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Summary. Biometrical genetic modeling of twin or other family data can be used to decompose the
variance of an observed response or ‘phenotype’ into genetic and environmental components. Convenient
parameterizations requiring few random effects are proposed, which allow such models to be estimated using
widely available software for linear mixed models (continuous phenotypes) or generalized linear mixed models
(categorical phenotypes). We illustrate the proposed approach by modeling family data on the continuous
phenotype birth weight and twin data on the dichotomous phenotype depression. The example data sets
and commands for Stata and R/S-PLUS are available at the Biometrics website.
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1. Introduction
An increasing number of genes have been identified as risk
or preventive factors for different phenotypes, that is, the ob-
servable characteristics of an individual. However, such knowl-
edge is scarce for many phenotypes and consequently classi-
cal biometrical genetics still has an important role to play.
In this approach, individual genes are not identified and one
instead attempts to decompose the phenotypic variance into
genetic and environmental components. The underlying vari-
ance components model is specified based on the degree of
genetic kinship among individuals in the study population
and on various assumptions regarding the degree of shared
environment between the same individuals. Estimated vari-
ance components may provide some insight into the etiology
of diseases but perhaps more importantly direct future genetic
research by indicating phenotypes that are largely genetically
determined.

Models for twin and other family designs are typically spec-
ified as structural equation models and estimated using spe-
cialized software, such as Mx (Neale et al., 2004). In this mul-
tivariate approach, the responses for the family members are
treated as different variables and the families as the units of
analysis. Here we show how the models can be formulated
as mixed effects models where the responses for the family
members are treated as responses on different units nested
within families. An important advantage of the mixed models
approach is that it is familiar to statisticians and widely avail-
able in standard statistical software such as Stata, S-PLUS, R,

SPSS, and SAS, as well as stand-alone software such as MLwiN

and HLM.
One challenge when using the mixed model approach is to

impose the restrictions on the covariance matrix of the re-
sponses predicated by genetic theory. Pawitan et al. (2004)
achieve this using their own custom-made program to esti-
mate nonstandard generalized linear mixed models allowing
correlations among random effects to depend on covariates.
In contrast, Guo and Wang (2002) ignore the restrictions
in order to use standard software for linear mixed models.
van den Oord (2001) uses standard software for linear mixed
models to impose restrictions, but his approach has several
disadvantages: First, complicated parameter constraints are
needed. Second, the parameters of the model do not relate
simply to the parameters of interest. Third, the models are
not proper statistical models because they require theoret-
ically impossible restrictions such as random effects having
a zero variance but nonzero covariances with other random
effects. Our parameterizations avoid all these problems. In
particular, avoiding the third problem means that the models
can be estimated using software that forces covariance matri-
ces to be positive semidefinite, as is the case for most software
implementing maximum likelihood estimation for categorical
responses (e.g., SAS PROC NLMIXED and gllamm in Stata).

An important contribution of our article is that we suggest
parameterizations requiring only a few random effects. This
is important when the phenotypes are noncontinuous because
in this case the likelihood does not have a closed form and
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the random effects must be integrated out using for instance
numerical integration. McArdle and Prescott (2005) recently
suggested a similar parameterization as our ‘parameterization
1’ for twin models. However, their approach requires four ran-
dom effects whereas ours requires three (see Section 4.1). For
the same model, we moreover propose a ‘parameterization 2’
requiring only two random effects. We also propose parame-
terizations for more complex family structures.

The plan of the article is as follows. In Section 2, we in-
troduce some basic ideas of biometrical genetic models before
considering the special case of twin data in Section 3. Con-
venient mixed model parameterizations are proposed for twin
models in Section 4 and for some other family designs in Sec-
tion 5. In Section 6, we demonstrate how these parameteri-
zations can be used for categorical phenotypes or qualitative
traits. Applications of the suggested approach to continuous
as well as dichotomous phenotypes are considered in Section 7.
The article concludes with a brief discussion in Section 8.

2. Biometrical Genetic Models
In Fisher’s (1918) model for polygenic effects the genetic com-
ponent of a phenotype can be divided into two components.
The additive genetic component represents the main effects of
individual alleles on the phenotype, which are transmissible
from parents to offspring. The dominance genetic component
results from interactions between alleles at single loci, which
contribute to the covariance only between relatives who can
share a genotype identical by descent (derived from the same
parental allele) such as full siblings and twins.

