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Summary

There has been considerable interest in studying the magnitude and type of inheri-
tance of specific diseases. This is typically derived from family or twin studies, where the
basic idea is to compare the correlation for different pairs that share different amount of
genes. We here consider data from the Danish twin registry and discuss how to define
heritability for cancer occurrence. The key point is that this should be done taking
censoring as well as competing risks due to e.g. death into account. We describe the
dependence between twins on the probability scale and show that various models can be
used to achieve sensible estimates of the dependence within monozygotic and dizygotic
twin pairs that may vary over time. These dependence measures can subsequently be
decomposed into a genetic and environmental component using random effects models.
We here present several novel models that in essence describe the association in terms of
the concordance probability, i.e., the probability that both twins experience the event, in
the competing risks setting. We also discuss how to deal with the left truncation present
in the Nordic twin registries, due to sampling only of twin pairs where both twins are
alive at the initiation of the registries.

Some key words: cause specific hazards, competing risks, delayed entry, left truncation,
heritability, survival analysis,

1 Introduction
There has been considerable interest in characterizing the role of genetic and environ-
mental factors and how they affect specific disease such as breast cancer or prostate
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cancer. The much cited paper by Lichtenstein et al. (2000) reported for example that
the variation due to genes for prostate cancer was 42% with 95 % confidence interval
(29%-50%), similarly the heritability of breast cancer was estimated to be 27% (4%-
41%). These numbers are deceptively simple to report, but the interpretation is really
quite complex. The heritability estimates were based on a combined twin study of the
Danish, Finnish, and Swedish twin registries, and random effects modeling of the oc-
currences of cancer using a Probit link. The methodology applied ignores the timing of
the events, but the key problem is that the analyses do not correct for censoring. The
resulting variance components, and derived measures of dependence may therefore be
severely biased. We later give a simulation study that shows that there are substantial
bias in the dependence estimates related to genetic and environmental effects. We show
how the censoring can be taken into account, and how the method is closely related to
the cumulative incidence function for the competing risks model.

The analyses of Lichtenstein et al. (2000) was based on describing the correlation on
the probability scale, that is on the concordance probabilities that are defined as the
probability that both twins experience a specific event. It is equally relevant to consider
the dependence on the hazard scale as in for example Locatelli et al. (2004, 2007) that
aimed to address the same issue using survival analysis techniques, and focused on the
heritability of breast cancer. In addition they extended standard modeling to allow that
a fraction of the population could be immune to the disease evaluated. This was based
on correlated frailty models. This analysis ignores the correlation between different
causes, and therefore the estimates of variance components associated with genes and
environmental factors can be severely biased. Only when the random effects associated
with other causes (death for example) are fully independent of the ones for breast cancer
(for example) this will yield a correct analysis. In Ripatti et al. (2003) an extended
model that allowed random effects for different causes to be dependent is considered,
and recently this has been taken up again by Gorfine & Hsu (2010).

Another approach to characterize the dependence among the cause-specific failure
times within a cluster is to consider cross hazard ratios for different causes, for example
Bandeen-Roche & Liang (2002); Bandeen-Roche & Ning (2008). This also provides a very
useful summary of the dependence structure, but it is quite different from our measures
that describe dependence within pairs on the probability scale as will be discussed below.
There is no simple link between dependence on the hazard scale and probability scale.

The estimates and separation between genetic and environmental factors have wide
ranging consequences and it is therefore of critical importance to estimate such num-
bers correctly and to have a valid and useful interpretation. Clearly, this needs to be
done under modeling assumptions, and understanding these and their consequences for
estimation are equally important.

The aim of our work is to discuss a framework for talking about heritability for
specific diseases and to suggest a number of models that can be used to describe the
correlation within twins. This embeds polygenic models from quantitative genetics and
naturally leads to components due to genetic and environmental factors, and with an
interpretation on the probability scale in terms of the cumulative concordance probabil-
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ities. The approach is based on direct modeling of dependence measures and random
effects modeling of the probability of observing cancer in the competing risks model. We
here extend Scheike et al. (2010) to a more elaborate modeling of the random effects in
a twin setting. Further, the approach extends the direct estimation of dependence as in
Scheike & Sun (2011) to a more elaborate and robust estimation of dependence which
then subsequently can be separated into genetic and environmental sources. We also
show how to test whether or not a genetic or environmental association is present in this
framework.

In addition to our discussion of different models that can be used to separate genetic
and environmental effects we also address the fact that all twin registries have left-
truncated event times. This occurs in varying degree for the Nordic twin registries,
but they all have some amount of delayed entry, in the sense that they only include
twin pairs where both where alive at a given date. In the Danish twin registry that
we use to illustrate this point all twin pairs included were both alive in 1943 when the
cancer registration started. The left truncation is more severe for the other Nordic twin
registries. Dealing with the multivariate delayed entry is no routine extension as it
involves the parameters of interest and additional quantities related to this. Recently,
there have been some work on handling delayed entry for regression models for the
cumulative incidence function Zhang et al. (2011); Geskus (2010), and we here suggest a
related approach for the direct binomial approach (Scheike et al., 2008) that is extended
to the multivariate data considered here.

