CI)	Heritability
Overall cancer	33% (30-37%)	0%	N/A
Head and neck	9% (0-60%)	26% (0-65%)	N/A
Stomach	22% (0-55%)	6% (0-31%)	28%
Colon	15% (0-45%)	16% (0-38%)	35%*
Rectum and anus	14% (0-50%)	10% (0-38%)	35%*
Lung	18% (0-42%)	24% (7-40%)	26%
Skin, melanoma	58% (43-73%)	0%	N/A
Skin, non- melanoma	43% (26-59%)	0%	N/A
Breast	31% (11-51%)	16% (0-31%)	27%
Corpus uteri	27% (11-43%)	0%	0%
Ovary	39% (23-55%)	0%	22%
Prostate	57% (51-63%)	0%	42%
Testis	37% (0-93%)	24% (0-70%)	N/A
Kidney	38% (21-55%)	0%	N/A
Bladder, other urinary organs	30% (0-67%)	0%	31%
Leukemia, other	57% (0-100%)	0%	N/A

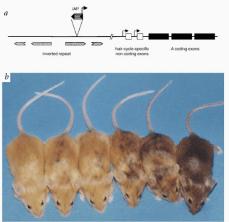
* Lichtenstein et al presented data for colon and rectum combined



dd.mm.yyyy

Presentation name or name of the guest

The Epigenome



History: Statistical genetics

How is variation at phenotypic level governed by variation at genetic level?

• R.A. Fisher (1918): Two landmark papers.

Biometrical Genetics

XV.—The Correlation between Belatives on the Supposition of Mendelian Inheritance. By R. A. Fisher, B.A. Communicated by Professor J. ABTHUR THOMSON. (With Four Figures in Text.)

(MS, received June 15, 1918. Read July 8, 1918. Issuel separately October 1, 1918.)

CONTENTS

1	The superposition of fa-	et une de	Latel Beat.	d inde	2852	15. Homogamy and multiple allels acrobises	416
	pendently .				402		418
2.	Phase frequency in each			2.2	402	17. Theories of marital correlation : ancestral	410
3.	Parental regression .				403		419
	Dominance deviations				408	18. Ancestral correlations (second and third	
	Correlation for parent ;	geneti	c correla	tions .	404		421
	Fraternal correlation				405	19. Numerical values of association	421
	Correlations for other re				406	20, Festernal correlation	422
	Epistacy				406	21. Numerical values for environment and domi-	
	Associative mating .				410	nance ratice ; analysis of variance .	423
	Frequency of phases						424
	Association of factors						425
	Conditions of equilibria	n i					427
	Nature of association				413		428
14.	Multiple allelomorphism	a			415	26. Summary	432

Prologue

Effect?

- Outcome: Continuous variable (eg. time to event, BMI, ...).
- What is the contribution of genetic and environmental factors to the variation in outcome?

$$\left\{ \begin{array}{l} Y = \text{Genes} + \text{Environment} \\ \Sigma_Y = \Sigma_{\text{Genes}} + \Sigma_{\text{Environment}} \end{array} \right.$$

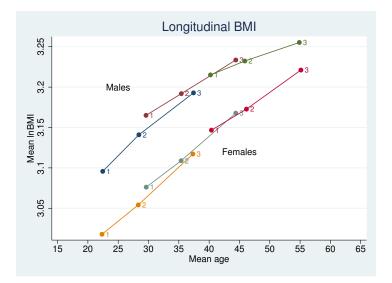
- What kind of genetic and environmental influences to expect?
- Example: SNPedia.com click here

Overview

Introduction

- Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx
- Summary
- 7 Further Aims
- Appendix

Case study: Body Mass Index



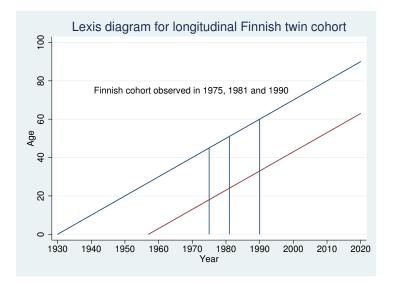
Case study: Background

- Body Mass Index defined as weight (*kg*) per squared height (*m*²) is a *complex trait* related to several health related factors (eg. obesity, diabetes, aging).
- The index may allow for comparison among individuals with different height, but is not regarded invariant between different sexes.
- Estimated heritability of 0.60-0.70 in BMI has been reported from 'The GenomeEUtwin Study' using 8 cohorts (Schousboe et al. 2003)) with the remaining 30-40% due to a unique environmental variance component.
- The genetic influence is a complex action of several genes. Only few genetic variants identified so far.
- The interplay with environmental factors is under intense investigation.

The Methodology

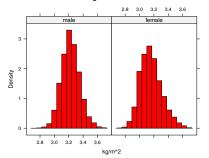
- Genetic influence on continuous trait
- Correlation: measure of similarity to be compared for MZ and DZ pairs
- The polygenic model allows for modelling type and magnitude of genetic influence on BMI by decomposing *the variance in BMI* into genetic and environmental components.

