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Abstract Twin concordance rates provide insight into the

possibility of a genetic background for a disease. These

concordance rates are usually estimated within a frequen-

tistic framework. Here we take a Bayesian approach. For

rare diseases, estimation methods based on asymptotic

theory cannot be applied due to very low cell probabilities.

Moreover, a Bayesian approach allows a straightforward

incorporation of prior information on disease prevalence

coming from non-twin studies that is often available. An

MCMC estimation procedure is tested using simulation and

contrasted with frequentistic analyses. The Bayesian

method is able to include prior information on both con-

cordance rates and prevalence rates at the same time and is

illustrated using twin data on cleft lip and rheumatoid

arthritis.

Keywords Methodology � Prior information �
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Introduction

Methods for the analysis of categorical data from twins

have been widely studied (Bartfay et al. 1999; Betensky

et al. 2001; Donner et al. 1995; McGue 1992; Rama-

krishnan et al. 1992; Shoukri et al. 2003; Smit 1974; Witte

et al. 1999 among others) with many applications. There

are several measures of association, each having different

properties. The case-wise concordance rate is useful in

many settings and is easy to interpret. It is defined as the

conditional probability of being affected, given that a

family member is affected. The family member is often a

sibling. In the analysis of dichotomous variables measured

in twins, it is useful to estimate case-wise concordance

rates separately for monozygotic (MZ) and dizygotic (DZ)

twin pairs. If twin concordance rates exceed the prevalence

rate, this is an indication that familial factors play a role.

These familial factors can be of genetic or environmental

origin (or both). If in addition the concordance rate in MZ

twins exceeds the one in DZ twins, this suggests that the

familial clustering has, at least in part, a genetic origin.

Such an analysis of concordance rates in twins is often used

before applying the variance component models of quan-

titative genetics with probit link functions, known as bio-

metric liability or threshold models (Sham 1998). A link to

quantitative genetics via the multilocus model for the case-

wise concordance to the prevalence is given in Risch

(1990). The advantage of analysing concordance rates over

the application of threshold models is that it does not

involve any strong assumptions such as a normally dis-

tributed continuous latent trait.

Here we develop a Bayesian approach to model twin

data with dichotomous outcomes, estimate case-wise con-

cordance rates and test for the presence of a heritable

component. Inference on prevalence and concordance rates

Edited by Gitta Lubke.

Electronic supplementary material The online version of this
article (doi:10.1007/s10519-012-9547-9) contains supplementary
material, which is available to authorized users.

S. M. van den Berg (&)

Department of Research Methodology, Measurement and Data

Analysis, University of Twente, P.O. Box 217,

7500 AE Enschede, The Netherlands

e-mail: stephanie.vandenberg@utwente.nl

J. vB. Hjelmborg

Department of Biostatistics, University of Southern Denmark,

Odense, Denmark

J. vB. Hjelmborg

The Danish Twin Registry, University of Southern Denmark,

Odense, Denmark

123

Behav Genet (2012) 42:857–865

DOI 10.1007/s10519-012-9547-9

http://dx.doi.org/10.1007/s10519-012-9547-9


can be based on Maximum Likelihood (ML) principles and

asymptotic expressions of their standard deviations can be

derived (Witte et al. 1999). The ML method works well

with large sample sizes and high prevalence and concor-

dance rates, but not when prevalence and concordance rates

are low. ML point estimates may be correct but the con-

fidence intervals are mainly incorrect when the true values

are near the boundary of the parameter space (i.e., near 0 or

1). In those cases, the likelihood function no longer

approximates a normal distribution, especially in the case

of relatively small sample size.

A Bayesian approach with Markov-chain Monte Carlo

(MCMC) sampling provides information about the shape of

the posterior distribution. In the case of non-informative

priors, the posterior distribution is proportional to the

likelihood function, and therefore allows more accurate

inference. Additionally, a Bayesian approach can take into

account prior information on disease prevalence and con-

cordance rates coming from twin and non-twin studies that

are often available, which may help increase statistical

power. For an introduction to the core concepts of Bayesian

data analysis and MCMC estimation, see Gelman et al.