The paper is structured as follows. First we present the competing risks framework
and discuss some consequences of this model in the context considered here. In partic-
ular, we note that dependence between frailty terms on the hazard scale and between
events on the probability scale are quite different. We then specify a dependence mea-
sure in this context and show how to do regression modeling that quantifies genetic and
environmental sources of dependence. We also suggest new variance components model-
ing with the aim of estimating the degree of association due to genes and environmental
factors through random effects. After having introduced the basic modeling approaches
we show how to deal with left truncation for estimation of these dependence measures. A
specific section shows the results of ignoring censoring for the liability threshold model.
The last part of the paper considers a worked example based on the Danish twin registry.

2 Competing Risks Modeling
When a specific cause of death or disease is of interest and other causes may interfere or
compete with this cause, we need to consider the competing risks model. The competing
risks model takes its basis in terms of the cause specific intensities. If we for example
consider the occurrence of a specific cancer form, then the death of a subject will prohibit
the subject from experiencing the specific cancer form, and is thus a competing event.
With these two causes in the competing risks models we can define the two cause specific
intensities as λcancer(t) and λnon-cancer(t). With T the event time and ε the cause related
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to the event time, the cause specific hazard of cancer is defined as

λcancer(t)dt = P (T ∈ [t, t+ dt), ε = cancer|alive at time t)

and similarly for the non-cancer deaths.
We have that the probability of a cancer given an event at time t is

λcancer(t)

λcancer(t) + λnon-cancer(t)
.

Further, in the special case where the cause specific hazards do not depend on time, we
have that the probability of a subject getting cancer is

P (cancer) =
λcancer

λcancer + λnon-cancer
. (1)

It is useful to keep this simple relationship in mind. Further, when additional right
censoring is also present and the censoring has constant intensity λc then the probability
of seeing a cancer occurrence is

P (“seeing cancer”) =
λcancer

λcancer + λnon-cancer + λc
. (2)

We note that the probability of “cancer” is different from the probability of “seeing cancer”
with censored data. This creates a problematic bias for models of the lifetime risk of
cancer or the cumulative concordance probability of cancer for monozygotic or dizygotic
twins.

Now considering a pair of twins, that we denote 1 and 2, and random effects associated
with the two causes Zcancer,i and Znon-cancer,i for the two twins i = 1, 2, such that the cause
specific hazard of cancer is Zcancer,iλcancer and the cause specific hazard of other events is
Znon−cancer,iλnon-cancer for the two twins i = 1, 2. Then given the random effects we get

P (twin “1” gets cancer) =
Zcancer,1λcancer

Zcancer,1λcancer + Znon-cancer,1λnon-cancer

P (twin “2” gets cancer) =
Zcancer,2λcancer

Zcancer,2λcancer + Znon-cancer,2λnon-cancer

We note that if Zcancer,i = Znon-cancer,i for i = 1, 2 such that there is the strongest possible
dependence between the random effects on the hazard scale, then the random effects
cancel out on the probability scale and the probabilities are independent. This model
is not likely to be realistic but it is likely that the random effects are correlated. It
is useful to note that dependence on the hazard scale is different from dependence on
probability scale. If the underlying cause specific hazards depend on time, then random
effects will not cancel out, and there will be correlation present among occurrence of
events. This correlation will vary with time. If in addition censoring independent of the
random effects is present and with constant hazard λc then the probabilities will also
have the λc term in the numerator of these expressions. One consequence of this is that
if censoring is not corrected for then there will suddenly be correlation in the occurrences
of the ’observed cancers’ inducing false dependence either stronger or weaker.
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3 Dependence measures for cancer events
The analysis in the combined Nordic study of the Danish, Finnish and Swedish twins
registries, Lichtenstein et al. (2000) was based on the assumption that the probability of
breast cancer occurrence (denoted as cancer below) for twin j in a twin pair was of the
form

Probit(P (twin j gets cancer|Xj, Zj)) = XT
j β + Zj, j = 1, 2 (3)

where Xj are possible covariates that we wish to adjust for and Z1 and Z2 are correlated
normal random effects associated with the twin pair. The classical twin design where
both MZ and DZ pairs are included in the study, makes it possible to decompose the
random effect variance into genetic and environmental components by noteworthy as-
suming independence of these random effects, Zj = Zj,gene + Zj,env. The heritability of
getting cancer in this model is then defined in terms of the random effects as the frac-
tion of the total variance due to genetic factors. We will adopt the standard polygenic
model for twin data based on further decomposing the random effects Zj for each twin
in a pair into the genetic components of additive (A) and dominant (D) effects and the
environmental effects into shared (C) and non-shared effects (E):

Zj = ZA,j + ZD,j + ZC + ZE,j, j = 1, 2. (4)

We denote the variances of each ot the terms as σ2
A, σ

2
D, σ

2
C and σ2

E, respectively. The A,
D, and C components are all assumed to be shared for MZ twins, whereas for DZ twins
who genetically are like normal siblings, we have

cov(ZA,1, ZA,2) = 0.5σ2
A, cov(ZD,1, ZD,2) = 0.25σ2

D.