The Material

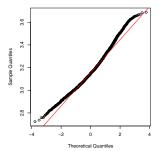


	+						+
	id	tvparnr	nr	bmi	sex	age	zygocity
1.	1000011	100001	1	26.33289	male	57.57974	DZ
2.	1000012	100001	2	25.46939	male	57.57974	DZ
З.	1000021	100002	1	28.65014	male	57.0486	MZ
4.	1000031	100003	1	28.40909	male	57.6783	DZ
5.	1000041	100004	1	27.25089	male	53.51677	DZ
					••		

Histogram of InBMI



Quantile-quantile plot of InBMI of females



• How about marginal effects of eg. age and gender?

• Regression model for the response of i'th individual in j'th pair:

 $y_{ij} = \beta_0 + \beta_1 \operatorname{age}_{ij} + \beta_2 \operatorname{sex}_{ij} + \beta_3 \operatorname{ageXsex}_{ij} + u_j + \epsilon_{ij},$

where u_j is a term that varies in pairs - a random intercept that models the within pair covariance.

- Why complicate matter?
- For inference, ie., konfidence and tests, independent observations are needed and *u_j* models the dependence in twin pairs giving adjusted inference.
- In Stata (see accompanying script for model diagnostics etc.):

- How about marginal effects of eg. age and gender?
- Regression model for the response of i'th individual in j'th pair:

$$y_{ij} = \beta_0 + \beta_1 age_{ij} + \beta_2 sex_{ij} + \beta_3 ageXsex_{ij} + u_j + \epsilon_{ij},$$

where u_j is a term that varies in pairs - a random intercept that models the within pair covariance.

- Why complicate matter?
- For inference, ie., konfidence and tests, independent observations are needed and *u_j* models the dependence in twin pairs giving adjusted inference.
- In Stata (see accompanying script for model diagnostics etc.):

- How about marginal effects of eg. age and gender?
- Regression model for the response of i'th individual in j'th pair:

$$y_{ij} = \beta_0 + \beta_1 age_{ij} + \beta_2 sex_{ij} + \beta_3 ageXsex_{ij} + u_j + \epsilon_{ij},$$

where u_j is a term that varies in pairs - a random intercept that models the within pair covariance.

• Why complicate matter?

> xi: xtmixed lnbmi i.sex*age || typarnr: . var mle

- For inference, ie., konfidence and tests, independent observations are needed and *u_j* models the dependence in twin pairs giving adjusted inference.
- In Stata (see accompanying script for model diagnostics etc.):

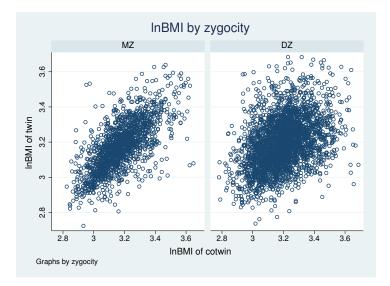
Log likelihood	= 7214.129	6		Prob >	chi2 =	0.0000
lnbmi	Coef.	Std. Err.	Z	P> z	[95% Conf.	Interval]
_Isex_2 age _IsexXage_2 _cons		.0166531 .0002722 .0003692 .0123446	-9.73 13.05 6.21 248.36	0.000 0.000 0.000 0.000	1946047 .0030191 .001568 3.041668	1293257 .0040861 .0030153 3.090058

- We consider the logarithm of BMI, in notation 'InBMI'.
- The outcome is associated with gender and age.
- Lets load the data into R and head for descriptives:

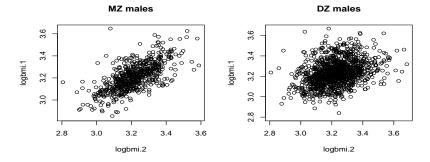
Use R

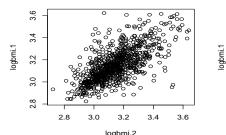
- Start R and open the R-script 'twinbmi.R'.
- Run lines in script till Section Pairs begins.
- We then go on considering the paired structure.

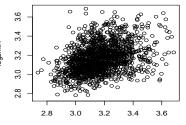
BMI of twin versus BMI of cotwin



BMI of twin versus BMI of cotwin







loabmi.2

Genetic Influence on InBMI

	Polygenic I	model	
	Number of pairs	Correlation (95% CI)	Heritability (95% CI)
MZ pairs	1483	? (?,?)	? (?,?)
DZ pairs	2788	? (?,?)	Biometric model

Overview

Introduction

2 Case study: Genetic influence on Body Mass Index

3 Correlations and assumptions

- Biometric modelling
- 5 Practicals using OpenMx

Summary

- 7 Further Aims
- Appendix

Statistical genetics

How is variation at phenotypic level governed by variation at genetic level?

- Two structures for modelling: mean and variance-covariance.
- R.A. Fisher (1918): The variance-covariance matrix varies by type of twin pairs.

 $\Sigma = \begin{pmatrix} \text{variance of first twin} & \text{covariance of twins} \\ \text{covariance of twins} & \text{variance of second twin} \end{pmatrix}$

• We begin seeking a measure of twin similarity: ρ

Biometrical Genetics

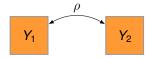
XV.—The Correlation between Belatives on the Supposition of Mendelian Inheritance. By R. A. Fisher, B.A. Communicated by Professor J. ABTHUR THOMSON. (With Four Figures in Text.)