In addition to these effects of ‘nature,’ ‘nurture’ obviously
also has a role to play. The common environment component
represents environmental influences shared by siblings reared
in the same family. These shared experiences make siblings
reared in the same family more alike than siblings reared in
different families. In contrast, the unique environment compo-
nent refers to experiences that affect individual siblings (not
shared) and make them dissimilar.

We refer to Falconer and MacKay (1996) and Khoury,
Beaty, and Cohen (1993, Chapter 7) for motivation of the
genetic models. These treatments also discuss the assump-
tions on which they are based, such as Hardy–Weinberg equi-
librium, no epistasis (interactions between alleles at different
loci), absence of gene-environment interaction, and random
mating. Elston (2001) provides an excellent explanation of
important concepts in genetics and a translation between the
terminologies of genetics and statistics.

The ACDE model decomposes the total variance of the phe-
notype into four components, due to Additive genetic, Com-
mon environment, Dominance genetic, and unique Environ-
ment (ACDE) effects. The model for individual i in family j
can be written as an error components model

yij = µ+Aij +Dij + Cij + εij , (1)

where µ is the overall mean, Aij ∼ N(0, σ2
A) is an additive ge-

netic component, Dij ∼ N(0, σ2
D) a dominance genetic compo-

nent, Cij ∼ N(0, σ2
C) a common environment component, and

εij ∼ N(0, σ2
E) a unique environment component.

These four ‘error’ components are assumed to be mutu-
ally independent so that the total variance is the sum of the
variance components

var(yij) = σ2
A + σ2

D + σ2
C + σ2

E .

Alternatively, the model can be written as a path model,

yij = µ+ aA∗
ij + dD∗

ij + cC∗
ij + eε∗ij , (2)

where A∗
ij , D

∗
ij , C

∗
ij , and ε∗ij are mutually independent with

standard normal distributions and a, d, c, and e are ‘path
coefficients.’ The squared path coefficients correspond to the
variance components in the error components model; a2 =
σ2

A, c2 = σ2
C , d2 = σ2

D, and e2 = σ2
E .

3. Biometrical Genetic Models for Twin Data
The twin design is a commonly used family design because it
is both simple and powerful. Data on the phenotype are ob-
tained for both monozygotic (‘identical,’ MZ) and dizygotic
(‘nonidentical,’ DZ) twin-pairs. The basic idea is that MZ
twins share all their genes and consequently become more
similar to each other than DZ twins who have only half their
genes identical by descent. Assuming that MZ and DZ twins
experience the same degree of similarity in their environments
(the equal environment assumption), any excess similarity be-
tween MZ twins must be due to the greater proportion of
genes shared by MZ twins than by DZ twins.

To represent the covariance structure of the genetic compo-
nents in a compact manner, we consider two unrelated twin-
pairs j = 1, 2 with twins i = 1, 2 in each pair, where the first
pair is MZ and the second DZ. Let the corresponding addi-
tive and dominance genetic components be denoted A = (A11,
A21, A12, A22)

′ and D = (D11, D21, D12, D22)
′, respectively.

Analogously, the vectors of common and unique environment
components are defined as C = (C11, C21, C12, C22)

′ and E =
(E11, E21, E12, E22)

′, respectively.
According to genetic theory (e.g., Neale and Maes, 2004),

the covariance matrices for the components are

Cov(A) = σ2
A




1 1 0 0

1 1 0 0

0 0 1 1/2

0 0 1/2 1


 ,

Cov(D) = σ2
D




1 1 0 0

1 1 0 0

0 0 1 1/4

0 0 1/4 1


 ,

Cov(C) = σ2
A




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


 ,

Cov(E) = σ2
E




1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1


 = σ2

EI.

Defining the vector of phenotypes for the two twin-pairs
as y = (y11, y21, y12, y22)

′, the covariance structure for the
phenotypes under the ACDE model becomes
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Cov(y) = Cov(A) + Cov(D) + Cov(C) + Cov(E). (3)

Unfortunately, the ACDE model is not identified unless we
either have information regarding twins who are reared apart
or regarding other relatives. In practice, two special cases of
the ACDE model, which are identified from data on MZ and
DZ twins are usually considered; the ACE and ADE models
where the letters refer to the random effects included in the
model. Further special cases include the AE model that is
nested in both the ACE and ADE models and the CE model
that is nested in the ACE model.