All other pairs of components are assumed to be independent. This is the basis for the
standard heritability estimate, defined as the part of the total variance due to genes
((σ2

A + σ2
D)/(σ2

A + σ2
D + σ2

C + σ2
E)). For quantitative data where the observations Yj

equals Zj, all terms can be identified under the independence assumptions. In the
Probit model the E component is modeled indirectly through the link-function, which is
equivalent to a latent variable model formulation where the binary outcome is defined
from a conditionally normal distributed latent variable

Y ∗
j = XT

j β + ZA,j + ZD,j + ZC + ZE,j

such that

cancerj =

{
Yes, Y ∗

j > δ

No, otherwise.

where cancerj is the binary cancer indicator for subject j. This model is termed the
liability-threshold model see Falconer (1967); Falconer & Mackay (1994). For identifica-
tion the threshold is fixed at δ = 0 and ZE,1 and ZE,2 are independent standard normal
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distributed. Further, in practice only two of the variance components ZA, ZC and ZD
can be identified unless information on for example adoption status are included in the
model. For more on different genetic models see for example Neale & Cardon (1992)
or Sham (1998). Note, however that the random effects relate to the Probit-probability
scale, and that there therefore are additional variation present in the data due to the
probability itself. Using only the random effects to define a heritability estimate as above
is thus not comparable to the one from the standard normal model where all the varia-
tion is included in the heritability estimate. The Probit random effects analyses can be
(and have been) criticized for completely ignoring the time-aspect and the fact that the
analyses do not take the censoring into account which makes it impossible to interpret
the results, as indicated above. We later give a simulation study that shows that the bias
can be large in the standard liability-threshold model in the presence of right censoring.

3.1 Cumulative incidence modeling

We now take an approach that has the same aim but considers the time-aspect and
corrects for censorings and thus leads to interpretable estimates.

First we define the transition probability of cancer in the competing risks model as

F1(t;X) = P (T ≤ t, ε = cancer|X)

that is the probability of cancer before time t given possible covariates X. This quantity
is the cumulative incidence function. We note that F1(∞;X) is a consequence of model
(3), and is achieved after integrating out the random effect. The key interest here is
now to specify dependence measures for these probabilities, and then subsequently to
separate the amount of dependence due to heritable factors and shared environmental
factors by comparing the dependence for monozygotic and dizygotic twins.

The cumulative incidence model was recently extended to clustered data by random
effects models in Katsahian et al. (2006); Scheike et al. (2010). Let the event times and
cause indicators for the two twins be (T1, ε1) and (T2, ε2) and denote their covariates
as X1 and X2, respectively. Let the causes of events be either “cancer” or “death”.
Now the random effects models for the cumulative incidence are based on assuming that
conditional on a random effect Z which is shared among the two twins and is independent
of the observed covariates Xj, j = 1, 2, the cumulative incidence of cancer for the twins
are independent and given as

F (t;Xj, Z) = P (Tj ≤ t, εj = cancer|Z,Xj) = 1− exp
(
−ZΨ−1

θ [Λ(t,Xj)]
)
, (5)

where Ψθ(t) = Eθ{exp(−Zt)} is the Laplace transform of the random effect Z that here
is assumed gamma distributed with shape parameter 1/θ and scale parameter θ and
Λ(t,Xj) = exp(−α(t) − (γTXj)t), where α(t) is a baseline regression function and γ is
a q-dimensional vector of parameters. This leads to random effects with mean 1 and
variance θ. A useful property of this model is that the marginal cumulative incidence
given only Xj is of the simple additive form

F1(t;Xj) = 1− exp(−α(t)− tγTXj) (6)
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see Scheike et al. (2008) for more details on this model. In the worked example consid-
ered later there are no covariates present in the model, so this is simply the marginal
cumulative incidence of breast cancer, and then this is simply a re-parameterization of
a non-parametric cumulative incidence function. To estimate such marginal cumulative
incidence for correlated data, see Chen et al. (2008); Scheike et al. (2010). Now we can
compute the bivariate cumulative incidence on copula form as

P (T1 ≤ t,ε1 = cancer, T2 ≤ s, ε2 = cancer|X1, X2) =

1− (1− F1(t;X1))− (1− F1(s;X2)) + Ψθ

(
Ψ−1
θ [Λ(t,X1)] + Ψ−1

θ [Λ(s,X2)]
)
.

For this model the variance of the random effect, θ, is an indication of the amount of
positive correlation. In the next section we shall consider more elaborate random effects
modeling in this model.

We define the cross-odds ratio as the ratio between the conditional odds and the
marginal odds

cOR(t) =
odds(P (T1 ≤ t, ε1 = cancer | T2 ≤ t, ε2 = cancer))

odds(P (T1 ≤ t, ε1 = cancer))
(7)

where odds(P (A)) = P (A)/(1−P (A)) and odds(P (A|B)) = P (A|B)/(1−P (A|B)). This
measure can be estimated directly (Scheike & Sun, 2011) and can be modeled depending
on covariates. It was also shown that the random effects model lead to a (almost)
constant cross-odds ratio, cOR(t) = 1 + θ, for the probability of a twin experiencing
cancer given a cancer occurrence for the other twin.

We also consider direct estimation of the relative risk dependence measure

RR(t) =
C(t)

P (T1 ≤ t, ε1 = cancer)P (T2 ≤ t, ε2 = cancer)
(8)

where C(t) = P (T1 ≤ t, ε1 = cancer, T2 ≤ t, ε2 = cancer). The numerator, C(t), that we
denote as the cumulative concordance probability is modeled relative to the concordance
under independence. Similarly, the cOR also leads to estimates of the cumulative con-
cordance probability as shown in Scheike & Sun (2011).

