
Analysis of continuous twin data
Univariate analysis

Jacob Hjelmborg

University of Southern Denmark

Spring 2018

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 1 / 63



Overview

1 Introduction

2 Case study: Genetic influence on Body Mass Index

3 Correlations and assumptions

4 Biometric modelling

5 Practicals using OpenMx

6 Summary

7 Further Aims

8 Appendix

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 2 / 63



Prologue
Welcome!

Analysis of Twin Data in Health Science:
The Course homepage - click here

http://www.sdu.dk/om_sdu/institutter_centre/ist_sundhedstjenesteforsk/forskning/epidemiologi/uddannelse/forskeruddannelsen/twins
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L. Mucci, J. Hjelmborg, T. Scheike, K. Holst, A. Skytthe, H. Adami, N. Holm, K. Christensen,
J. Harris, J. Kaprio et al. JAMA (2016)



 
Cancer site Cumulative 

risk1 (%) 
N Twin pairs concordant/ 

discordant 
Familial risk2  

(95% CI) – MZ twins 
Familial risk  

(95% CI) – DZ twi   
 

 
  MZ DZ    
Overall cancer 32.4% 1383/5887 1933/11461 45.9% (44.1%-47.7%) 37.1% (35.7-38.4   
Head and neck3  0.8% 5/191 6/361 6.0% (2.4-14.4%) 5.1% (2.2-11.3%   
Esophagus 0.4% 0/87 0/183 -- --  
Stomach 1.6% 14/338 15/648 6.8% (3.9-11.4%) 4.4% (2.6-7.3%   
Small intestine 0.1% 0/32 0/59 -- --  
Colon 2.9% 30/577 31/1156 10.9% (7.4-15.8%) 7.9% (5.4-11.4%   
Rectum and anus 1.9% 14/440 13/771 6.6% (3.7-11.4%) 5.8% (3.4-9.7%   
Liver 0.5% 0/124 2/208 -- --  
Gallbladder, extrahepatic 
bile duct 

0.5% 1/110 1/187 0.5% (0-4.7%) 0.3% (0-1.0%)  

Pancreas 1.1% 4/234 6/508 4.3% (1.5-11.6%) 3.7% (1.5-8.6%   
Nose, sinuses 0.1% 0/21 0/36 -- --  
Larynx 0.2% 2/53 1/113 8.4% (2.3-26.4%) 2.7% (1.1-6.1%   
Lung, trachea and 
bronchus 

3.2% 50/682 74/1366 17.5% (13.4-22.5%) 13.4% (10.8-16.6   

Pleura 0.1% 1/22 0/38 -- --  
Bone 0.1% 0/20 0/35 -- --  
Melanoma of skin 1.2% 11/342 6/585 19.6% (11.5-31.3%) 6.1% (2.7-13.2%   
Skin, non-melanoma 3.0% 16/395 10/618 14.5% (7.5-26.2%) 4.6% (2.4-8.6%   
Connective and soft 
tissues 

0.2% 0/57 0/110 -- --  

Breast  9.4% 124/1175 141/2223 28.1% (23.9-32.8%) 19.9% (17.0-23.2   
Cervix uteri 1.0% 1/210 3/324 -- --  
Corpus uteri 2.2% 9/272 6/481 7.0% (3.4-14.0%) 3.6% (1.6-8.0%   
Uterus, other 0.1% 0/24 0/36 -- --  
Ovary  1.6% 6/234 4/427 8.7% (4.0-17.9%) 2.9% (1.1-7.4%   
Other female genital 
organs 

0.4% 0/47 1/84 -- --  

Penis and other genital 
organs 

0.1% 0/15 0/34 -- --  

Prostate 10.5% 197/807 148/1719 38.0% (33.9-42.2%) 22.0% (18.8-25.7   
Testis 0.5% 5/90 3/123 13.8% (5.7-29.6%) 6.0% (1.9-16.9%   
Kidney 0.8% 5/196 2/374 6.7% (2.8-15.1%) 1.8% (0.4-6.8%   
Bladder, other 
urinary organs 