4. Parameterization of Twin Models
as Linear Mixed Models

Although the twin models look like ordinary random effects
models, an unusual feature is that some of the covariance
matrices of the random effects depend on the type of twin,
a covariate at the twin-pair level. However, most software for
linear mixed models does not allow covariance matrices of ran-
dom effects to be specified as functions of covariates. Further-
more, most software does not permit nonlinear constraints on
model parameters. With these limitations in mind, we pro-
pose two parameterizations that allow the twin models to be
estimated in standard software.

4.1 Parameterization 1
In the first parameterizations, the same basic trick is used for
ACE and ADE models.

ACE model: The ACE model can be parameterized with
three random effects as follows:

yij = µ+

{
a

(2)
ij

[√
1

2
M j

]
+ a

(3)
j

[
Mj +

√
1

2
M j

]}
+ c

(3)
j + εij ,

(4)

where Mj is a dummy variable for MZ twins and M j = 1 −Mj

a dummy variable for DZ twins. The setup is shown for a
hypothetical data set under ‘Param. 1’ in Table 1, where the
first twin-pair is MZ whereas the second is DZ.
a

(2)
ij is a random coefficient at the individual level whereas

a
(3)
j and c

(3)
j are random coefficients at the twin-pair level. We

have used superscripts to denote the levels at which random
terms vary apart from εij , which always varies at level 1.
The lowest-level random effects are usually considered to be
at level 2, here the individual twins i, so that twin-pairs j
are at level 3. Here level 2 is nested in level 3 and there is
no correspondence between twin 1 in twin-pair 1 and twin

Table 1
Hypothetical data setup for the two suggested parameterizations for twin models

Param. 1 Alt. indices
Twin-pair Twin Phenotype Param. 2
j i yij Mj M j = 1 −Mj k j ′ i′ k′

1 1 y11 1 0 1 3 1 3
1 2 y21 1 0 1 3 2 3
2 1 y12 0 1 1 6 4 4
2 2 y22 0 1 2 6 5 5

1 in twin-pair 2. For software requiring unique identifiers for
different units at a given level (even when they belong to
different higher-level units), i could be consecutive integers or
the values i′ and j ′ in the table can be used.

All components are specified as mutually uncorrelated and
the components a

(2)
ij and a

(3)
j have equal variances

Var
(
a

(2)
ij

)
= Var

(
a

(3)
j

)
= σ2

A,

whereas Var(cj ) = σ2
C and Var(εij) = σ2

E .
The terms in square brackets in (4) are simply linear com-

binations of dummy variables that can be computed as new
variables and specified as having random coefficients. Here
the trick is that the additive genetic component for MZ twins
is just the shared component a

(3)
j , producing a variance of σ2

A

and a correlation of 1. In contrast, the additive genetic compo-
nent for DZ twins is a scaled sum

√
1
2 (a

(2)
ij + a

(3)
j ) of the unique

component a
(2)
ij and the shared component a

(3)
j , producing a

total variance of σ2
A and a correlation of 1/2. This idea of

splitting the additive genetic component for DZ twins into a
unique or ‘within’ component and a shared or ‘between’ com-
ponent is consistent with the variance components approach
of Jinks and Fulker (1970; Table 3).

To confirm that the parameterization is correct, we recom-
mend that the model-implied covariance structure be com-
pared with the one prescribed by genetic theory. Letting 1
denote a unit column vector and I an identity matrix, the
model can be written in matrix form as

y = 1µ+




0 0 0 0

0 0 0 0

0 0
√

1
2 0

0 0 0
√

1
2




︸ ︷︷ ︸
Z1



a

(2)
11

a
(2)
21

a
(2)
12

a
(2)
22


 +




1 0

1 0

0
√

1
2

0
√

1
2




︸ ︷︷ ︸
Z2

[
a

(3)
1

a
(3)
2

]

+




1 0

1 0

0 1

0 1




︸ ︷︷ ︸
Z3

[
c

(3)
1

c
(3)
2

]
+ I



ε11

ε21

ε12

ε22


 ,

and the covariance structure becomes

Cov(y) = σ2
A(Z1Z′

1 + Z2Z′
2) + σ2

CZ3Z′
3 + σ2

EI

as required.
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The AE model is simply obtained by omitting the penul-
timate term and the CE model by omitting the second and
third terms from the above model.