The basic idea is now to compare these measures for monozygotic and dizygotic twins.
Specifically we shall consider regression models of the form

log(cOR(t)) = log(cOR(t, θ)) = V T θ log(RR(t)) = log(RR(t, θ)) = V T θ (9)

where V is twin-pair specific covariate and θ is a parameter vector. In the worked
example below (Section 7) we consider both non-parametric and parametric estimates
of, for example, RR(t), that we denote as both RR(t) and RR(t, θ). We simply use a
regression vector V that specifies the zygosity of the twins. This simple principle can be
used to estimate the amount of the cOR and RR that is due to heritable factors (genes)
and shared environmental factors. We return to this point in Section 7.
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Note that the cumulative concordance probability, C(t), can be estimated under the
different dependence models suggested above, and compared with the expected cumu-
lative concordance probability under independence. We provide such estimates in the
worked example. Clearly, under models for RR(t) we can compute the concordance as
RR(t)P (T1 ≤ t, ε1 = cancer)P (T2 ≤ t, ε2 = cancer), and a similar expression can be
worked out for the cOR model. In the case without covariates we can of course also
estimate the concordance rate non-parametrically by inverse probability of censoring
weighting techniques, or by some of the available estimators, see Cheng et al. (2007).

3.2 Biometric modeling

We now consider biometric modeling of twin data in terms of the above risk measures,
in particular the heritability in risk of disease and its variation over time. Further, we
consider genetic heterogeneity suggesting a mode of action of genetic variants.

For event times T1 and T2 in a pair, let CT1,T2(t) denote the (cumulative) covariance
depending on time, P (T1 ≤ t, ε1 = cancer, T2 ≤ t, ε2 = cancer) − P (T1 ≤ t, ε1 =
cancer)P (T2 ≤ t, ε2 = cancer). Then the relative risk in (8) above can be expressed in
terms of CT1,T2(t) as

RR(t) = 1 +
CT1,T2(t)

P (T1 ≤ t, ε1 = cancer)P (T2 ≤ t, ε2 = cancer)
(10)

for t ≥ 0.
We may decompose the genetic effect at a given loci into components of additive

genetic covariance, σ2
A(t) and dominant genetic covariance, σ2

D(t) by assuming that
CT1,T2(t) = σ2

A(t) + σ2
D(t) for MZ pairs and CT1,T2(t) = 1

2
σ2
A(t) + 1

4
σ2
D(t) for DZ pairs.

This decomposition may be extended by the effects of shared environment, σ2
C(t) as seen

above. Extending the notion in (Risch, 1990) we define the time dependent multilocus
index as the ratio

RRmz(t)− 1

RRdz(t)− 1

and note that this index equals two in case of solely additive contributions to σ2
A(t) and

σ2
D(t) from multiple loci whereas the multilocus index exceeds two in case of multiplica-

tive effects of genetic loci, ie. due to interaction of genes. The multilocus index is in case
of the natural assumption of equal marginals of MZ and DZ twins in fact the ratio of
covariances CT1,T2(t) of MZ to that of DZ pairs.

As a straightforward measure of time-varying heritability in risk of disease we adopt
the polygenic ACDE model in quantitative genetics (see (4) above) (Sham, 1998) which
in case of the estimable ACE submodel is simply the ratio of twice the differences in
covariances of MZ and DZ twins to the total variance, hence we define as heritability in
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risk of disease,

h2(t) =
2(Cmz

T1,T2
(t)− Cdz

T1,T2
(t))

P (TMZ
1 ≤ t, εMZ

1 = cancer) (1− P (TMZ
1 ≤ t, εMZ

1 = cancer))

=
2 (CMZ(t)− CDZ(t))

F1(t)(1− F1(t))

(11)

assuming equal marginals of MZ and DZ twins (F1(t) = FMZ
1 (t) = FDZ

1 (t)) and denoting
for example the observations for the MZ twin pair as (TMZ

1 , TMZ
2 , εMZ

1 , εMZ
2 ). We note

that this measure takes into account the variance on risk scale not accounted for by the
heritability in liability to disease from the Probit (or liability threshold) model above.
In light of the above time varying heritability, we stress the importance of modeling the
concordance functions in a flexible manner that can be faithful to the data. This is
pursued in the worked example in Section 7.1.

3.3 Asymptotics

Let Tki and Ck be the event time and right censoring time for the ith individual (i = 1, 2)
within the kth twin pair (k = 1, . . . , K), respectively, and let εki ∈ {j = 1, . . . , J} denote
the failure type. We define the indicator ∆ki = I(Tki ≤ Ck). Let Xki be an associated
covariate. Note that we here assume that both twins are censored at the same time.
This is used in deriving the asymptotics for the estimators considered as in Scheike et al.
(2010); Scheike & Sun (2011) that used inverse probability censoring weighted estimators
under a different censoring assumption. The asymptotics expansions thus differs for those
used in these papers that assumed that the censorings were independent within a twin-
pair, but follows along the same lines. The censoring assumption is valid for the twin
data we consider in this paper because the twins are administratively censored. This
makes it a lot simpler to use inverse probabilty of censoring weighting techniques. If a
few of the twins should not be censored at the same time due to for example emigration,
we can censor these pairs at the first censoring time and then the data we use satisfy
the same censoring assumption. We assume that we observe K independent identically
distributed replications of this data (Xki, T̃i, ε̃i), where T̃ki = min(Tki, Ck), ε̃ki = εki ∆ki,
and Xki = (1, Xki1, . . . , Xkip)

T. We assume that (Tki, εki, i = 1, 2) are independent of Ck
given covariates.

First we recall that we can estimate the marginal cumulative incidence in a regression
setting as in Scheike et al. (2010) by the GEE approach using robust cluster based
standard errors. In the special case without covariates we simply use the product limit
estimator with GEE type standard errors.