(MS. received June 15, 1918. Read July 8, 1918. Issued separately October 1, 1918.)

CONTENTS.

1	The superposition of fa	ctore	dist	ribute	d ind	ie-	15. Hemogany and multiple allele acceding	416
	pendently						402 14. Comling	418
2.	Phase frequency in each	i ferre	1				402 17. Theories of marital correlation : ancestral	
3.	Parental regression .		۰.				403 correlations	419
4	Dominance deviations						400 18 Ancestral correlations (second and third	
5.	Correlation for parent ;	genet	ic e	serels	tions		404 theories)	421
6.	Fraternal correlation	÷.,					405 19. Numerical values of association	421
7.	Correlations for other r	shire	8				406 20. Fraternal correlation	472
8,	Epistacy						408 21. Numerical values for environment and domi-	
9.	Associative mating .						410 nance ratios; analysis of variance	623
10.	Frequency of phases							494
11.	Association of factors						411 23. Numerical values (third theory)	425
12	Conditions of equilibriu	m	÷.					497
13.	Nature of association							4:29
14.	Multiple allelomorphise	n.						432

SEM - Correlation Path Diagram representation



• How to measure twin similarity?

- Given pairs (y_{1j}, y_{2j}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (y_{1j}, y_{2j}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for *MZ* and *DZ* twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for *MZ* and *DZ* twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

- How to measure twin similarity?
- Given pairs (*y*_{1*j*}, *y*_{2*j*}) of observations of a continuous trait the correlation within pairs is the usual (product-moment) correlation assuming equal mean and variance for twin 1 and twin 2.
- Why assume equal mean and variance for twin 1 and twin 2?
- Twin 1 and twin 2 can be interchanged when there is no ordering of twin and co-twin.
- What is the interpretation of the within pair correlation?
- This is the amount of variance between pairs of the total variance in the trait.
- What is the purpose?
- Higher correlation in MZ than in DZ pairs indicate genetic influence on the trait.
- But for this comparison you should assume equal mean and variance for MZ and DZ twins!
- Yes! MZ and DZ twins do not differ (on average) as singletons.

Correlation in twins

Assumptions

- A measure of twin similarity: ρ
- Given pairs of observations of a continuous trait,

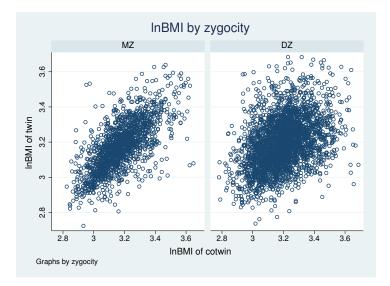
$$\{(y_{1j}, y_{2j})\}$$
 $j = 1 ... n$ (pairs)

the correlation is defined by

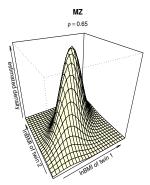
$$\rho(\mathbf{y}_1, \mathbf{y}_2) = \frac{\operatorname{cov}(\mathbf{y}_1, \mathbf{y}_2)}{\sqrt{\operatorname{var}(\mathbf{y}_1)}\sqrt{\operatorname{var}(\mathbf{y}_2)}}$$

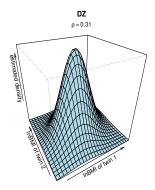
- Assumption: Equal mean and variance for twin 1 and twin 2.
- Assumption: Equal mean and variance for MZ and DZ twins.
- Estimation: By maximum likelihood assuming bivariate normal distribution.

BMI of twin versus BMI of cotwin



Bivarite normal distribution plot





Correlation in twins

 The pair (Y₁, Y₂) is bivariate normal distributed with mean (μ₁, μ₂) and variance-covariance matrix given by

$$\Sigma = \begin{pmatrix} \sigma_1^2 & \rho \sigma_1 \sigma_2 \\ \rho \sigma_1 \sigma_2 & \sigma_2^2 \end{pmatrix}$$

- NB! Variance in diagonal and covariance in off-diagonal.
- The variance in Y is denoted by σ^2 .
- The covariance between twin 1 and twin 2 known as $cov(Y_1, Y_2)$ is $\rho\sigma_1\sigma_2$.
- How likely are observed data given parameters?
- Principle: We choose parameters that make our observations most likely. Appendix: Maximum Likellhood Estimation

Correlation in twins - practicals

Estimation

- We will estimate twin correlations and test assumptions.
- We start using Mets and then try out OpenMx.

Practicals

- Carry on executing lines from the R-script "twinbmi.R":
- -try to obtain a twin-twin plot.
- -run the saturated model.
- A successful estimation is when parameters maximizes the log-likelihood function of data.
- -a criteria is that the score-command evaluates to very low values (typically below 10⁻⁵). See script.

mean : What is the effect of sex and age for twin 1 and twin 2, mz and dz type? covariance : What is the correlation in pairs?

• The log likelihood function of these parameters is termed 'log Lik.'. It's value together with the degrees of freedom is a measure of goodness of fit to data.