(2004).

In the ‘‘Method’’ section a parametrization is presented

and an MCMC sampling scheme for estimation is chosen.

In the ‘‘Simulation studies’’ section the method is tested in

two simulation scenarios and in the ‘‘Application to cleft

lip’’ section we apply the method to twin data on cleft lip,

both with and without prior information on prevalence. The

‘‘Other scenarios with prior information’’ section discusses

more elaborate scenarios where there is both prior infor-

mation on prevalence and concordance rates. This is

illustrated using data sets on rheumatoid arthritis.

Method

Concordance rates: setting and notation

Suppose we have health data collected from twin pairs in a

population-based sample, and we know each individual’s

status: affected or healthy. One could tabulate such data

from twins in a 2 9 2 crosstable. Under the often reason-

able assumption that twins within a pair are exchangeable,

one could simplify the tabulation by using a 3 9 1 vector

y = {y11, yd, y00}0, counting the number of twin pairs

where both are affected as y11, the number of discordant

twin pairs as yd (i.e., yd = y10 ? y01 for counts y10 and y01

of discordants) and the number of healthy twin pairs as y00.

The likelihood of the data can then be described using a

multinomial distribution with probability parameters p11,

pd and p00, respectively.

These probabilities in turn can be conceived of as

functions of the prevalence of the disease and the degree of

dependence within twin pairs. There are many different

ways of parametrizing the probabilities. One could choose

to use a prevalence parameter p and a concordance rate q,

where q is the conditional probability of being affected,

given that the co-twin is affected. However, in a Bayesian

model, this parametrization is not invariant with regards to

the labeling of affected/unaffected. Setting up particular

informative priors for p and q would lead to different

models if labels were switched. Since we want to gener-

alize the model to traits that are not clearly directional,

(e.g., curly or straight hair), we prefer a parametrization

that is independent of labeling. Moreover, since the

objective of the twin studies is making inference about

independence or lack thereof in 2 9 2 tables, the prior on

model parameters should not be biased with regards to

independence. With a uniform prior on q, but an infor-

mative prior on p, the expected difference between these

two parameters will not be zero, which implies depen-

dence. Of course we need a parametrization that avoids

such an implicit prior probability of dependency.

We therefore parametrize the model in terms of preva-

lence p and d, where d is the difference between the

probability of being affected conditional on the co-twin

being affected, and the probability of being affected con-

ditional on the co-twin not being affected, that is, the

Kendall-type measure expressed by

d ¼ Pðtwin affectedjco-twin affectedÞ
� Pðtwin affectedjco-twin not affectedÞ ð1Þ

With some algebra we get the expression for the

concordance rate, q,

q ¼ Pðtwin affectedjco-twin affectedÞ ¼ dð1� pÞ þ p

ð2Þ

The multinomial probability parameters can then be

described as

p11 ¼ pq ¼ dpð1� pÞ þ p2

pd ¼ p10 þ p01 ¼ 2pð1� qÞ ¼ 2pð1� dð1� pÞ � pÞ
p00 ¼ 1� p11 � pd ¼ 1þ pðq� 2Þ ¼ 1

þ pðdð1� pÞ þ p� 2Þ: ð3Þ

To avoid negative values for the multinomial

probabilities, however, one needs the constraint q [ 2� 1
p

and therefore

d[
p� 1

p
ð4Þ

Dependence is indicated when d is clearly different from

0. If d[ 0 this indicates that there is positive familial

resemblance. If d for MZ twins is greater than d for DZ

858 Behav Genet (2012) 42:857–865

123



twins, that is, if dMZ [ dDZ, this suggests a genetic origin

for at least some of this familial resemblance.