2.2% 18/471 13/870 9.9% (6.2-15.5%) 5.5% (3.1-9.7%   

Eye 0.1% 2/30 0/64 -- --  
Brain, central 
nervous system 

0.9% 1/343 3/522 1.7% (0.5-6.2%) 1.8% (0.3-12.0%   

Thyroid 0.2% 0/85 1/132 -- --  
Hodgkin’s disease 0.1% 0/57 0/69 -- --  
Multiple myeloma 0.4% 0/114 0/174 -- --  
Non-Hodgkin lymphoma 0.7% 1/254 3/466 -- --  
Leukemia, acute 0.3% 0/77 0/139 -- --   
Leukemia, other 0.6% 5/128 3/259 15.2% (6.1-33.2%) 4.1% (1.3-11.9%    

 



 
 NorTwinCan 2014 Lichtenstein 2000 
 Heritability  

(%, 95% CI) 
Shared 

environment  
(%, 95% CI) 

Heritability  
 

Overall cancer 33% (30-37%) 0% N/A 
Head and neck 9% (0-60%) 26% (0-65%) N/A 
Stomach 22% (0-55%) 6% (0-31%) 28% 
Colon 15% (0-45%) 16% (0-38%) 35%* 
Rectum and anus 14% (0-50%) 10% (0-38%) 35%* 
Lung 18% (0-42%) 24% (7-40%) 26% 
Skin, melanoma 58% (43-73%) 0%  N/A 

Skin, non-
melanoma 

43% (26-59%) 0% N/A 

Breast  31% (11-51%) 16% (0-31%) 27%  
Corpus uteri 27% (11-43%) 0%  0% 
Ovary  39% (23-55%) 0% 22%  
Prostate 57% (51-63%) 0% 42% 
Testis 37% (0-93%) 24% (0-70%) N/A 
Kidney  
 

38% (21-55%) 0% N/A 

Bladder, other 
urinary organs 

30% (0-67%) 0% 31% 

Leukemia, other 57% (0-100%) 0% N/A 

* Lichtenstein et al presented data for colon and rectum combined 





The Epigenome



History: Statistical genetics

How is variation at phenotypic level governed by variation at genetic level?

R.A. Fisher (1918): Two landmark papers.



Prologue

Effect?
Exposure→Outcome

Outcome: Continuous variable (eg. time to event, BMI, . . .).
What is the contribution of genetic and environmental factors to the
variation in outcome? {

Y = Genes + Environment
ΣY = ΣGenes + ΣEnvironment

What kind of genetic and environmental influences to expect?
Example: SNPedia.com - click here

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 10 / 63
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Case study: Body Mass Index
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Case study: Background
Body Mass Index defined as weight (kg) per squared height (m2) is a
complex trait related to several health related factors (eg. obesity,
diabetes, aging).
The index may allow for comparison among individuals with different
height, but is not regarded invariant between different sexes.
Estimated heritability of 0.60-0.70 in BMI has been reported from ‘The
GenomeEUtwin Study’ using 8 cohorts (Schousboe et al. 2003)) with the
remaining 30-40% due to a unique environmental variance component.
The genetic influence is a complex action of several genes. Only few
genetic variants identified so far.
The interplay with environmental factors is under intense investigation.

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 13 / 63



The Methodology

Genetic influence on continuous trait
Correlation: measure of similarity to be compared for MZ and DZ pairs
The polygenic model allows for modelling type and magnitude of genetic
influence on BMI by decomposing the variance in BMI into genetic and
environmental components.

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 14 / 63



The Material

Finnish cohort observed in 1975, 1981 and 1990
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The Data
+----------------------------------------------------------------+
| id tvparnr nr bmi sex age zygocity |
|----------------------------------------------------------------|

1. | 1000011 100001 1 26.33289 male 57.57974 DZ |
2. | 1000012 100001 2 25.46939 male 57.57974 DZ |
3. | 1000021 100002 1 28.65014 male 57.0486 MZ |
4. | 1000031 100003 1 28.40909 male 57.6783 DZ |
5. | 1000041 100004 1 27.25089 male 53.51677 DZ |

... ... . ... .. ... .