Correlation in twins - practicals

Practicals

- We go on looking for correlations and their inference in model that meets the assumptions $\mu_1 = \mu_2$ and $\sigma_1^2 = \sigma_2^2$ for twin 1 and twin 2 in MZ and DZ pairs.
- The assumptions induce submodels of the saturated model you may find these specified in the script.
- What is the outcome of the submodel obtained by constraining equal regressions, intercepts and residual variances for twin 1 and twin 2 in the saturated model?
- What is the fit of the submodel and how does it compare to that of the saturated model in terms of a χ² test of the difference -2(log(L₁) log(L₂)) on the difference in degrees of freedom?
- Carry on constraining marginals for MZ and DZ twins and consider the same issues as above.

WARNING! Busy slides coming up

Biostatistics (Institute of Public Health)

	bmi		

Group 1: MZ (n=1483)			_	
	Estimate	Std. Error	Z value	Pr(> z)
Regressions:				
logbmi.l~age.l	0.00596	0.00058	10.22059	<1e-12
logbmi.l~gendermale.l	0.16464	0.04180	3.93862	8.195e-05
logbmi.l~age:gendermale.l	-0.00247	0.00092	-2.67792	0.007408
logbmi.2~age.1	0.00626	0.00057	11.06885	<1e-12
logbmi.2~gendermale.1	0.18606	0.04052	4.59192	4.392e-06
logbmi.2~age:gendermale.1	-0.00274	0.00089	-3.06415	0.002183
Intercepts:				
logbmi.1	2.88926	0.02611	110.66670	<1e-12
logbmi.2	2.87071	0.02531	113.42068	<1e-12
Additional Parameters:				
log(var(MZ)).1	-4.00912	0.03681	-108.91220	<1e-12
log(var(MZ)).2	-4.07144	0.03682	-110.58848	<1e-12
atanh(rhoMZ)	0.76958	0.02609	29.49281	<1e-12
Group 2: DZ (n=2788)			-	
	Estimate	Std. Error	Z value	Pr(> z)
Regressions:				
logbmi.l~age.l	0.00565			<1e-12
logbmi.l~gendermale.l	0.15530	0.03004	5.16951	2.347e-07
logbmi.l~age:gendermale.l	-0.00198	0.00066	-3.00731	0.002636
logbmi.2~age.1	0.00571	0.00043	13.26981	<1e-12
logbmi.2~gendermale.1	0.16833	0.03001	5.60935	2.031e-08
logbmi.2~age:gendermale.1	-0.00254	0.00066	-3.86482	0.0001112
Intercepts:				
logbmi.1	2.91365	0.01943	149.92756	<1e-12
logbmi.2	2.91383	0.01941	150.09632	<1e-12
Additional Parameters:				
log(var(DZ)).1	-4.02373	0.02685	-149.86729	<1e-12
log(var(DZ)).2	-4.02586	0.02685	-149.94604	<1e-12
atanh(rhoDZ)	0.31399	0.01894	16.57373	<1e-12
Estimate		97.5%		
Correlation within MZ: 0.64669	0.61594	0.67546		
Correlation within DZ: 0.30406	0.26999	0.33737		
'log Lik.' 5629.137 (df=22)				

AIC: -11214.27

BIC: -11074.36

Group 1: MZ (n=1483)				
Regressions:	Estimate	Std. Error	z value	Pr(> z)
logbmi.1~age.1	0.00611	0 00052	11.79643	<10-12
logbmi.1~gendermale.1			4.69507	
logbmi.1~age:gendermale.1				
Intercepts:	0.00200	0.00002	5.10070	0.0010/1
logbmi.1	2.87999	0.02319	124.19495	<1e-12
Additional Parameters:				
log(var(MZ))	-4.03940	0.03100	-130.31863	<1e-12
atanh(rhoMZ)	0.76793	0.02600	29.53193	<1e-12
Group 2: DZ (n=2788)			_	
GIOUP 2. DZ (11-2/00)	Estimate	Std. Error	7 value	Pr(> 7)
Regressions:	Docimace	ocu. Error	D varac	11(+12+)
logbmi.1~age.1	0.00568	0.00035	16.33574	<1e-12
logbmi.l~gendermale.l	0.16182	0.02425	6.67419	2.486e-11
logbmi.l~age:gendermale.l	-0.00226	0.00053	-4.25499	2.091e-05
Intercepts:				
logbmi.1	2.91374	0.01569	185.74505	<1e-12
Additional Parameters:				
log(var(DZ))	-4.02407	0.01985	-202.75292	<1e-12
atanh(rhoDZ)	0.31296	0.01897	16.49464	<1e-12
Estimat	e 2.5%	97.5%		
Correlation within MZ: 0.64572				
Correlation within DZ: 0.30312				
'log Lik.' 5623.369 (df=12)				
AIC: -11222.74				
BIC: -11146.42				
> compare(lnbmi.sat,lnbmi.flex) > #compa	arison with	saturated :	model
- Likelihood ratio test -				
data: chisq = 11.537, df = 10, p-val	ue = 0.31	72		
sample estimates:				
log likelihood (model 1) log 1 5629.137	ikelihood	(model 2) 5623.369		