Alternatively one can focus on the concordance rates

that are a function of p and the d’s. To determine

whether familial clustering of a disease in sib pairs is at

least partly genetically mediated, it is necessary to show

that the concordance rate observed in MZ twin pairs is

higher than the concordance rate observed in DZ twin

pairs, in other words, that qMZ [ qDZ. But for the reasons

alluded to above, we parametrize the model in terms of d
rather than q. By transforming d and p back to q, using

Eq. 2, we can still make inference on concordance rates.

Such back-transformation of parameters is straightfor-

ward in a sampling approach such as the one applied

here.

For the Bayesian model we assume exchangeability of

twins within pairs (i.e., no effects of being first-born), and

identical prevalence in MZ twins, DZ twins, and single-

tons. We also assume that the numbers of observed MZ and

DZ twin pairs are fixed. We assume independence

parameter d and prevalence parameter p a priori indepen-

dent, save for a constraint that ensures positive expected

cell probabilities. Alternatively, based on prior knowledge

one might prefer dependent priors for the ds. For example,

one could observe that usually in twin studies, for most

traits, when we see dependence in MZ twins, we also see

dependence in DZ twins. This could be modeled along the

lines of a Howard prior (Howard 1998). However, since it

is not straightforward how to quantify that observation

across traits into a correlation between dependence

parameters dMZ and dDZ, we prefer to assume indepen-

dence and let only the available data about the trait in

question inform us about their values.

For the likelihood function, the only parameters of

importance are prevalence p and dependence parameters

dMZ and dDZ. Let yMZ and yDZ denote the 3 9 1 data

vectors for the MZ and DZ twin pairs, respectively. The

joint distribution of model parameters and data can be

factorized as

pðp; dMZ; dDZ; yMZ; yDZÞ
¼ pðp; dMZ; dDZÞpðyMZjp; dMZÞpðyDZjp; dDZÞ;

so that the likelihood is proportional to the product of two

multinomials:

Lðp; dMZ; dDZjyMZ; yDZÞ / pMZ
11

� �yMZ
11 pMZ

d

� �yMZ
d pMZ

00

� �yMZ
00

� pDZ
11

� �yDZ
11 pDZ

d

� �yDZ
d pDZ

00

� �yDZ
00 :

Bayesian estimation

In Bayesian analysis, the joint posterior distribution for

model parameters is proportional to the product of the

likelihood function and the joint prior distribution. Here we

assume that the degree of dependence is not related to the

prevalence, accept for the constraint in Eq. 4. In addition,

as indicated above, we assume the dependence parameters

for MZ and DZ twins to be independent. We therefore

factorize the joint prior as

pðp; dMZ; dDZÞ ¼ pðpÞpðdMZjpÞpðdDZjpÞ

For parameter p we use a Beta prior,

p�Betaða1; a2Þ a1; a2 2 R
þ

For hyperparameters a1 and a2 one can choose 1 if there

is no prior information on disease prevalence. If prior

studies are available, for instance from general population

samples, one can use the total number of affected

individuals, n1, and the total number of non-affected

individuals, n2, and add them to the non-informative prior

Beta(1,1), which results in the informative prior

Beta(1 ? n1,1 ? n2). This informative prior is exactly

proportional to the likelihood for the prevalence given the

data n1 and n2 in a binomial model. In other words, the

prior distribution reflects all knowledge about prevalence

gained from the earlier studies.

For parameters dMZ and dDZ we use independent trun-

cated scaled Beta distributions

pðdMZjp; b1; b2Þ /
ðdMZ þ 1Þb1�1ð1� dMZÞb2�1

2b1þb2�1
IðdMZÞ;

dMZ 2 ½�1; 1�; b1; b2 2 R
þ

pðdDZjp; c1; c2Þ /
ðdDZ þ 1Þc1�1ð1� dDZÞc2�1

2c1þc2�1
IðdDZÞ;

dDZ 2 ½�1; 1�; c1; c2 2 R
þ

where the indicator function I is given by

IðdÞ ¼ 1 if d[ p�1
p

0 otherwise.