Histogram of lnBMI
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The Data
How about marginal effects of eg. age and gender?
Regression model for the response of i’th individual in j’th pair:

yij = β0 + β1ageij + β2sexij + β3ageXsexij + uj + εij ,

where uj is a term that varies in pairs - a random intercept that models
the within pair covariance.
Why complicate matter?
For inference, ie., konfidence and tests, independent observations are
needed and uj models the dependence in twin pairs giving adjusted
inference.
In Stata (see accompanying script for model diagnostics etc.):
> xi: xtmixed lnbmi i.sex*age || tvparnr: , var mle

Log likelihood = 7214.1296 Prob > chi2 = 0.0000

------------------------------------------------------------------------------
lnbmi | Coef. Std. Err. z P>|z| [95% Conf. Interval]

-------------+----------------------------------------------------------------
_Isex_2 | -.1619652 .0166531 -9.73 0.000 -.1946047 -.1293257

age | .0035526 .0002722 13.05 0.000 .0030191 .0040861
_IsexXage_2 | .0022916 .0003692 6.21 0.000 .001568 .0030153

_cons | 3.065863 .0123446 248.36 0.000 3.041668 3.090058
------------------------------------------------------------------------------
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The Data

We consider the logarithm of BMI, in notation ‘lnBMI’.
The outcome is associated with gender and age.
Lets load the data into R and head for descriptives:

Use R
I Start R and open the R-script ’twinbmi.R’.
I Run lines in script till Section Pairs begins.

We then go on considering the paired structure.



BMI of twin versus BMI of cotwin
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BMI of twin versus BMI of cotwin
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Genetic Influence on lnBMI

Polygenic model
Number of pairs Correlation (95% CI) Heritability (95% CI)

MZ pairs 1483 ? (?,?) ? (?,?)
DZ pairs 2788 ? (?,?) Biometric model
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Statistical genetics
How is variation at phenotypic level governed by variation at genetic level?

Two structures for modelling: mean and variance-covariance.
R.A. Fisher (1918): The variance-covariance matrix varies by type of twin
pairs.

Σ =

(
variance of first twin covariance of twins
covariance of twins variance of second twin

)
We begin seeking a measure of twin similarity: ρ



SEM - Correlation Path Diagram representation

Y1 Y2

ρ



Within pair intraclass correlation
What’s on?

How to measure twin similarity?
Given pairs (y1j , y2j ) of observations of a continuous trait the correlation
within pairs is the usual (product-moment) correlation assuming equal
mean and variance for twin 1 and twin 2.
Why assume equal mean and variance for twin 1 and twin 2?
Twin 1 and twin 2 can be interchanged when there is no ordering of twin
and co-twin.
What is the interpretation of the within pair correlation?
This is the amount of variance between pairs of the total variance in the
trait.
What is the purpose?
Higher correlation in MZ than in DZ pairs indicate genetic influence on
the trait.
But for this comparison you should assume equal mean and variance for
MZ and DZ twins!
Yes! MZ and DZ twins do not differ (on average) as singletons.
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Correlation in twins

Assumptions
A measure of twin similarity: ρ
Given pairs of observations of a continuous trait,

{(y1j , y2j )} j = 1 . . . n (pairs)

the correlation is defined by

ρ(y1, y2) =
cov(y1, y2)√

var(y1)
√

var(y2)

Assumption: Equal mean and variance for twin 1 and twin 2.
Assumption: Equal mean and variance for MZ and DZ twins.
Estimation: By maximum likelihood assuming bivariate normal
distribution.
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Bivarite normal distribution plot
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Correlation in twins

The pair (Y1,Y2) is bivariate normal distributed with mean (µ1, µ2) and
variance-covariance matrix given by

Σ =

(
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

)
NB! Variance in diagonal and covariance in off-diagonal.
The variance in Y is denoted by σ2.
The covariance between twin 1 and twin 2 known as cov(Y1,Y2) is ρσ1σ2.
How likely are observed data given parameters?
Principle: We choose parameters that make our observations most
likely. Appendix: Maximum Likelihood Estimation



Correlation in twins - practicals
Estimation

We will estimate twin correlations and test assumptions.
We start using Mets and then try out OpenMx.

Practicals
Carry on executing lines from the R-script "twinbmi.R":
-try to obtain a twin-twin plot.
-run the saturated model.
A successful estimation is when parameters maximizes the log-likelihood
function of data.
-a criteria is that the score-command evaluates to very low values
(typically below 10−5). See script.

mean : What is the effect of sex and age for twin 1 and twin 2, mz and dz type?
covariance : What is the correlation in pairs?

The log likelihood function of these parameters is termed ’log Lik.’. It’s
value together with the degrees of freedom is a measure of goodness of
fit to data.