> lnbmi.flex

Group 1: MZ (n=1483)	Detimete	Std. Error		Pr(> z)
Regressions:	Estimate	Std. Error	z value	Pr(> z)
logbmi.1~age.1	0.00583	0 00029	20.15100	<1e-12
logbmi.l~gendermale.l			8.15634	
logbmi.1~age:gendermale.1				
Intercepts:	0.00250	0.00045	5.27704	1.50/6 0/
logbmi.1	2,90261	0 01302	222.92574	<1e-12
Additional Parameters:	2.90201	0.01002	222.92071	.10 12
log(var)	-4.02560	0.01673	-240.67809	<1e-12
atanh(rhoMZ)	0.77529		33.52059	
,				
Group 2: DZ (n=2788)				
	Estimate	Std. Error	Z value	Pr(> z)
Regressions:				
logbmi.l~age.l	0.00583	0.00029		
logbmi.l~gendermale.l	0.16606	0.02036	8.15634	<1e-12
logbmi.l~age:gendermale.l	-0.00236	0.00045	-5.27784	1.307e-07
Intercepts:				
logbmi.1	2.90261	0.01302	222.92574	<1e-12
Additional Parameters:				
log(var)		0.01673		
atanh(rhoDZ)	0.31314	0.01870	16.74748	<1e-12
	te 2.5%	07 50		
Correlation within MZ: 0.6500				
Correlation within MZ: 0.6500 Correlation within DZ: 0.3032				
Correlation within DZ: 0.3032	9 0.26965	0.33616		
'log Lik.' 5614.387 (df=7)				
AIC: -11214.77				
BIC: -11170.26				
>				
<pre>> compare(lnbmi.u,lnbmi.flex)</pre>				
· · · · · · · · · · · · · · · · · · ·				
- Likelihood ratio test -				
data:				
chisq = 17.962, df = 5, p-val sample estimates:	ue = 0.002	994		
log likelihood (model 1) log 5614.387	likelihood	(model 2) 5623.369		

> lnbmi.u

Saturated model - model selection

Submodels of sa	turated more	del				
Submodel	'log Lik.'	df	$-2\Delta X^2$	Δdf	р	AIC
Saturated	5629.137	22				-11214.27
"equal 1 and 2"	5623.369	12	11.537	10	0.3172	-11222.74
"equal MZ and DZ"	5614.387	7	17.962	5	0.002994	-11214.77

- Saturated model: No constraints on mean and variance structures.
- Note that the mean, μ , is actually the mean of residuals $y_{ij} \beta_1 \operatorname{sex}_{ij} \beta_2 \operatorname{age}_{ij} \beta_3 \operatorname{sex}_{ij} \operatorname{age}_{ij}$.
- We insist on natural assumptions although data may not greatly support these.

Genetic Influence on InBMI

	Saturated model w	v. constraints	
	Number of pairs	Correlation (95% CI)	Heritability (95% CI)
MZ pairs	1483	0.65 (0.62,0.68)	? (?,?)
DZ pairs	2788	0.30 (0.27,0.34)	biometric model

• Correlations are adjusted for effects of sex ($\hat{\beta}_{sex} = 0.17$ coded females zero and males one) and age (by an increment of 0.0058 in InBMI for each year, slightly lower if male (see interaction term)).

Overview

Introduction

- 2 Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- Biometric modelling
- 5 Practicals using OpenMx

Summary

- Further Aims
- Appendix

Aims

- Difference in correlations between MZ and DZ twins suggests genetic influence on trait.
- What type and magnitude of genetic and environmental influences to expect?
- We consider classical twin analysis using the polygenic model, known as the ADCE-model, in which the individual outcome, *Y_i* decomposes into

$$Y_i = A_i + D_i + C_i + E_i,$$

where

- A: Additive genetic effects of alleles
- D: Dominant genetic effects
- C: Shared environmental effects
- E: Unique environmental effects

Biometric analyses - polygenic model

• Contributing factors to the variation in outcome:

$$\Sigma_{Y} = \begin{pmatrix} \sigma_{A}^{2} & Z\sigma_{A}^{2} \\ Z\sigma_{A}^{2} & \sigma_{A}^{2} \end{pmatrix} + \begin{pmatrix} \sigma_{D}^{2} & u\sigma_{D}^{2} \\ u\sigma_{D}^{2} & \sigma_{D}^{2} \end{pmatrix} + \begin{pmatrix} \sigma_{C}^{2} & \sigma_{C}^{2} \\ \sigma_{C}^{2} & \sigma_{C}^{2} \end{pmatrix} + \begin{pmatrix} \sigma_{E}^{2} & 0 \\ 0 & \sigma_{E}^{2} \end{pmatrix}$$

where z = u = 1 for MZ pairs, $z = \frac{1}{2}$ and $u = \frac{1}{4}$ for DZ pairs.

In particular, we obtain

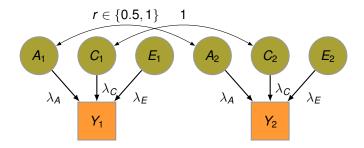
• Heritability:

$$h_Y^2 = \frac{\sigma_A^2 + \sigma_D^2}{\sigma_A^2 + \sigma_D^2 + \sigma_C^2 + \sigma_E^2}$$

Shared environmental effect:

$$c_Y^2 = \frac{\sigma_C^2}{\sigma_A^2 + \sigma_D^2 + \sigma_C^2 + \sigma_E^2}$$

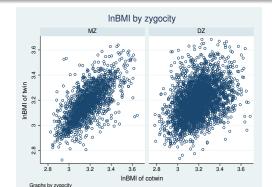
SEM - ACE Path Diagram representation



Biometric analyses - polygenic model

Main assumptions

- Equal environments assumption for MZ and DZ twins.
- No gene-environment interaction and correlation.
- No gene-gene interaction (link: epistasis).
- Equal mean and variance of twin 1 and twin 2, MZ and DZ.
- Estimation and inference by maximum likelihood principle assuming bivariate normality of paired observations (as before).