�

If there is no prior information on concordance rates in

twins, one chooses the value 1 for hyperparameters

b1, b2, c1, and c2. The case where prior information on

concordance rates is available from an earlier study is

discussed in ‘‘Other scenarios with prior information’’

section.

In order to make inferences regarding the model

parameters, we set up an MCMC sampling scheme to

sample from the joint posterior distribution. In order to

make the MCMC sampling as easy as possible, sampling

from normal distributions, we first transform the parame-

ters to the real line by using k ¼ ln p
1�p and l ¼ ln dþ1

1�d : The

joint posterior distribution of parameters k, lMZ and lDZ

is then proportional to (note the Jacobian term due to the

transformation)
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pðk; lMZ; lDZjyMZ; yDZÞ

/ expðkÞ
1þ expðkÞ

� �a1�1

1� expðkÞ
1þ expðkÞ

� �a2�1

� exp lMZð Þ � 1

1þ exp lMZð Þ þ 1

� �b1�1

1� exp lMZð Þ � 1

1þ exp lMZð Þ

� �b2�1

� exp lDZð Þ � 1

1þ exp lDZð Þ þ 1

� �c1�1

1� exp lDZð Þ � 1

1þ exp lDZð Þ

� �c2�1

� expðkÞ
ð1þ expðkÞÞ2

expðlMZÞ
ð1þ expðlMZÞÞ2

expðlDZÞ
ð1þ expðlDZÞÞ2

� pMZ
11

� �yMZ
11 pMZ

d

� �yMZ
d pMZ

00

� �yMZ
00 pDZ

11

� �yDZ
11 pDZ

d

� �yDZ
d pDZ

00

� �yDZ
00

ð5Þ

with constraint maxð�1; p�1
p Þ\

exp lð Þ�1

1þexp lð Þ\1:

One can sample from this distribution using a Metrop-

olis–Hastings (MH) algorithm (Gelman et al. 2004).

Because k and the two l parameters have support on the

real line, we can use a multivariate Normal distribution as

proposal distribution. This can be done in R (R Develop-

ment Core Team 2005), by writing out a function for the

log-transformed joint posterior distribution for k and l
(without the constraint). The proposal distribution is also

not truncated so that a set of parameter values h = (k,

lMZ, lDZ) at iteration t that does not satisfy the contraint,

leads to ht = ht-1.

In a random-walk MH algorithm (Robert et al. 2004) we

used a multivariate normal proposal distribution with

expectation equal to the parameter values ht-1 and

covariance matrix equal to the estimated covariance matrix

of the posterior based on a Laplace approximation (Tierney

1986). Inference on p and d can then be based on back-

transforming the posterior samples of k and the l param-

eters. Subsequently, inference on concordance rates can be

done after backtransforming p and d parameters. This

transformation is applied to all posterior samples of k and

the two l parameters, using equations d ¼ exp lð Þ�1

1þexp lð Þ ; p ¼
1

1þexpð�kÞ ; and Eq. 2. As starting values for k and the two l

parameters, the posterior modes resulting from the Laplace

approximation were used. The R script, which makes use

of Jim Albert’s LearnBayes package (Albert 2009), is

presented in the Appendix.

Simulation studies

Independence

The random-walk Metropolis sampling implemented in R

(R Development Core Team 2005) was tested with simu-

lation. A data set with data from 100,000 MZ twin pairs

and 100,000 DZ twin pairs was simulated using a disease

prevalence of 1 % and complete independence, that is,

qMZ = qDZ = p = 0.01 (i.e., dMZ = dDZ = 0). The simu-

lated data vectors were yMZ = {6, 1876, 98118}0 and

yDZ = {12, 2007, 97981}0. Uninformative priors were

used, with a1 = a2 = b1 = b2 = c1 = c2 = 1 in respec-

tive Beta distributions. Simulated posterior values for k
and l were backtransformed to p, qMZ and qDZ. See Sup-

plementary Materials 3 for a plot of the first 100,000

iterations.