Correlation in twins - practicals

Practicals
We go on looking for correlations and their inference in model that meets
the assumptions µ1 = µ2 and σ2

1 = σ2
2 for twin 1 and twin 2 in MZ and DZ

pairs.
The assumptions induce submodels of the saturated model - you may
find these specified in the script.
What is the outcome of the submodel obtained by constraining equal
regressions, intercepts and residual variances for twin 1 and twin 2 in the
saturated model?
What is the fit of the submodel and how does it compare to that of the
saturated model in terms of a χ2 test of the difference
−2(log(L1)− log(L2)) on the difference in degrees of freedom?
Carry on constraining marginals for MZ and DZ twins and consider the
same issues as above.



WARNING! Busy slides coming up
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> lnbmi.sat
____________________________________________________
Group 1: MZ (n=1483)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00596 0.00058 10.22059 <1e-12
logbmi.1~gendermale.1 0.16464 0.04180 3.93862 8.195e-05
logbmi.1~age:gendermale.1 -0.00247 0.00092 -2.67792 0.007408
logbmi.2~age.1 0.00626 0.00057 11.06885 <1e-12
logbmi.2~gendermale.1 0.18606 0.04052 4.59192 4.392e-06
logbmi.2~age:gendermale.1 -0.00274 0.00089 -3.06415 0.002183

Intercepts:
logbmi.1 2.88926 0.02611 110.66670 <1e-12
logbmi.2 2.87071 0.02531 113.42068 <1e-12

Additional Parameters:
log(var(MZ)).1 -4.00912 0.03681 -108.91220 <1e-12
log(var(MZ)).2 -4.07144 0.03682 -110.58848 <1e-12
atanh(rhoMZ) 0.76958 0.02609 29.49281 <1e-12

____________________________________________________
Group 2: DZ (n=2788)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00565 0.00043 13.11664 <1e-12
logbmi.1~gendermale.1 0.15530 0.03004 5.16951 2.347e-07
logbmi.1~age:gendermale.1 -0.00198 0.00066 -3.00731 0.002636
logbmi.2~age.1 0.00571 0.00043 13.26981 <1e-12
logbmi.2~gendermale.1 0.16833 0.03001 5.60935 2.031e-08
logbmi.2~age:gendermale.1 -0.00254 0.00066 -3.86482 0.0001112

Intercepts:
logbmi.1 2.91365 0.01943 149.92756 <1e-12
logbmi.2 2.91383 0.01941 150.09632 <1e-12

Additional Parameters:
log(var(DZ)).1 -4.02373 0.02685 -149.86729 <1e-12
log(var(DZ)).2 -4.02586 0.02685 -149.94604 <1e-12
atanh(rhoDZ) 0.31399 0.01894 16.57373 <1e-12

Estimate 2.5% 97.5%
Correlation within MZ: 0.64669 0.61594 0.67546
Correlation within DZ: 0.30406 0.26999 0.33737

’log Lik.’ 5629.137 (df=22)
AIC: -11214.27
BIC: -11074.36



> lnbmi.flex
____________________________________________________
Group 1: MZ (n=1483)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00611 0.00052 11.79643 <1e-12
logbmi.1~gendermale.1 0.17535 0.03735 4.69507 2.665e-06
logbmi.1~age:gendermale.1 -0.00260 0.00082 -3.16076 0.001574

Intercepts:
logbmi.1 2.87999 0.02319 124.19495 <1e-12

Additional Parameters:
log(var(MZ)) -4.03940 0.03100 -130.31863 <1e-12
atanh(rhoMZ) 0.76793 0.02600 29.53193 <1e-12

____________________________________________________
Group 2: DZ (n=2788)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00568 0.00035 16.33574 <1e-12
logbmi.1~gendermale.1 0.16182 0.02425 6.67419 2.486e-11
logbmi.1~age:gendermale.1 -0.00226 0.00053 -4.25499 2.091e-05

Intercepts:
logbmi.1 2.91374 0.01569 185.74505 <1e-12

Additional Parameters:
log(var(DZ)) -4.02407 0.01985 -202.75292 <1e-12
atanh(rhoDZ) 0.31296 0.01897 16.49464 <1e-12

Estimate 2.5% 97.5%
Correlation within MZ: 0.64572 0.61503 0.67447
Correlation within DZ: 0.30312 0.26898 0.33650

’log Lik.’ 5623.369 (df=12)
AIC: -11222.74
BIC: -11146.42

> compare(lnbmi.sat,lnbmi.flex) > #comparison with saturated model

- Likelihood ratio test -

data:
chisq = 11.537, df = 10, p-value = 0.3172
sample estimates:
log likelihood (model 1) log likelihood (model 2)