McArdle and Prescott (2005) propose a similar parameter-
ization that requires two random effects in place of our single
random effect a

(2)
ij . Defining dummy variables T 1i for i = 1

and and T 2i for i = 2, their model can be written as

yij = µ+

{
a

(2)
1ij

[√
1

2
M jT1i

]
+ a

(2)
2ij

[√
1

2
M jT2i

]

+ a
(3)
j

[
Mj +

√
1

2
M j

]}
+ c

(3)
j + εij ,

where var(a
(2)
1ij) = var(a

(2)
2ij) = var(a

(3)
j ) = σ2

A. Due to the vari-
ance constraint, and because the random effects at level 2 take
on different values for different i (i = 1, 2) the above model
is equivalent to our parameterization 1 but computationally
more demanding.

ADE model: Our suggested parameterization for the ADE
model requires four random effects:

yij = µ+

{
a

(2)
ij

[√
1

2
M j

]
+ a

(3)
j

[
Mj +

√
1

2
M j

]}

+

{
d

(2)
ij

[√
3

4
M j

]
+ d

(3)
j

[
Mj +

√
1

4
M j

]}
+ εij , (5)

where all components are specified as mutually uncorrelated
and

Var
(
a

(2)
ij

)
= Var

(
a

(3)
j

)
=σ2

A, Var
(
d

(2)
ij

)
=Var

(
d

(3)
j

)
=σ2

D, and

Var(εij) = σ2
E .

For two twin-pairs, the first MZ and the second DZ, the
ADE model can be written as

y = 1µ+ Z1



a

(2)
11

a
(2)
21

a
(2)
12

a
(2)
22


+ Z2

[
a

(3)
1

a
(3)
2

]
+




0 0 0 0

0 0 0 0

0 0
√

3
4 0

0 0 0
√

3
4




︸ ︷︷ ︸
Z4



d

(2)
11

d
(2)
21

d
(2)
12

d
(2)
22




+




1 0

1 0

0
√

1
4

0
√

1
4




︸ ︷︷ ︸
Z5

[
d

(3)
1

d
(3)
2

]
+ I



ε11

ε21

ε12

ε22


 ,

and the covariance structure becomes

Cov(y) = σ2
A(Z1Z′

1 + Z2Z′
2) + σ2

D(Z4Z′
4 + Z5Z′

5) + σ2
EI.

A very convenient feature of these parameterizations is the
direct correspondence between the required variance com-
ponents and the model parameters. As a consequence, any
software that does not permit negative variance components
enforces the useful restriction that the genetic and environ-
mental variance components must all be nonnegative.

4.2 Parameterization 2
The second parameterization can be used either for ACE or
ADE models. We use the generic notation u for random effects
when they do not contribute to a single source (A,C ,D ,E )
of variation.

First, define a new cluster identifier k for level 2 that is equal
to j (the twin-pair identifier) for MZ twins and i (the twin

identifier) for DZ twins. The random effect u
(2)
kj is, therefore,

shared by individuals in the same twin-pair for MZ twins but
unique to the individuals for DZ twins. The setup is shown un-
der ‘Param. 2’ in Table 1. For software not allowing different
level-2 units to have the same values of the level-2 identifier
even if they belong to different level-3 units, the alternative
indices i′, k′, and j ′ in Table 1 can be used.

The model can then be parameterized as a three-level ran-
dom intercept model

yikj = µ+ u
(2)
kj + u

(3)
j + εikj , (6)

where the error components are mutually uncorrelated. Here
the trick is to let the variance of u

(2)
kj be shared for MZ twins

and unique for DZ twins by defining the artificial level 2.
For the ACE model, Var(u

(2)
kj) = σ2

A/2, Var(u
(3)
j ) = σ2

C +

σ2
A/2, and Var(εikj ) = σ2

E . For the ADE model, Var(u
(2)
kj) =

σ2
A/2 + 3σ2

D/4, Var(u
(3)
j ) = σ2

A/2 + σ2
D/4, and Var(εikj ) =

σ2
E . The AE model is obtained by imposing the restriction

Var(u
(2)
kj) = Var(u

(3)
j ) whereas the CE model can be obtained

by omitting u
(2)
kj from (6).

For two unrelated twin-pairs, the first MZ and the second
DZ, the model can be written as

y = 1µ+




1 0 0

1 0 0

0 1 0

0 0 1




︸ ︷︷ ︸
Z6



u

(2)
11

u
(2)
12

u
(2)
22


 + Z3

[
u

(3)
1

u
(3)
2

]
+ I



ε11

ε21

ε12

ε22


 .