Figure 1 shows the marginal posterior densities in black.

The 95 % highest posterior density (HPD, Gelman et al.

2004) intervals for p, qMZ and qDZ were (0.95, 1.01 %),

(0.27, 1.33 %) and (0.64, 1.94 %), respectively. These are

defined as the shortest interval that includes 95 % of the

posterior samples and are a Bayesian alternative to frequ-

entist confidence intervals. The HPDs found here all cover

the values used in the simulation (i.e., 0.01). In gray, the

posteriors are plotted using a normal approximation based

on the Laplace method. The normal approximation works

well for the prevalence parameter, which can be expected

with a data set on 400,000 individual twins. The normal

approximation would however give inaccurate intervals for
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Fig. 1 Simulation: independence. Posteriors density plots of p , qMZ

and qDZ for a simulated data set. In gray, the normal approximation is

plotted
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the twin concordance rates, as the posteriors are clearly

skewed.

Supplementary Material 4 shows a scatter plot of the

three parameters and Supplementary Material 5 shows the

autocorrelation in the MCMC chains. MH acceptance rate

was 0.45. The slow movement through the posterior can be

remedied by using a large number of iterations. Inspecting

Supplementary Material 3 and 5 suggests that 100,000

iterations are more than sufficient. This takes about ten

seconds with R and a 2.8 GHz processor.

The same dataset was analysed using the software Mx

(Neal 2004) for ML-estimation in twin- and family studies.

The point estimates for the concordance rates and preva-

lence were very close to the posterior modes in the

Bayesian analysis, but the confidence intervals could not be

estimated.

Familial clustering

A data set with data from 4,000 MZ twin pairs and 6,000

DZ twin pairs was simulated using a disease prevalence of

0.01 and concordance rates of qMZ = 0.40 and qDZ = 0.10.

The simulated data vectors were yMZ = {12, 47, 3941}0

and yDZ = {4, 103, 5893}0. Uninformative priors were

used, with a1 = a2 = b1 = b2 = c1 = c2 = 1. For infer-

ence, 100,000 MCMC iterations were run.

The behavior of the MCMC chain was very similar to

the independence scenario in terms of autocorrelation,

crosscorrelations and MH acceptance rate. Figure 2 shows

the marginal posterior densities. The 95 % highest pos-

terior density intervals for p, qMZ and qDZ were (0.78,

1.07 %), (0.22, 0.48 %) and (0.02, 0.15 %), respectively.

The figure also shows that a normal approximation leads to

considerably different posterior intervals compared to the

MCMC approach, particularly for the relatively small qDZ.

The same dataset was analysed using Mx (Neale 2004).

The point estimates for the concordance rates and preva-

lence were again very close to the posterior modes in the

Bayesian analysis, but the confidence interval for preva-

lence could not be estimated. The confidence intervals for

the concordance rates were close to the Bayesian HPD

intervals.

Application to cleft lip

Data on cleft lip were analysed coming from Danish boy

twins (Grosen et al. 1936). Data vectors were

yMZ = {3, 8, 4474}0 and yDZ = {1, 14, 8164}0. Data were

first analysed with non-informative priors for all three

parameters. Next, based on Statistics Denmark (see Sta-

tistics Denmark 2009 and Grosen et al. 2011) we used

informative priors for prevalence p. In that data set out of a

total of 2,524,359 boys there were 1,693 with cleft lip. For

hyperparameters a1 and a2 we therefore chose 1,694 and

2,522,667, respectively. Both analyses were based on

100,000 MCMC iterations.