5629.137 5623.369



> lnbmi.u
____________________________________________________
Group 1: MZ (n=1483)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00583 0.00029 20.15100 <1e-12
logbmi.1~gendermale.1 0.16606 0.02036 8.15634 <1e-12
logbmi.1~age:gendermale.1 -0.00236 0.00045 -5.27784 1.307e-07

Intercepts:
logbmi.1 2.90261 0.01302 222.92574 <1e-12

Additional Parameters:
log(var) -4.02560 0.01673 -240.67809 <1e-12
atanh(rhoMZ) 0.77529 0.02313 33.52059 <1e-12

____________________________________________________
Group 2: DZ (n=2788)

Estimate Std. Error Z value Pr(>|z|)
Regressions:

logbmi.1~age.1 0.00583 0.00029 20.15100 <1e-12
logbmi.1~gendermale.1 0.16606 0.02036 8.15634 <1e-12
logbmi.1~age:gendermale.1 -0.00236 0.00045 -5.27784 1.307e-07

Intercepts:
logbmi.1 2.90261 0.01302 222.92574 <1e-12

Additional Parameters:
log(var) -4.02560 0.01673 -240.67809 <1e-12
atanh(rhoDZ) 0.31314 0.01870 16.74748 <1e-12

Estimate 2.5% 97.5%
Correlation within MZ: 0.65000 0.62304 0.67541
Correlation within DZ: 0.30329 0.26965 0.33618

’log Lik.’ 5614.387 (df=7)
AIC: -11214.77
BIC: -11170.26
>
> compare(lnbmi.u,lnbmi.flex)

- Likelihood ratio test -

data:
chisq = 17.962, df = 5, p-value = 0.002994
sample estimates:
log likelihood (model 1) log likelihood (model 2)

5614.387 5623.369



Saturated model - model selection

Submodels of saturated model
Submodel ’log Lik.’ df −2∆X2 ∆df p AIC note
Saturated 5629.137 22 -11214.27
"equal 1 and 2" 5623.369 12 11.537 10 0.3172 -11222.74
"equal MZ and DZ" 5614.387 7 17.962 5 0.002994 -11214.77

Saturated model: No constraints on mean and variance structures.
Note that the mean, µ, is actually the mean of residuals
yij − β1sexij − β2ageij − β3sexijageij .
We insist on natural assumptions although data may not greatly support
these.
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Genetic Influence on lnBMI

Saturated model w. constraints
Number of pairs Correlation (95% CI) Heritability (95% CI)

MZ pairs 1483 0.65 (0.62,0.68) ? (?,?)
DZ pairs 2788 0.30 (0.27,0.34) biometric model

Correlations are adjusted for effects of sex (β̂sex = 0.17 coded females
zero and males one) and age (by an increment of 0.0058 in lnBMI for
each year, slightly lower if male (see interaction term)).
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Aims

Difference in correlations between MZ and DZ twins suggests genetic
influence on trait.
What type and magnitude of genetic and environmental influences to
expect?
We consider classical twin analysis using the polygenic model, known as
the ADCE-model, in which the individual outcome, Yi decomposes into

Yi = Ai + Di + Ci + Ei ,

where
I A: Additive genetic effects of alleles
I D: Dominant genetic effects
I C: Shared environmental effects
I E : Unique environmental effects
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Biometric analyses - polygenic model

Contributing factors to the variation in outcome:

ΣY =

(
σ2

A zσ2
A

zσ2
A σ2

A

)
+

(
σ2

D uσ2
D

uσ2
D σ2

D

)
+

(
σ2

C σ2
C

σ2
C σ2

C

)
+

(
σ2

E 0
0 σ2

E

)
where z = u = 1 for MZ pairs, z = 1

2 and u = 1
4 for DZ pairs.