For the ACE model, the covariance structure becomes

Cov(y) =
(
σ2

A

/
2
)
(Z6Z′

6 + Z3Z′
3) + σ2

CZ3Z′
3 + σ2

EI,

and analogously for the ADE model.
An advantage of this parameterization is that it is very sim-

ple and does not require any constraints. More importantly,
it only requires two random effects thus increasing computa-
tional efficiency when the responses are categorical. A disad-
vantage is that the genetic and environmental variance com-
ponents of interest are linear combinations of the variances
of the model. Another disadvantage of the parameterization
is that the model does not impose the restrictions that the
genetic and environmental variance components are all non-
negative. However, this can also be seen as an advantage. In
the ACE model, a negative estimate of σ2

C is an indication
that the model is not appropriate. In parameterizations en-
forcing nonnegative variance components, the estimate would
be zero. In this case, it is common practice to consider the
ADE model, which can be obtained from parameterization 2
without the need to re-estimate the model.
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5. Parameterizations for Some Other Family Designs
5.1 Siblings Plus Cousins
To represent the covariance structure compactly, we consider
two pairs of siblings, all sharing the same grandparents. The
parameterization given below also applies to larger families.

The covariance matrices of the additive genetic and com-
mon environmental effects become, respectively,

Cov(A) = σ2
A




1 1/2 1/8 1/8

1/2 1 1/8 1/8

1/8 1/8 1 1/2

1/8 1/8 1/2 1


 and

Cov(C) = σ2
C




1 1 0 0

1 1 0 0

0 0 1 1

0 0 1 1


 ,

see for instance Khoury et al. (1993).
Treating the wider family k as level 3 and the sibling-pairs

j as level 2, the ACE model can be parameterized using two
random effects as

yijk = µ+ a
(3)
k + u

(2)
jk + εijk,

where Var(a
(3)
k ) = σ2

A/8, Var(u
(2)
jk) = 3σ2

A/8 + σ2
C , and

Var(εijk ) = σ2
A/2 + σ2

E . Here the level-3 component a
(3)
k pro-

duces the required covariances among cousins, whereas the
level-2 component u

(2)
jk produces the additional covariance

among siblings due to both the common environment and the
closer kinship. The level-1 residual εijk represents additional
additive genetic variance and the unique environment.

In matrix notation,

yk = 1µ+ 1a(3)
k + Z3u

(2)
k + Iεk,

where u(2)
k = (u

(2)
1k , u

(2)
2k )′ and εk = (ε11k, ε21k, ε12k, ε22k)′, so that

the covariance structure becomes

Cov(yk) =
(
σ2

A

/
8
)
(11′ + 3Z3Z′

3 + 4I) + σ2
CZ3Z′

3 + σ2
EI,

as required.

5.2 Nuclear Family
Without loss of generality, we consider a nuclear family with
two children. The covariance matrices of the additive genetic
and common environmental effects (for mother, father, child1,
child2) are, respectively,

Cov(A) = σ2
A




1 0 1/2 1/2
0 1 1/2 1/2

1/2 1/2 1 1/2
1/2 1/2 1/2 1


 and

Cov(C) = σ2
C




1 0 0 0

0 1 0 0

0 0 1 1

0 0 1 1


 ,

see Khoury et al. (1993).

We use three nested grouping identifiers; i for individuals
treated as level 2 (because we define a random effect for in-
dividuals), j taking on unique values for each sibling-pair and
each parent (an artificial level 3), and k for families at level 4.
The model can then be parameterized using four random ef-
fects as

yijk = µ+ a
(4)
1k [Mi +Ki/2] + a

(4)
2k [Fi +Ki/2]

+ a
(2)
ijk[Ki/

√
2] + c

(3)
jk + εijk, (7)

where Mi is a dummy variable for mothers, Fi for fathers, and
Ki for children. The first three terms represent the additive
genetic component and the corresponding random effects have
variance σ2

A, whereas Var(c
(3)
jk) = σ2

C and Var(εijk ) = σ2
E . Here

a
(4)
1k and a

(4)
2k induce the required additive genetic covariances

between each parent and each child and among the children.
However, the induced variances for the children are only σ2

A/2

and the remaining variance σ2
A/2 is provided by a

(2)
ijk . The

common environmental component c
(3)
jk is shared among the

children but unique for each parent as required due to the
artificial level-3 identifier j. Finally, the unique environmental
component is represented by εijk .