Table 1 presents posterior means, medians, SDs, and

HPD intervals, both with and without an informative prior

on the prevalence. There is clear evidence for familial

clustering for cleft lip, given that 0 is not included in the

95 % intervals for the differences between the prevalence

and the concordance rates. The difference between the two

concordance rates is however not significant, neither with

nor without an informative prior. The prior on the preva-

lence has a clear effect on the estimates for prevalence p: a

lower estimate and more precision as indicated by the

smaller SD. Additionally, the informative prior has an

indirect effect on the estimates of qMZ and qDZ: means and

medians have clearly shifted. The effect on the SDs illus-

trates that inclusion of prior information on prevalence

affects the statistical power of finding a significant differ-

ence between qMZ and qDZ.

The data set without prior information was also analysed

using Mx. The point estimate for the prevalence was

0.12 % and equal to the Bayesian posterior mean and

median. The point estimates for qMZ was 0.38 and therefore
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Fig. 2 Simulation: familial resemblance. Posteriors density plots of

p, qMZ and qDZ for a simulated data set. In gray, the normal

approximation is plotted
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slightly lower than the Bayesian estimates. The point

estimates for qDZ was 0.14 and therefore rather different

from the Bayesian estimate, which on the basis of a density

plot could only partly be explained by the skewness of the

posterior (the mode should be smaller than mean and

median). The confidence intervals for all three parameters

were all similar to the Bayesian HPD intervals.

Other scenarios with prior information

Method

The method outlined above showed how prior information

on prevalence can be incorporated in the prior density for

p. However, it is also possible that there are prior twin

studies. These provide not only information on concor-

dance rates but also on prevalence. How to include such

information in a new study?

In a situation with no prior information, all values for

prior parameters a1 etc are set to 1. In such cases with flat

priors, the posterior is proportional to the likelihood

function. In the case of a prior twin study, the posterior

resulting from that prior study with data set x is propor-

tional to the likelihood function. When a new study is

conducted, the posterior of the prior study should serve as a

prior. The posterior of the second study with data set y is

proportional to the likelihood given y, times the prior

(being the posterior of the first study). This is in fact pro-

portional to the product of the likelihoods of the two

respective studies if we take a flat prior for p(p, qMZ, qMZ),

pðp; dMZ; dMZjx; yÞ / Lðp; dMZ; dDZjyÞpðp; dMZ; qMZjxÞ
/ Lðp; dMZ; dMZjyÞLðp; dMZ; dMZjxÞpðp; dMZ; dMZÞ

ð6Þ

We can therefore combine the prior information with the

new data by analyzing the combined data vectors

zMZ = xMZ ? yMZ and zDZ = xDZ ? yDZ and using the

procedure outlined in the ‘‘Method’’ section. Any extra

information from studies on prevalence alone can then be

included by using an informative prior for p. Below we

illustrate this approach by analyzing data on rheumatoid

arthritis.

Application to rheumatoid arthritis

The method of incorporating prior information both from

other twin studies and prevalence studies is illustrated using

a Danish twin data set on rheumatoid arthritis (The Danish

Twin Register 2010; age range: 12-73). The data vectors

were yMZ = {4, 58, 7517}0 and yDZ = {2, 126, 11666}0.
Analysing this data set using noninformative priors gave

results as presented in Table 2. A Finnish twin study (age

range: 10?; Aho et al. 1986) found data vectors

xMZ = {9, 64, 4064}0 and xDZ = {6, 167, 8983}0. More-

over, a Norwegian study found in a population sample of

356486 (age range: 20-79), a total of 1333 affected people

(Kvien et al. 1997). Incorporating such ‘historical data’ on

prevalence and concordance rates was accomplished by

analysing the summed data vectors zMZ = {13, 122,

11581} and zDZ = {8, 293, 20649} and using p *
Beta(1334, 355154) with flat scaled Beta priors for dMZ and