Biometric analyses - practicals

Estimation

- We will fit appropriate polygenic model to data, estimate heritability and test assumptions.
- NB! Only three of four variance-components are estimable in same model since only three equations in model.

Practicals - Use R

- Carry on estimating the ACE model and its submodels (AE, CE and E).
- Try to estimate the ADE model as well and compare it to ACE wrt. AIC (lowest is most parsimoniuos).
- Which model and hence which results to report?

> lnbmi.ace Estimate Std. Error Z value Pr(>|z|) logbmi 2.9025e+00 1.3088e-02 221.7584 < 2.2e-16 sd(A) 1.0743e-01 1.6632e-03 64.5951 < 2.2e-16 1.1059e-07 1.5885e-02 0.0000 sd(C) sd(E) 7.9726e-02 1.3531e-03 58.9208 < 2.2e-16 logbmi~age 5.8343e-03 2.9099e-04 20.0498 < 2.2e-16 logbmi~gendermale 1.6611e-01 2.0481e-02 8.1105 5.041e-16 logbmi~age:gendermale -2.3563e-03 4.4889e-04 -5.2492 1.528e-07 MZ-pairs DZ-pairs 1483 2788 Variance decomposition: Estimate 2.5% 97.5% A 0.64486 0.61920 0.67053 C 0.00000 0.00000 0.00000 E 0.35514 0.32947 0.38080 Estimate 2.5% 97.5% Broad-sense heritability 0.64486 0.61920 0.67053 Estimate 2.5% 97.5% Correlation within MZ: 0.64486 0.61847 0.66981 Correlation within DZ: 0.32243 0.30954 0.33520 'log Lik.' 5613.624 (df=7) AIC: -11213.25 BIC: -11168.73

> lnbmi.ade

	Estimate	Std. Error	Z value	Pr(> z)
logbmi	2.90261390	0.01302012	222.9330	< 2.2e-16
sd(A)	0.10026867	0.00609022	16.4639	< 2.2e-16
sd(D)	0.03937491	0.01553051	2.5353	0.01123
sd(E)	0.07904756	0.00142834	55.3424	< 2.2e-16
logbmi~age	0.00583261	0.00028944	20.1515	< 2.2e-16
logbmi~gendermale	0.16606029	0.02035965	8.1563	3.453e-16
logbmi~age:gendermale	-0.00235505	0.00044622	-5.2778	1.307e-07
MZ-pairs DZ-pairs				
1483 2788				
Variance decompositio	n:			
Estimate 2.5% 9	7.5%			
A 0.56315 0.43372	0.69258			
D 0.08684 -0.04772	0.22141			
E 0.35000 0.32387	0.37614			
		2.5% 97.		
Broad-sense heritabil	ity 0.65000	0.62386 0.6	7613	
		.5% 97.5%		
Correlation within MZ				
Correlation within DZ	: 0.30329 0	.27058 0.335	30	
	16 71			
'log Lik.' 5614.387 (dI=/)			
AIC: -11214.77				
BIC: -11170.26				
>				
> #comparison of non-		S		
> AIC(lnbmi.ace,lnbmi df AI				
	-			
lnbmi.ace 7 -11213.2				
lnbmi.ade 7 -11214.7	/			

```
> lnbmi.ae
                        Estimate Std. Error Z value Pr(>|z|)
logbmi
                      2.90248121 0.01308848 221.7584 < 2.2e-16
sd(A)
                     0.10743239 0.00166316 64.5953 < 2.2e-16
sd(E)
                     0.07972558 0.00135310 58.9208 < 2.2e-16
logbmi~age
                     0.00583434 0.00029099 20.0498 < 2.2e-16
logbmi~gendermale 0.16611110 0.02048100 8.1105 5.041e-16
logbmi~age;gendermale -0.00235629 0.00044889 -5.2492 1.528e-07
MZ-pairs DZ-pairs
    1483 2788
Variance decomposition:
 Estimate 2.5% 97.5%
A 0.64486 0.61920 0.67053
E 0.35514 0.32947 0.38080
                        Estimate 2.5% 97.5%
Broad-sense heritability 0.64486 0.61920 0.67053
                      Estimate 2 5% 97 5%
Correlation within MZ: 0.64486 0.61847 0.66981
Correlation within DZ: 0.32243 0.30954 0.33520
'log Lik.' 5613.624 (df=6)
ATC: -11215.25
BIC: -11177.09
>
> compare(lnbmi.ade,lnbmi.ae)
- Likelihood ratio test -
data:
chisg = 1.5276, df = 1, p-value = 0.2165
sample estimates:
log likelihood (model 1) log likelihood (model 2)
               5614.387
                                       5613.624
```