In particular, we obtain
Heritability:

h2
Y =

σ2
A + σ2

D

σ2
A + σ2

D + σ2
C + σ2

E

Shared environmental effect:

c2
Y =

σ2
C

σ2
A + σ2

D + σ2
C + σ2

E

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 40 / 63



SEM - ACE Path Diagram representation

A1 C1 E1 A2 C2 E2

Y1 Y2

λA
λC λE λA

λC λE

r ∈ {0.5,1} 1



Biometric analyses - polygenic model
Main assumptions

Equal environments assumption for MZ and DZ twins.
No gene-environment interaction and correlation.
No gene-gene interaction (link: epistasis).
Equal mean and variance of twin 1 and twin 2, MZ and DZ.
Estimation and inference by maximum likelihood principle assuming
bivariate normality of paired observations (as before).
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Biometric analyses - practicals

Estimation
We will fit appropriate polygenic model to data, estimate heritability and
test assumptions.
NB! Only three of four variance-components are estimable in same model
since only three equations in model.

Practicals - Use R
Carry on estimating the ACE model and its submodels (AE, CE and E).
Try to estimate the ADE model as well and compare it to ACE wrt. AIC
(lowest is most parsimoniuos).
Which model and hence which results to report?



> lnbmi.ace
Estimate Std. Error Z value Pr(>|z|)

logbmi 2.9025e+00 1.3088e-02 221.7584 < 2.2e-16
sd(A) 1.0743e-01 1.6632e-03 64.5951 < 2.2e-16
sd(C) 1.1059e-07 1.5885e-02 0.0000 1
sd(E) 7.9726e-02 1.3531e-03 58.9208 < 2.2e-16
logbmi~age 5.8343e-03 2.9099e-04 20.0498 < 2.2e-16
logbmi~gendermale 1.6611e-01 2.0481e-02 8.1105 5.041e-16
logbmi~age:gendermale -2.3563e-03 4.4889e-04 -5.2492 1.528e-07

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%

A 0.64486 0.61920 0.67053
C 0.00000 0.00000 0.00000
E 0.35514 0.32947 0.38080

Estimate 2.5% 97.5%
Broad-sense heritability 0.64486 0.61920 0.67053

Estimate 2.5% 97.5%
Correlation within MZ: 0.64486 0.61847 0.66981
Correlation within DZ: 0.32243 0.30954 0.33520

’log Lik.’ 5613.624 (df=7)
AIC: -11213.25
BIC: -11168.73



> lnbmi.ade
Estimate Std. Error Z value Pr(>|z|)

logbmi 2.90261390 0.01302012 222.9330 < 2.2e-16
sd(A) 0.10026867 0.00609022 16.4639 < 2.2e-16
sd(D) 0.03937491 0.01553051 2.5353 0.01123
sd(E) 0.07904756 0.00142834 55.3424 < 2.2e-16
logbmi~age 0.00583261 0.00028944 20.1515 < 2.2e-16
logbmi~gendermale 0.16606029 0.02035965 8.1563 3.453e-16
logbmi~age:gendermale -0.00235505 0.00044622 -5.2778 1.307e-07

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%

A 0.56315 0.43372 0.69258
D 0.08684 -0.04772 0.22141
E 0.35000 0.32387 0.37614

Estimate 2.5% 97.5%
Broad-sense heritability 0.65000 0.62386 0.67613

Estimate 2.5% 97.5%
Correlation within MZ: 0.65000 0.62309 0.67537
Correlation within DZ: 0.30329 0.27058 0.33530

’log Lik.’ 5614.387 (df=7)
AIC: -11214.77
BIC: -11170.26
>
> #comparison of non-nested models
> AIC(lnbmi.ace,lnbmi.ade)

df AIC
lnbmi.ace 7 -11213.25
lnbmi.ade 7 -11214.77



> lnbmi.ae
Estimate Std. Error Z value Pr(>|z|)

logbmi 2.90248121 0.01308848 221.7584 < 2.2e-16
sd(A) 0.10743239 0.00166316 64.5953 < 2.2e-16
sd(E) 0.07972558 0.00135310 58.9208 < 2.2e-16
logbmi~age 0.00583434 0.00029099 20.0498 < 2.2e-16
logbmi~gendermale 0.16611110 0.02048100 8.1105 5.041e-16
logbmi~age:gendermale -0.00235629 0.00044889 -5.2492 1.528e-07

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%

A 0.64486 0.61920 0.67053
E 0.35514 0.32947 0.38080

Estimate 2.5% 97.5%
Broad-sense heritability 0.64486 0.61920 0.67053

Estimate 2.5% 97.5%
Correlation within MZ: 0.64486 0.61847 0.66981
Correlation within DZ: 0.32243 0.30954 0.33520

’log Lik.’ 5613.624 (df=6)
AIC: -11215.25
BIC: -11177.09
>
> compare(lnbmi.ade,lnbmi.ae)