Table 1 Cleft lip in Danish boys: posterior means, posterior SDs,

posterior medians, and 95 % highest posterior density (HPD) intervals

Mean SD Median 95 % HPD interval

Non-informative priors

p 0.12 % 0.03 % 0.12 % (0.08, 0.18 %)

qMZ 0.41 0.14 0.40 (0.14, 0.67)

qDZ 0.21 0.12 0.20 (0.01, 0.43)

qMZ � qDZ 0.20 0.18 0.20 (-0.16, 0.53)

qMZ � p 0.40 0.14 0.40 (0.14, 0.67)

qDZ � p 0.21 0.12 0.19 (0.013, 0.43)

Informative prior for p

p 0.07 % 0.002 % 0.07 % (0.06, 0.07 %)

qMZ 0.36 0.13 0.35 (0.12, 0.62)

qDZ 0.16 0.09 0.14 (0.01, 0.34)

qMZ � qDZ 0.20 0.16 0.20 (-0.12, 0.51)

qMZ � p 0.36 0.13 0.35 (0.12, 0.62)

qDZ � p 0.16 0.09 0.14 (0.005, 0.34)

Table 2 Rheumatoid arthritis in Danish twins: posterior statistics

with and without informative priors

Mean SD Median 95 % HPD interval

Non-informative priors

p 0.52 % 0.04 % 0.51 % (0.44, 0.59 %)

qMZ 0.16 0.06 0.15 (0.05, 0.27)

qDZ 0.04 0.02 0.04 (0.01, 0.09)

qMZ � qDZ 0.12 0.06 0.11 (-0.002, 0.24)

qMZ � p 0.15 0.06 0.15 (0.04, 0.27)

qDZ � p 0.04 0.02 0.03 (0.0002, 0.08)

Including prior information

p 0.42 % 0.01 % 0.42 % (0.40, 0.44 %)

qMZ 0.15 0.03 0.14 (0.08, 0.22)

qDZ 0.04 0.01 0.04 (0.02, 0.07)

qMZ � qDZ 0.11 0.04 0.10 (0.04, 0.18)

qMZ � p 0.14 0.03 0.14 (0.08, 0.21)

qDZ � p 0.04 0.01 0.04 (0.01, 0.06)
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dDZ. Note that in this way, each data set is weighted equally.

Alternatively, based on the similarity of the data sets (e.g.,

regarding age ranges), different weights could be used for

these other studies, see for example Ibrahim and Chen (2000).

We used 100,000 iterations with the posterior modes as

starting values. As shown by Table 2 the point estimates

are slightly affected by the extra information whereas the

effects on the posterior SDs and the 95 % HPD intervals

are more dramatic. With non-informative priors, the dif-

ference between qMZ and qDZ is not significant, whereas

with information from other studies included, the evidence

for genetic influences on rheumatoid arthritis is clear: with

a 97.5 % probability, the difference between qMZ and qDZ

is larger than 0.04.

The Danish data set without prior information was also

analyzed using Mx. The point estimate for prevalence was

equal to the posterior median, but the point estimates for

the MZ and DZ concordance rates were both somewhat

lower (0.14 and 0.03 respectively) than the Bayesian esti-

mates. The concordance rates confidence intervals were

very close to the HPD intervals. For prevalence, the upper

bound of the confidence interval could not be estimated.

Discussion

Here we developed a fully Bayesian approach of estimating

case-wise concordance rates. Our method is particularly

suited for traits with very low prevalence, where standard

methods based on asymptotic theory become unreliable

(the normal approximation works only with high infor-

mation content and/or parameter values far removed from

the boundaries of the parameter space). In two simulations

studies we showed that particularly for low concordance

rates (less than 0.1), the normal approximation of the

likelihood function does not hold, as the function is posi-

tively skewed (in the case of noninformative priors, the

Bayesian posterior distribution has the same shape as the

likelihood function).