To be concrete we consider marginal regression models of the form

F1(t;Xki) = g(α(t), XT
kiγ, t)

for some specific link function g, see Scheike et al. (2008) and (6), and assume that we
have an estimation procedure at hand that lead to estimators with nice properties. We
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denote these estimators α̂(t) and γ̂, and assume that these quantities have an asymp-
totic linear influence function such that as K → ∞,

√
K(γ̂ − γ) and

√
K(α̂(t) − α(t))

are asymptotically Gaussian (Gaussian processes) and asymptotically equivalent to the
following sums of i.i.d. variables

K−1/2

K∑
k=1

Wγ,k(τ) and K−1/2

K∑
k=1

Wα,k(t).

Thus
√
K(γ̂ − γ) converges in distribution to a mean zero normal random variable, and√

K(α̂(t) − α(t)) converges weakly to a mean zero Gaussian process on t ∈ [0, τ ], for
some upper limit τ > 0. One implication of this is that for a given covariate vector X0

we have that F̂1(t;X0) = h(α̂(t), X0γ̂, t) is asymptotically equivalent to

K−1/2

K∑
k=1

gF (Wα,k(t),Wγ,k(τ), X0, t),

where gF is derived from the specific form of the link-function g.
Similarly, for the random effects model (4) and the direct dependence models (7)

(cOR and RR) we have an asymptotic expansion such that as K → ∞,
√
K(θ̂ − θm)

is asymptotically Gaussian and asymptotically equivalent to the following sum of i.i.d.
processes as in Scheike et al. (2010); Scheike & Sun (2011)

K−1/2

K∑
k=1

Wθ,k(τ).

Also we can estimate the covariance of these dependence parameters as
∑K

k=1 Ŵθ̂,k(τ)⊗2,
where for a p-vector a⊗2 = aaT i.e. the p× p matrix.

One consequence of these asymptotic results are that when considering the con-
cordance probability function C(t) = H(θ, α, γ,X0) where H depends on what spe-
cific dependence model we are using, we can derive the standard errors of its estimator
H(θ̂, α̂, γ̂), using the i.i.d. representations. Specifically it follows that the concordance
estimator is asymptotically Gaussian with the i.i.d decomposition

K−1/2

K∑
k=1

m(Wα,k(t),Wγ,k,Wθ,k, X0, t),

for some function m that is derived from H. Consequently the estimator of the proposed
heritability measure (11) is also asymptotically Gaussian with a similar i.i.d. represen-
tation that can be used for estimating its standard error and making confidence bands.
Here the computation are done for each specific covariate X0. In the worked example in
Section 7 there are no covariates.
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4 Random effects modeling for the cumulative inci-
dence function

In this section we discuss how to formulate random effects models directly that aims at
decomposing the amount of dependence that is due to genetic and environmental factors.
We do this by extending the simple random effects model to allow a more elaborate
additive random effects structure. This is a direct extension of standard genetic random
effects models to the cumulative incidence setting, and is of course strongly related to
the Probit-random effects models described in the previous section.

For a set of twins with random effects Z1 and Z2 with parameters, θ1 and θ2, respec-
tively we now assume that their marginal cumulative incidences are independent and
given as

F1(t;Zj, Xj) = P (Tj ≤ t, εj = cancer|Zj, Xj)

= 1− exp
(
−ZjΨ−1

θj

[
exp

{
−α(t)− (γTXj)t

}])
,

(12)

for twin j=1,2 with covariates Xj, and where Ψθj(·) is the Laplace transform of Zj. We
make the additional formal requirement that P (T1 ≤ t, ε1 = cancer|Z1, X1, Z2, X2) =
P (T1 ≤ t, ε1 = cancer|Z1, X1) and similarly for the other twin. We now specify a
more detailed polygenic structure for the random effects for the twin design with one
random effect due to additive genetic effects (A) and one random effect due to common
environmental factors (C), leading to an ACE model (see above and (Neale & Cardon,
1992)) on the probability scale. These random effects are the sources for the dependence.
Specifically we assume that a set of random effects (Z1, Z2) for a twin pair is given as