> lnbmi.ce Estimate Std. Error Z value Pr(>|z|) loqbmi 2.90078541 0.01306870 221.9643 < 2.2e-16 sd(C) 0.08684814 0.00171221 50.7228 < 2.2e-16 sd(E) 0.10148741 0.00109924 92.3255 < 2.2e-16 logbmi~age 0.00585634 0.00029065 20.1491 < 2.2e-16 logbmi~gendermale 0.16676183 0.02048187 8.1419 3.890e-16 logbmi~age:gendermale -0.00237224 0.00044908 -5.2825 1.275e-07 MZ-pairs DZ-pairs 1483 2788 Variance decomposition: Estimate 2.5% 97.5% C 0.42274 0.39805 0.44743 E 0.57726 0.55257 0.60195 Estimate 2.5% 97.5% Broad-sense heritability 0 0 0 Estimate 2.5% 97.5% Correlation within MZ: 0.42274 0.39774 0.44711 Correlation within DZ: 0.42274 0.39774 0.44711 'log Lik.' 5495.683 (df=6) AIC: -10979.37 BIC: -10941.21 > > AIC(lnbmi.ae,lnbmi.ce) df AIC Inbmi.ae 6 -11215.25 lnbmi.ce 6 -10979.37 > #not good at all. > #We report the AE model.

Polygenic model - model selection

Biometric	analyses - m	odel selectio	n			
Models	'log Lik.'	df	$-2\Delta X^2$	∆df	р	AIC
Saturated	5629.137	22				-11214.27
ACE	5613.624	7				-11213.25
ADE	5614.387	7				-11214.77
AE (*)	5613.624	6	1.5276	1	0.2165 [†]	-11215.25
CE	5495.683	6	235.88	1	< 0.0001	-10979.37

 The additive genetic effect A is significant in all models (i.e. CE and E models are significantly worse).

- The ADE model has a slightly better fit than the ACE model in terms of Akaike's criterion having lowest AIC value (given by -2 ln(L) - 2df).
- The AE model is chosen by comparison with ADE being the most parsimonious model
- [†]this p-value is too conservative and can be halved (Dominicus et al. 2006).
- The C component in the ACE model vanishes at zero, otherwise we should report it.

Genetic Influence on InBMI

	Polygenic	model	
	Number of pairs	Correlation (95% CI)	Heritability (95% CI)
MZ pairs	1483	0.65 (0.62,0.68)	0.64 (0.62,0.67)
DZ pairs	2788	0.30 (0.27,0.34)	AE model

• The biometric polygenic model assuming additive genetic and unique environmental components in InBMI and adjusting for effects of sex and age gave the best fit to observations.

Overview

Introduction

- 2 Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx
- Summary
- 7 Further Aims
- Appendix

OpenMx theoretical background

- Statistical program for Structural Equation Modelling (SEM)
- The focus in SEM is the basically the covariance matrix, Σ = Σ(θ).
- Great many statistical methods can be formulated via SEM.
- Simple linear regression, $Y = \beta X + \epsilon$, corresponds in SEM to

$$\Sigma_{Y} = \begin{pmatrix} \beta^{2} \sigma_{X}^{2} + \sigma_{\epsilon}^{2} & \beta \sigma_{X}^{2} \\ \beta \sigma_{X}^{2} & \sigma_{X}^{2} \end{pmatrix}$$

- -now, find parameters $\beta \in \theta$ minimizing the difference between the sample covariance matrix and the one predicted by the model, the right-side.
- A general SEM is of form, η = Bη + Γξ + ζ, where η and ξ denotes endogenous and exogenous variables respectively, B and Γ are matrices of coefficients and ζ denotes errors.
- -this induces the covariance matrix, Σ(θ), to be compared with the observed covariance matrix.
- -indeed the purpose of programs OpenMx, Mx, LISREL, M-Plus and others.

Practicals using OpenMx

- SEM is implemented by specifying the mean and covariance structures.
- SEM for twin data has the following structure in OpenMx:

```
Model <- mxModel("name",
    mxModel("MZ",
        mxMatrix(),
        mxAlgebra(),
        mxData( observed=mzData, type="raw" ),
        mxFIMLObjective( covariance, means)
    ),
    mxModel("DZ",
        mxMatrix(),
        mxAlgebra(),
        mxData( observed=dzData, type="raw" ),
        mxFIMLObjective( covariance, means)
    ),
    mxAlgebraObjective (MZ.objective + DZ.objective)
)
ModelFit <- mxRun(Model)
-manage output-
```

Biometric analyses - practicals using OpenMx

Practicals

- To get familiar with OpenMx we carry out the analysis of BMI (omitting covariates).
- Using the script 'twinbmiOpenMx.R', let's
 - fit univariate saturated model.
 - -constrain to same mean for twin 1 and 2, mz and dz.
 - then constrain to same mean and variance for twin 1 and 2, mz and dz.
- The ACE, ADE and submodels AE, CE and E may then be fitted and compared as above.

Overview

Introduction

- 2 Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx
- Summary
- 7 Further Aims
- Appendix

Remarks

- Within pair similarity is measured by correlations.
- Correlations are further modelled by genetic and environmental variance components via the polygenic ADCE model.
- For instance, the polygenic ACE model relates to correlations via $\rho_{mz} = h^2 + c^2$ and $\rho_{dz} = \frac{1}{2}h^2 + c^2$.