The data were also analysed using Mx. Mx does not use

normal approximation to come up with confidence intervals,

but applies a likelihood profile approach. In theory this

should result in better estimates for the confidence intervals,

but here we observed that, particularly for low values of

prevalence and concordance rates, there were computational

problems (‘code red’), and failure notices, which made

inference unreliable. Moreover, boundary constraints had to

be put on the probability parameters, so that they were not

too close to 0 and 1. This is of course problematic if the null

hypothesis is that the concordance rates are equal to a very

low prevalence. One other problem appears to be the con-

straint of equal prevalences across MZ and DZ twins, since

without these constraints no problems were observed.

By using an MCMC algorithm, normal approximations

or profile approaches are not necessary as one can directly

sample from the posterior distribution. An extra advantage

of a Bayesian approach is that it allows a straightforward

incorporation of already available knowledge regarding

prevalence, or even prior twin studies. In the frequentistic

context one can also incorporate such knowledge, but is

more tedious. For example, in Mx one could add an extra

data group and specify the binomial likelihood for the

prevalence parameter given a data set on n1 affected indi-

viduals and n2 healthy individuals. In contrast, in the

Bayesian approach all one has to do is specify the

parameter values for the prevalence Beta prior as n1 ? 1

and n2 ? 1, respectively.

Using informative priors increases statistical power. As

seen in the ‘‘Application to cleft lip’’ section, even only

prior information on prevalence may help to detect a

genetic origin of familial clustering. One might feel

reluctant to incorporate data from different studies and

populations and might note possible differences in genetic

background of the populations and in assessment; however,

in equal measure one might be reluctant to base an estimate

for case-wise concordance solely on two concordant DZ

twin pairs, as seen in the Danish arthritis data set. In all

situations with low prevalence, estimates are highly sen-

sitive to the number of concordant pairs, where a slight

change of two pairs to, for example, one pair has a large

impact on point estimates. Therefore, combining studies

and increasing total numbers is important in establishing

more stable estimates, with accompanying smaller 95 %

posterior intervals. If it is felt that some prior studies

provide more relevant information than others, a weighting

can be applied (see e.g., Ibrahim and Chen 2000). In sum,

incorporating other twin and prevalence data may lead to

more accuracy and statistical power to detect familial

clustering and detecting genetic origins of such clustering.

The presented method is appropriate for research set-

tings with complete ascertainment or where inclusion is not

conditional on disease status, for example with population-

based twin registries. Nevertheless, the method may be

extended to the case of non-complete ascertainment

(McGue 1992). The method may also be extended to the

multivariate case or equivalently, the case of categorical

traits with more than two states. Multinomial log-linear

models (see e.g., Forster 2010) can be considered in order

to include possible covariates influencing the concordance

rates. Further, it is desirable to take time-to-event into

account when dealing with possible censorings (e.g., twins

that are not yet affected).

By modeling the data using only the three parameters for

overall prevalence and MZ and DZ dependencies, the method

uses the common assumption that prevalence is equal across

zygosity. In cases where prevalence is different across
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zygosity, for example DZ twinning itself (Hoekstra et al.

2008), the model can be extended to incorporate two different

prevalence parameters with separate prior specifications. But

the question then arises how to determine whether there are

genetic influences: if prevalence is higher in MZ twins than in

DZ twins, the expected MZ twin concordance rates assuming

complete independence will also be higher than the DZ con-

cordance rate. Or one might have that concordance rates are

equal for MZ and DZ twins while the (liability to) the trait is

heritable. Hence the scale of which genetic influence is

inferred becomes important. Finally, models for genetic het-

erogeneity as proposed in Risch (1990) in which relative

recurrence risks are considered may also be handled from the

method proposed in the present paper.

The presented method is novel and has its main merits in

its intuitive approach to including prior information and its

ability to deal with data sets with very few concordant

pairs. Future work will focus on multivariate extensions

and the inclusion of covariates such as environmental

characteristics (either shared or non-shared), measured

genotypes, and time-to-event.
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