Z1 = Zg + Zc, Z2 = Zg + Zc

for the monozygotic twins such that all genes and environmental factors are shared and
independent, and with var(Zg) = σ2

g and var(Zc) = σ2
c . Whereas for dizygotic twins

Z1 = Zgs + Zg,ns,1 + Zc, Z2 = Zgs + Zg,ns,2 + Zc

where the random effects Zgs, Zg,ns,a, Zg,ns,b and Zc are independent with var(Zgs) =
0.5σ2

g , var(Zg,ns,j) = 0.5σ2
g for j ∈ {a, b}, and var(Zc) = σ2

c , such that only half the
genes are shared. To formally fit this model we make the specific assumptions that Zc
is gamma distributed with shape parameter λc and scale parameter λ−1

tot , Zg is gamma
distributed with shape parameter λg and scale parameter λ−1

tot , and with Zgs, Zg,ns,j
gamma distributed with shape parameter 0.5λg and scale parameter λ−1

tot . Here the total
variation due to genes and environmental factors is λtot = λg+λc. This parameterization
implies that E(Za) = E(Zb) = 1 and with var(Za) = var(Zb) = λ−1

tot . Therefore for
example also E(Zg) = λgλ

−1
tot , and var(Zg) = λgλ

−2
tot . We now define 5 random effects

that are i.i.d. across twins pairs, and that makes notation easier below. We let Z̃1 = Zg,
Z̃2 = Zgs, Z̃3 = Zgs,ns,1, Z̃4 = Zgs,ns,2, and Z̃5 = Zc. We let the parameters of the 5
associated random effects by denoted as λj for j = 1, . . . , 5. Then we can write the
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random effects for a twin as Z̃1 · I(zygosity = MZ) + Z̃2 · I(zygosity = DZ) + Z̃3 ·
I(zygosity = DZ, twin no = 1) + Z̃4 · I(zygosity = DZ, twin no = 2) + Z̃5, where “MZ”
is a monozygotic twin and “DZ” is a dizygotic twin, and “twin no” gives a numbering of
the twins within a twin pair.

Using this parameterization we get that for a pair of twins with survival times (T1, T2)
and with death causes (ε1, ε2) we can compute the concordance rate as a function of time
t as

C(t) = 1− (1− F1(t;X1))− (1− F1(t;X2))+
5∏
j=1

Ψ(λj, λtot,Ψ
−1(λtot, λtot, exp(−α(t)−XT

1 γt))+

Ψ−1(λtot, λtot, exp(−α(t)−XT
2 γt))),

where Ψ(λj, λtot, ·) is the Laplace transform of a Gamma distribution with shape param-
eter λj and shape parameter λtot. We can estimate the parameters of this model as in
Scheike et al. (2010), and the asymptotic properties can be derived along the same lines,
so we omit these technical details. We outline how this is done in the next section that
considers an extension to deal with delayed entry for the suggested models. The key
is that we first estimate the marginal parameters, and then subsequently use these for
estimation of the dependence parameters.

Similarly, one can also consider alternative genetic models such as the AE submodel,
that we consider later in Section 7.

5 Delayed entry
In the Nordic twin registries there is delayed entry. We give more details on the data in
the next section. Here we describe how to estimate the dependence parameters for the
random effects model under delayed entry. The cOR and RR dependence measures for
the cumulative incidence functions can also be estimated along the same lines, but then
one needs additional modeling assumptions.

Denoting the event times for the two twins as T1 and T2 and the cause indicators
as ε1 and ε2 we have the two basic marginal cumulative incidence functions, Fj(t) =
P (T1 ≤ t, ε1 = j) for j = 1, 2, and the bivariate cumulative incidence functions are
Fi,j(t, s) = P (T1 ≤ t, ε1 = i, T2 ≤ s, ε2 = j). We denote the truncation time as V ,
and assume it is the same for both twins as is indeed the case for the Nordic twin
registries. We omit the covariates from these expressions for ease of notation. The
marginal survival probability is G(t) = 1−F1(t)−F2(t), and the joint survival function
P (T1 > t, T2 > t) = 1−2F1(t)−2F2(t)+F1,1(t, t)+F1,2(t, t)+F2,1(t, t)+F2,2(t, t). These
quantities depend on the dependence parameters for different causes, and there are some
complicated restrictions that must be satisfied for all the models to be consistent. We
therefore avoid modeling all pairwise cumulative incidence functions. This leads to some
robustness in terms of the modeling, but there will be some lost efficiency to a full MLE
that considers all causes and their combinations.
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To construct score equations for the dependence parameter of the concordance prob-
ability, note that for each set of causes (i, j)

R1(i, t)R2(j, t)− P (T1 ≤ t, ε1 = i, T2 ≤ t, ε2 = j|T1 ≥ V, T2 ≥ V )

with Ri(j, t) = I(Ti ≤ t, εi = j) for i = 1, 2 has mean 0. Further,

P (T1 ≤ t, ε1 = 1, T2 ≤ t, ε1 = 1|T1 ≥ V, T2 ≥ V ) =

(F1,1(t, t)− F1,1(t, V )− F1,1(V, t) + F1,1(V, V ))/P (T1 ≥ V, T2 ≥ V )

Now, the joint (bivariate) cumulative incidence is denoted as F1,1(s, t) and can be com-
puted on copula form as indicated earlier, and depends on the dependence parameters
θ. Suppose that we know the truncation probability, P (T1 ≥ V, T2 ≥ V ), then we note
that

Ũ(θ, t, V ) = R1(1, t)R2(1, t)−
F1,1(t, t)− F1,1(t, V )− F1,1(V, t) + F1,1(V, V )