In matrix notation,

yk = 1µ+




1

0

1/2

1/2




︸ ︷︷ ︸
Z7

a
(4)
1k +




0

1

1/2

1/2




︸ ︷︷ ︸
Z8

a
(4)
2k

+




0 0 0 0

0 0 0 0

0 0
√

1
2 0

0 0 0
√

1
2




︸ ︷︷ ︸
Z1



a

(2)
11k

a
(2)
22k

a
(2)
33k

a
(2)
43k


 +




1 0 0

0 1 0

0 0 1

0 0 1




︸ ︷︷ ︸
Z9



c

(3)
1k

c
(3)
2k

c
(3)
3k


 + Iεk,

and

Cov(yk) = σ2
A(Z7Z′

7 + Z8Z′
8 + Z1Z′

1) + σ2
CZ9Z′

9 + σ2
EI.

For software permitting negative variance component esti-
mates, a parametrization requiring only three random effects
is

yijk = µ+ a
(4)
1k [Mi −Ki/

√
2] + a

(4)
2k [Fi −Ki/

√
2] + u

(3)
jk + εij ,

with Var(a
(4)
1k ) = Var(a

(4)
2k ) = −σ2

A/2,Var(u
(3)
jk) = 1 +

√
2

2 σ2
A, and

Var(εijk) = σ2
E + 1

2σ
2
A.

6. Extension to Categorical Phenotypes
For categorical (dichotomous and ordinal) phenotypes, we can
assume that the previously considered models hold for an un-
derlying continuous response or liability y∗ij (e.g., Falconer and
MacKay, 1996) instead of an observed phenotype yij , produc-
ing probit models.

The phenotype is determined by the liability via a threshold
model

yij = s if κs < y∗ij ≤ κs+1, s = 0, . . . , S − 1,
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where κs, s = 1, . . . ,S − 1, are fixed unknown thresholds and
κ0 = −∞ and κS = ∞. Note that dichotomous phenotypes
are simply obtained as the special case where S = 2. Similar
models can also be used for censored responses such as sur-
vival times or responses with ceiling or floor effects. In this
case y∗i is observed unless it is lower than some threshold (left
censoring) or higher than some threshold (right censoring).

To illustrate, we consider the ACE twin model for y∗ij ,

y∗ij = Aij + Cj + εij , var(εij) = 1, (8)

with Cj replaced by Dij for the ADE model. The mean µ has
been omitted because the threshold model already includes
S − 1 parameters for the S probabilities.

Given the random effects, the cumulative probability that
yij ≥ s in the ACE model is

Pr(yij ≥ s |Aij , Cj) = Φ(Aij + Cj − κs),

and similarly for the ADE model.
Using the parameterizations 1 or 2 in (4) or (6), respec-

tively, we obtain three-level generalized linear mixed models
(e.g., Rabe-Hesketh and Skrondal, 2007). For parameteriza-

tion 2 with variance parameters ψ(2) ≡ Var(u
(2)
kj) and ψ(3) ≡

Var(u
(3)
j ), the marginal likelihood can be expressed as

L
(
ψ(2), ψ(3), κ1, . . . , κS−1

)
=

∏
j

∫
u

(3)
j

g
(
u

(3)
j ;ψ(3)

)

×
[∏

k

∫
u

(2)
kj

g
(
u

(2)
kj ;ψ

(2)
)

×
{∏

i

f
(
yij |u(2)

kj , u
(3)
j ;κ1, . . . , κS−1

)}
du

(2)
kj

]
du

(3)
j ,

where f(yij |u(2)
kj , u

(3)
j ; κ1, . . . ,κS−1) is the conditional proba-

bility of the observed response yij given the random effects
and g(·; ψ) is a normal density with zero mean and variance
ψ. The integrals do not have closed forms but can be evalu-
ated by numerical integration (e.g., Rabe-Hesketh, Skrondal,
and Pickles, 2005) or Monte Carlo integration.