- Likelihood ratio test -

data:
chisq = 1.5276, df = 1, p-value = 0.2165
sample estimates:
log likelihood (model 1) log likelihood (model 2)

5614.387 5613.624



> lnbmi.ce
Estimate Std. Error Z value Pr(>|z|)

logbmi 2.90078541 0.01306870 221.9643 < 2.2e-16
sd(C) 0.08684814 0.00171221 50.7228 < 2.2e-16
sd(E) 0.10148741 0.00109924 92.3255 < 2.2e-16
logbmi~age 0.00585634 0.00029065 20.1491 < 2.2e-16
logbmi~gendermale 0.16676183 0.02048187 8.1419 3.890e-16
logbmi~age:gendermale -0.00237224 0.00044908 -5.2825 1.275e-07

MZ-pairs DZ-pairs
1483 2788

Variance decomposition:
Estimate 2.5% 97.5%

C 0.42274 0.39805 0.44743
E 0.57726 0.55257 0.60195

Estimate 2.5% 97.5%
Broad-sense heritability 0 0 0

Estimate 2.5% 97.5%
Correlation within MZ: 0.42274 0.39774 0.44711
Correlation within DZ: 0.42274 0.39774 0.44711

’log Lik.’ 5495.683 (df=6)
AIC: -10979.37
BIC: -10941.21
>
> AIC(lnbmi.ae,lnbmi.ce)

df AIC
lnbmi.ae 6 -11215.25
lnbmi.ce 6 -10979.37
> #not good at all.
> #We report the AE model.



Polygenic model - model selection

Biometric analyses - model selection
Models ’log Lik.’ df −2∆X2 ∆df p AIC
Saturated 5629.137 22 -11214.27
ACE 5613.624 7 -11213.25
ADE 5614.387 7 -11214.77
AE (*) 5613.624 6 1.5276 1 0.2165† -11215.25
CE 5495.683 6 235.88 1 < 0.0001 -10979.37

The additive genetic effect A is significant in all models (i.e. CE and E models are
significantly worse).

The ADE model has a slightly better fit than the ACE model in terms of Akaike’s criterion
having lowest AIC value (given by −2 ln(L) − 2df).

The AE model is chosen by comparison with ADE being the most parsimonious model
†this p-value is too conservative and can be halved (Dominicus et al. 2006).

The C component in the ACE model vanishes at zero, otherwise we should report it.
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Genetic Influence on lnBMI

Polygenic model
Number of pairs Correlation (95% CI) Heritability (95% CI)

MZ pairs 1483 0.65 (0.62,0.68) 0.64 (0.62,0.67)
DZ pairs 2788 0.30 (0.27,0.34) AE model

The biometric polygenic model assuming additive genetic and unique
environmental components in lnBMI and adjusting for effects of sex and
age gave the best fit to observations.

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 49 / 63



Overview

1 Introduction

2 Case study: Genetic influence on Body Mass Index

3 Correlations and assumptions

4 Biometric modelling

5 Practicals using OpenMx

6 Summary

7 Further Aims

8 Appendix

Biostatistics (Institute of Public Health) Analysis of continuous twin data Spring 2018 50 / 63



OpenMx theoretical background
Statistical program for Structural Equation Modelling (SEM)
The focus in SEM is the basically the covariance matrix, Σ = Σ(θ).
Great many statistical methods can be formulated via SEM.
Simple linear regression, Y = βX + ε, corresponds in SEM to

ΣY =

(
β2σ2

X + σ2
ε βσ2

X
βσ2

X σ2
X

)
-now, find parameters β ∈ θ minimizing the difference between the
sample covariance matrix and the one predicted by the model, the
right-side.

A general SEM is of form, η = Bη + Γξ + ζ , where η and ξ denotes
endogenous and exogenous variables respectively, B and Γ are matrices
of coefficients and ζ denotes errors.
-this induces the covariance matrix, Σ(θ), to be compared with the
observed covariance matrix.
-indeed the purpose of programs OpenMx, Mx, LISREL, M-Plus and
others.