Heuristics of MZ and DZ correlations

	Interpreta	tion	
Relation	Genetics	Environment	Examples
$\rho_{mz} > 4\rho_{dz}$	Epistasis		albinism
$\rho mz > 2\rho dz$	Genetic dominance D		
$\rho mz = 2\rho dz$	Additive effect A (mono- or polygenic) and small D	Small C	BMI
$2\rho_{dz} > \rho_{mz} > \rho_{dz}$	Additive genes A	Shared environment C	longevity
$\rho_{mz} = \rho_{dz} > 0$	No genetic effect	С	
$\rho_{mz} = \rho_{dz} = 0$	No genetic effect	No familial aggregation	

Remarks

- How to do ususal exposure-outcome analysis with twins treated as singletons?
- Regression model for the response of i'th individual in j'th pair:

$$Y_{ij} = \beta_0 + \beta_1 X_{ij} + u_j + \epsilon_{ij},$$

- For inference, ie., konfidence and tests, independent observations are needed and *u_j* models the dependence in twin pairs giving adjusted inference.
- This may also be achieved by robust variance estimation using independence between pairs or similarly by generalised estimating equations (gee). (Implemented in standard software, eg. R and Stata).

Overview

Introduction

- 2 Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx

Summary

- 7 Further Aims
- Appendix

Aims of multivariate twin analyses

- Outcome: There are multiple outcomes! (eg. Telomere length, HDL, and BMI).
- What is the contribution of genetic and environmental factors to the variation in outcome?

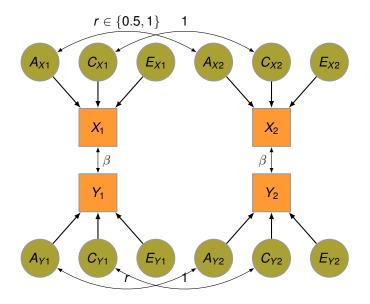
 $\left\{ \begin{array}{l} Y = \text{Genes} + \text{Environment} \\ \Sigma_Y = \Sigma_{\text{Genes}} + \Sigma_{\text{Environment}} \end{array} \right.$

- What kind of genetic and environmental influences to expect?
- Are the same or different genes influencing the traits?

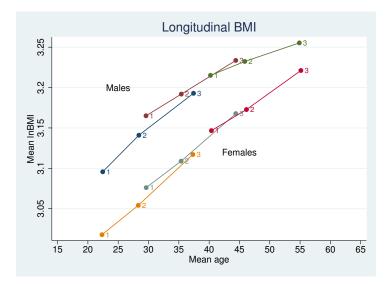
Scope of study

- Co-occurrence or co-morbidity of different diseases.
- Inter-relations, interactions, confounding and moderation effects.
- Genetic or environmental overlap between traits, that is, origin of comorbidity
 - pleiotropic genetic effects
 - environmental overlap: prevention strategies impacting on multiple diseases.
- Developmental changes (longitudinal data).

SEM - Path Diagram representation



Longitudinal twin data



-genetic influence on change in InBMI? (to follow later in course)

Aims in Time to Event Twin Studies

Effect?

 $Exposure {\rightarrow} Outcome$

- Outcome: Time to occuence of event. Event may not occur can be censored at follow-up.
- What is the contribution of genetic and environmental factors to the variation in risk of outcome?

 $\left\{ \begin{array}{l} Y = \text{Genes} + \text{Environment} \\ \Sigma_Y = \Sigma_{\text{Genes}} + \Sigma_{\text{Environment}} \end{array} \right.$

- What kind of genetic and environmental influences to expect?
- How does this influence vary with time?

Overview

Introduction

- 2 Case study: Genetic influence on Body Mass Index
- 3 Correlations and assumptions
- 4 Biometric modelling
- 5 Practicals using OpenMx
- Summary
- Further Aims
- 8 Appendix

Appendix: Correlation in twins

- **Principle:** We choose parameters that makes our observations most likely.
- First, the probability of observing the values (y_{1j}, y_{2j}) in *j'th* pair given parameters is

$$f((y_{1j}, y_{2j})|\mu_1, \mu_2, \sigma_1, \sigma_2, \rho)) = \frac{1}{2\pi\sigma_1\sigma_2\sqrt{(1-\rho^2)}} \exp\{\frac{-1}{2(1-\rho^2)}Q(y_{1j}, y_{2j})\},$$

where

$$Q(y_{1j}, y_{2j}) = (\frac{y_{1j} - \mu_1}{\sigma_1})^2 - 2\rho(\frac{y_{1j} - \mu_1}{\sigma_1})(\frac{y_{2j} - \mu_2}{\sigma_2}) + (\frac{y_{2j} - \mu_2}{\sigma_2})^2$$

 Second, since pairs of observations are independent the likelihood of all data is given by

$$L = \prod_{j=1}^{n} f((y_{1j}, y_{2j}) | \mu_1, \mu_2, \sigma_1, \sigma_2, \rho)$$

 Finally we maximize (the logarithm) of this function, known as the log likelihood function to obtain the parameters, in particular the correlation, for which our observations are most likely.