Some models require three or more random effects, making
estimation methods relying on numerical (or Monte Carlo)
integration computationally expensive. The most common al-
ternative approach is penalized quasilikelihood (e.g., Bres-
low and Clayton, 1993) implemented in software such as R,
S-PLUS, SAS PROC GLIMMIX, MLwiN, and HLM. However, this
approach is likely to perform poorly for family data because
it is known to produce biased estimates when cluster sizes
are small and/or there is large intra-family dependence (e.g.
Rodriguez and Goldman, 1995, 2001; Breslow, 2005). Soft-
ware implementing maximum likelihood via numerical inte-
gration for three-level generalized linear mixed models in-
cludes gllamm in Stata (Rabe-Hesketh and Skrondal, 2005)
and the stand-alone program aML (Lillard and Panis, 2000).
Programs for two-level models such as SAS PROC NLMIXED or
MIXOR (Hedeker and Gibbons, 1996) can also sometimes be
used, for instance for nuclear family data with a single child
per family (see Section 7.1). Currently, only gllamm and SAS

PROC NLMIXED use adaptive quadrature, which is superior to
ordinary quadrature. Markov chain Monte Carlo methods are
implemented in MLwiN (Browne, Rasbash, and Ng, 2005) and
Bugs (Spiegelhalter et al., 1996).

7. Examples
7.1 Birthweight: ACE Model with Covariates for Continuous

Data on Nuclear Families
We analyze a random subset of the birth weight data from
the Medical Birth Registry of Norway described in Magnus
et al. (2001). There are 1000 nuclear families each comprising
mother, father, and a single child (not necessarily the only
child in the family).

With only a single child per family, the common environ-
ment variance is not identified. Further, the random effect a

(2)
ijk

in (7) could be treated either as an individual-specific random
effect or as a family-specific random effect because it is multi-
plied by the dummy Ki for child, which equals ‘1’ for only one
individual per family. The model becomes a two-level model
for family members i nested in families j with three uncorre-
lated random coefficients having the same variance,

yij = x′
ijβ + a

(2)
1j [Mi +Ki/2] + a

(2)
2j [Fi +Ki/2]

+ a
(2)
3j [Ki/

√
2] + εij ,

where xij is a vector of covariates with regression coefficients
β and the following covariates are included:

(i) [Male]: A dummy variable for being male (x1ij)
(ii) [First]: A dummy variable for being the first child (x2ij)
(iii) [Midage]: A dummy variable for mother aged 20–35 at

time of birth (x3ij)
(iv) [Highage]: A dummy variable for mother older than 35

at time of birth (x4ij) and
(v) [Birthyr]: Year of birth minus 1967 (earliest birth year

in birth registry) (x5ij)

The estimates for this model using Stata’s xtmixed com-
mand or R/S-PLUS’s lme function are given in Table 2.

As expected, males weigh more than females, first borns
weigh less than subsequent children, birthweight increases
with mothers’ age, and there is a positive period effect. The
additive genetic component has a similar standard deviation

Table 2
Maximum likelihood estimates (in grams) for nuclear family

birthweight data

Estimate (SE)

Fixed part
β0 [Constant] 3461.46 (34.78)
β1 [Male] 158.45 (17.35)
β2 [First] −139.40 (18.74)
β3 [Midage] 57.06 (31.90)
β4 [Highage] 118.86 (54.67)
β5 [Birthyr] 3.63 (0.69)

Random part
σA 315.06 (16.12)
σE 365.46 (12.41)

Log likelihood −22,746.23
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as the unique environment component (which represents the
sum of common and unique environments).

The ‘heritability’ h2, defined as the proportion of pheno-
typic variance explained by the additive genetic factor, is es-
timated as

ĥ2 =
σ̂2

A

σ̂2
A + σ̂2

E

= 0.43.

To obtain a confidence interval for heritability, we take the
inverse standard normal cumulative distributive function (or
probit transformation) of the above and compute the corre-
sponding standard error using the delta method. We then
form the confidence interval on the probit scale assuming
normality and back-transform the confidence limits using the
standard normal cumulative distributive function. The result-
ing 95% confidence interval is from 0.35 to 0.50.

7.2 Depression: ACE and ADE Models for Dichotomous
Twin Data

We analyze data on psychiatric disorders in Caucasian female
twin-pairs sampled from the Virginia Twin Registry. The ages
of the participants at the time of the interview ranged from
17 to 55. Lifetime psychiatric illness was diagnosed using an
adapted version of the Structured Clinical Interview for DSM-
III-R Diagnosis. Each member of a twin-pair was interviewed
by a different interviewer. The data have been analyzed by
Neale and Maes (2004, p. 133).

The parameters were estimated by maximum likelihood
with adaptive quadrature using gllamm (downloadable from
http://www.gllamm.org) and are given in Table 3. The es-
timated common environment variance derived from param-
eterization 2 for the ACE model is negative. In parameter-
ization 1 the variance is constrained to be nonnegative and
the estimate is exactly zero giving the AE model. This model
might be selected because it has nearly the same log likeli-
hood as the competing models but with two instead of three
parameters.