Practicals using OpenMx
SEM is implemented by specifying the mean and covariance structures.
SEM for twin data has the following structure in OpenMx:

Model <- mxModel("name",
mxModel("MZ",

mxMatrix(),
mxAlgebra(),
mxData( observed=mzData, type="raw" ),
mxFIMLObjective( covariance, means)

),
mxModel("DZ",

mxMatrix(),
mxAlgebra(),
mxData( observed=dzData, type="raw" ),
mxFIMLObjective( covariance, means)

),
mxAlgebraObjective(MZ.objective + DZ.objective)

)

ModelFit <- mxRun(Model)
-manage output-



Biometric analyses - practicals using OpenMx

Practicals
To get familiar with OpenMx we carry out the analysis of BMI (omitting
covariates).
Using the script ’twinbmiOpenMx.R’, let’s

I -fit univariate saturated model.
I -constrain to same mean for twin 1 and 2, mz and dz.
I -then constrain to same mean and variance for twin 1 and 2, mz and dz.

The ACE, ADE and submodels AE, CE and E may then be fitted and
compared as above.
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Remarks

Within pair similarity is measured by correlations.
Correlations are further modelled by genetic and environmental variance
components via the polygenic ADCE model.
For instance, the polygenic ACE model relates to correlations via
ρmz = h2 + c2 and ρdz = 1

2 h2 + c2.

Heuristics of MZ and DZ correlations
Interpretation

Relation Genetics Environment Examples
ρmz > 4ρdz Epistasis albinism
ρmz > 2ρdz Genetic dominance D
ρmz = 2ρdz Additive effect A (mono- or polygenic) and small D Small C BMI
2ρdz > ρmz > ρdz Additive genes A Shared environment C longevity
ρmz = ρdz > 0 No genetic effect C
ρmz = ρdz = 0 No genetic effect No familial aggregation



Remarks

How to do ususal exposure-outcome analysis with twins treated as
singletons?
Regression model for the response of i’th individual in j’th pair:

Yij = β0 + β1Xij + uj + εij ,

For inference, ie., konfidence and tests, independent observations are
needed and uj models the dependence in twin pairs giving adjusted
inference.
This may also be achieved by robust variance estimation using
independence between pairs or similarly by generalised estimating
equations (gee). (Implemented in standard software, eg. R and Stata).
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Aims of multivariate twin analyses
Outcome: There are multiple outcomes! (eg. Telomere length, HDL, and
BMI).
What is the contribution of genetic and environmental factors to the
variation in outcome? {

Y = Genes + Environment
ΣY = ΣGenes + ΣEnvironment

What kind of genetic and environmental influences to expect?
Are the same or different genes influencing the traits?

Scope of study
Co-occurrence or co-morbidity of different diseases.
Inter-relations, interactions, confounding and moderation effects.
Genetic or environmental overlap between traits, that is, origin of
comorbidity

I pleiotropic genetic effects
I environmental overlap: prevention strategies impacting on multiple diseases.

Developmental changes (longitudinal data).
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SEM - Path Diagram representation

AX1 CX1 EX1 AX2 CX2 EX2

X1 X2

Y1 Y2

AY 1 CY 1 EY1 AY 2 CY 2 EY 2

r ∈ {0.5,1} 1

β β

r 1



Longitudinal twin data
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-genetic influence on change in lnBMI? (to follow later in course)



Aims in Time to Event Twin Studies

Effect?
Exposure→Outcome

Outcome: Time to occuence of event. Event may not occur - can be
censored at follow-up.
What is the contribution of genetic and environmental factors to the
variation in risk of outcome?{

Y = Genes + Environment
ΣY = ΣGenes + ΣEnvironment

What kind of genetic and environmental influences to expect?
How does this influence vary with time?
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Appendix: Correlation in twins
Principle: We choose parameters that makes our observations most
likely.
First, the probability of observing the values (y1j , y2j ) in j ′th pair given
parameters is

f ((y1j , y2j )|µ1, µ2, σ1, σ2, ρ)) =
1

2πσ1σ2
√

(1− ρ2)
exp{ −1

2(1− ρ2)
Q(y1j , y2j )},

where

Q(y1j , y2j ) = (
y1j − µ1

σ1
)2 − 2ρ(

y1j − µ1

σ1
)(

y2j − µ2

σ2
) + (

y2j − µ2

σ2
)2

Second, since pairs of observations are independent the likelihood of all
data is given by

L =
n∏

j=1

f ((y1j , y2j )|µ1, µ2, σ1, σ2, ρ)

.
Finally we maximize (the logarithm) of this function, known as the log
likelihood function to obtain the parameters, in particular the correlation,
for which our observations are most likely. Back
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