P (T1 ≥ V, T2 ≥ V )

also has mean 0. We stress that F1,1(t, s) depend on the dependence parameter θ.
To deal with right censoring we consider an IPCW weighted version of the above

equation that still has mean 0 if the joint censoring of the twins is correctly modeled
given covariates and then

U(θ, t, V ) = U(θ, t, V, T1, T2, ε1, ε2)

=
∆1∆2R1(1, t)R2(1, t)

Gc(T1, T2, V )
− F1,1(t, t) + F1,1(V, V )− F1,1(t, V )− F1,1(V, t)

P (T1 ≥ V, T2 ≥ V )

has mean 0, where ∆j = I(Tj ≤ Cj) for j = 1, 2 and Gc(T1, T2, V ) is the bivariate survival
function for the censoring times among those where both are uncensored at time V .

A special observation here is that the right censoring times for a twin pair are exactly
the same, i.e., C1 = C2 such that Gc(T1, T2, V ) = min(Gc(T1), Gc(T2))/Gc(V ). To use
this in practice we replace Gc by an estimator, based on left truncated survival times.
Note that the censoring distribution is truncated as well. Further all marginal cumulative
incidence functions are also replaced by estimates that take the truncation into account.
In addition we also estimate the joint survival function by the two-stage estimator of
Glidden (2000) adapted to deal with left-truncation.

Let K be the number of independent twin pairs that are observed, and let the score
for each twin pair be defined as above and denoted as Uk(θ, t, Vk). Then a possible
estimating equation for θ that is based only on modeling of the concordance probability
function is given by

Uθ(θ, Ĝ, P̂ ) =

∫ τ

0

K∑
k=1

I(t > Vk)
∂Uk(θ, t, Vk)

∂θ
Uk(θ, t, Vk) dt = 0. (13)

The estimator θ̂ of θ is obtained by solving (13), standard errors and asymptotic normal-
ity can be established along the lines of Section 3.3. Note, that the truncation weight
must be estimated from some other bivariate survival model, and the asymptotics should
reflect the uncertainty from this estimate.
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6 Bias due to censorings using the Liability threshold
model

We simulated data similar to the Danish breast cancer data using the cross-odds ratio
model of Scheike & Sun (2011) with a cOR at 3 for the MZ twins and 2 (or 1.5) for
the DZ twins similarly to what we saw in the data. These dependencies also generate
two interesting models in terms of genetic and environmental effects on the dependence.
The marginal cumulative incidence was chosen to mimic the cancer data and resulted
in a marginal cumulative incidence at 12% close to what we saw in the data. Based on
simulations from this model we estimated the heritability using an ACE-probit model
similarly to Lichtenstein et al. (2000). We censored the data by different levels of censor-
ing ranging from 0% to 82% for MZ and DZ twins separately, and then applied uniform
censoring on the time-interval. The censoring was assumed to be the same for both
twins within a twin-pair to mimic the administrative censoring present in the data. In
reality the censoring will typically depend on the zygosity due to the changes in MZ and
DZ prevalence over time, see Pinborg (2005) and Skytthe et al. (2003). Thus leading to
differences in the censoring pattern for MZ and DZ twins. To see if different censorings
degrees for the MZ and DZ twins gave additional complications we further allowed the
censoring to depend on zygosity. We simulated 400000 MZ and 400000 DZ twin pairs
because the simulations are meant to consider bias issues only. Variance estimation is
another topic and beyond the scope of this paper. Results were stable over multiple
simulations.

First, we consider the situation with the cOR at 3 and 2 for the MZ and DZ twins,
respectively. we note that when ignoring the censoring the marginal cumulative incidence
is severely biased (see Table 1), and similarly the concordance lifetime probabilities are
completely skewed due to the censorings. Unbiased estimates of the true values are given
for the case with censoring being 0% for both MZ and DZ twins. Without censorings the
lifetime prevalence is close to the true 12 %, and similarly the model produces a lifetime
concordance probabilty close to the true MZ concordance 0.035. Indeed the liability
threshold model should produce unbiased estimates in the case without right censoring.

Table 1 around here
The marginal estimates are biased in a symmetric fashion for MZ and DZ censoring.

the highest degree of censoring (82% for both MZ and DZ) the marginal estimate is
reduced to 0.6%. This is related to our discussion in Section 2, and is a direct effect of
nuisance due to the censorings. The concordance estimates for the MZ twins based on the
liabilty threshold ACE model also shows a large bias dependent on the censoring pattern,
the observed quantities range from 6.9% to 0.2% . Generally, the more MZ censoring the
higher the concordance probability, this is consistent with the same censoring generating
positive dependence in the binary outcomes. The reported concordance is based on an
average of the dependence of the MZ and DZ twins using the ACE model for these
dependencies.