The observed and predicted numbers of twin-pairs with 0,
1, and 2 cases of depression are given in Table 4 for the AE
and ADE models.

For the AE model, the heritability is estimated as

ĥ2 =
σ̂2

A

σ̂2
A + 1

= 0.43,

with approximate 95% confidence interval (via the probit
transformation and delta method as before) from 0.31 to 0.53.

Table 3
Maximum likelihood estimates for depression data

ACE ADE

Parameter Param. 1 Param. 2 Param. 1 Param. 2

σ2
A 0.76 0.91 0.54 0.54

σ2
C 0.00 −0.12

σ2
D 0.25 0.25

σ2
E 1 1 1 1

Log likelihood −1257.5 −1257.4 −1257.4 −1257.4

Table 4
Observed and model-implied numbers of twin-pairs with 0, 1,

and 2 cases of depression

Expected Expected
Cases Observed AE ADE

MZ twins
0 329 311.3 312.0
1 178 185.5 183.9
2 83 93.1 94.1

DZ twins
0 201 218.7 216.8
1 176 165.2 168.8
2 63 56.0 54.4

8. Discussion
Standard software for linear mixed models (continuous phe-
notypes) or generalized linear mixed models (categorical phe-
notypes) can easily be adapted to estimate statistical models
for the most common twin and family designs.

An important merit of the mixed models approach is that
it is familiar to statisticians and widely available in standard
statistical software. Another convenient feature of the mixed
model approach is that different family sizes are automati-
cally accommodated as well as responses missing at random.
Compared with standard structural equation models, it is
also more straightforward to include covariates. Furthermore,
when family members are exchangeable, as in twin data, it
is not necessary to arbitrarily assign family members to vari-
ables and then take extra steps to ensure that the models
and estimates are invariant to arbitrary re-assignments. Fi-
nally, in models for dichotomous or ordinal phenotypes where
maximum likelihood estimation usually requires numerical in-
tegration, the dimensionality of the integrals is often much
smaller for mixed models than for structural equation models
if the families are large.

The structural equation modeling approach also has im-
portant merits. First, the required covariance matrices are
specified directly rather than indirectly as in mixed models
where the covariances are induced by random effects. Sec-
ond, the biometrical models are often represented as path
diagrams (e.g., Neale and Maes, 2004) that can aid un-
derstanding. Third, it may be easier to extend the models
discussed here to multivariate models for several response
variables. A powerful program for both standard and non-
standard structural equation modeling called Mx can handle
missing data, covariates and multilevel models, and has ex-
cellent documentation with a focus on biometrical genetics
(Neale et al., 2004). This software also allows, for instance,
estimation of sibling interaction models, homogamy models
and more complex models of parent–child resemblance. These
models cannot, to our knowledge, be estimated using stan-
dard generalized linear mixed models. For these reasons, any
expert on biometrical genetics should be familiar with both
approaches and choose the one that is most suitable for a
given problem.

It should be noted that likelihood ratio tests cannot be
based on the conventional χ2 distribution when testing vari-
ance components. In the context of twin models Dominicus
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et al. (2005) derive the correct null distributions that are mix-
tures of χ2 distributions.

We have illustrated how statistical equivalence between
models can be exploited to reduce the number of random ef-
fects and hence computational complexity. Rabe-Hesketh and
Skrondal (2001) and Skrondal and Rabe-Hesketh (2004) dis-
cuss other examples where the number of random effects can
be reduced by reparameterization.

The models discussed in this article are straightforward
to extend in several ways, still using standard software for
mixed models. For the family designs discussed in Section 5 we
could also include dominance and maternal effects as nicely
demonstrated by Pawitan et al. (2004). In addition to the
kinds of covariates considered in Section 7.1, we could in-
clude covariates representing measured genotypes at specific
loci (e.g. Burton et al., 1999; van den Oord, 2001). These
effects can be made random at one or more levels to study in-
teractions between genotype and environmental components
(‘genotype–environment interaction’) or interactions between
genotype and genetic components (‘epistasis’). Higher-level
random effects could be used to model unobserved environ-
mental heterogeneity at different levels, for instance between
neighborhoods.

9. Supplementary Materials
Web-based supplementary materials, including example data
sets and corresponding commands for Stata and R/S-PLUS,
are available under the Paper Information link at the Biomet-
rics website http://www.tibs.org/biometrics.
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