Subsequently, we look at the dependence estimates in terms of the ACE decompo-
sition of the dependencies based on fitting the standard ACE liability threshold model
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ignoring the censorings. Table 2 shows the estimate of the genetic and common envi-
ronmental components for different censoring patterns for the MZ twins having cOR 3
and the DZ twins having cOR 1.5, similarly to what we found in the breast cancer data
that we consider in the next Section. When the data is uncensored we find that the
genetic variance (A) of the Liability threshold model is 37% and the common environ-
mental component (C) is 0%. This represents the best ACE approximation of our data
generation. The effect of censoring can be seen be comparing to these numbers. On the
diagonal where the censoring is the same for MZ and DZ twins we see that the C com-
ponent increases, due to the dependence generated by the common censoring times that
makes the DZ twins increase in correlation to a degree where a C component becomes a
possibility. This is reflected also in the decreasing A component but to a lesser extend.
The A component is highly sensitive to the censoring patterns and ranges from 99% to
0%. The C component ranges from 64% to 0% over the range of different censoring
patterns.

Table 2 around here
Subsequently, we considered data where the cOR was 3 for MZ and 2 for the DZ

twins to increase the environmental component. This leads to the estimates reported in
Table 3. Here the C component is 0 even though the estimate also increases in a fashion
similar to the situation in Table 2. The A component is highly sensitive to the censoring
patterns and ranges from 99% to 0%. The C component ranges from 65% to 0% over
the range of different censoring patterns. Note that the A component decreases on the
diagonal with equal censoring in this case. The direction of the bias depends on the
censoring pattern.

Table 3 around here
We conclude that the bias is substantial and conclusions based on the simple liability

threshold model cannot be used for important conclusions about genetic and environ-
mental effects.

7 Worked example: heritability of breast cancer
We apply the method to the population based cohort of Danish female twins born from
1870 with follow-up on death-status till January 1st 2009. Breast cancer occurrences
were identified from the National cancer registry which began registration January 1st
1943. Of 31,212 female twins eligible for study we identified 1,100 breast cancer cases,
7,708 were dead at time of follow-up and 22,404 were censored. The number of twin
pairs by status are listed in Table 4. We note that 72% of the twins were censored, and
the censoring was 74% and 70% among MZ and DZ twins, respectively. Both twins in
a pair had to be alive January 1st 1943 at which time cancer-registration starts. This
lead to the left-truncation that we discussed how to deal with in a previous section.

Table 4 around here
Population based twin registries are very well suited for estimating magnitude and

type of heritability, however, as stated above delayed entry and censoring is present to
a very large and non-ignorable extent. Lichtenstein et al. (2000) found the estimated
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heritability of breast cancer to be 27% (4%-41%) (95 % confidence interval) and similarly
the shared environmental factor was 6% (0%-22%). This result is stated to lead to
interpretation in a liability threshold model for the dichotomous outcome breast cancer
status. It is important to note that the liability threshold model yields a very useful
and simple interpretation, that can not be applied here, and we must thus interpret the
model directly on the probability scale with the direct consequence that the dependence
is reflected in the concordance probability. As pointed out these estimates are incorrect,
because they are not corrected for censoring. The dependence measures for the MZ and
DZ twins will be severely biased because of the censoring. The censoring is the same for
both twins and thus perfectly correlated, thus considering the event cancer versus “death
or censored” will thus be positive correlated for twins solely due to the censorings.

We first estimate the marginal cumulative incidence of breast cancer in women, taken
the truncation into account. We did this assuming that monozygotic and dizygotic twins
had the same cumulative incidence. We formally tested this by fitting a Fine-Gray
regression model (Fine & Gray, 1999) with the result that the effect of zygosity (DZ)
being −0.11 with standard error 0.07, thus clearly showing that there is no significant
difference between monozygotic and dizygotic twins. The marginal cumulative incidence
is given in Figure 1 panel (a) as the marginal estimate (dotted line). Approximately 12%
of all women experience breast cancer over their lifetime.

Figure 1 around here
We now apply the approaches described in this paper. We estimated the cOR, the RR

and fitted various random effects models to describe the dependence for monozygotic and
dizygotic twins. The estimates from the different models are shown in Table 5. We note
that the dependence is considerably stronger for the MZ twins than for the DZ twins.
Under the random effects model the cross-OR should be the random effects variance
plus one. Here we get a cOR at 2.95 and 1.50 for the MZ and DZ twins, respectively,
thus giving a somewhat higher estimate than from the random effects model for the MZ
twins, and an equivalent estimate for the DZ twins.

Table 5 around here
The estimates of association can all be translated into estimates of the concordance

probabilty function, that is the probability that both twins have experienced cancer
at a given time. We note that the cOR, RR and the random effects models lead to
very similar estimates of the concordance probabilities. Using the random effects model
the concordance probabilty is approximately 2.8% and 1.8% for MZ and DZ twins,
respectively. Along these lines we note that the multilocus index (see Section 3.2) is
estimated to 2.9 but is not significantly greater than two which would indicate genetic
interaction effects for breast cancer risk.

Taking the left-truncation into account has a noticeable impact on the dependence
estimates for the Danish twin registry. We expect that the effect of truncation is even
more pronounced in the Swedish and Finnish twin registries. To deal with the left
truncation we first directly model the time to cancer or death, to estimate the truncation
probabilities. We here used a gamma-copula Clayton-Oakes model, Glidden (2000),
that lead to dependence estimates (Gamma variances; numbers in parentheses are the
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estimated standard errors) for monozygotic and dizygotic twins at 0.40 (0.05) and 0.18
(0.03), respectively. We used the two.stage function of the timereg-package for R to fit
this model. Using this model we estimated the truncation probabilities that are needed in
the estimating equations. Clearly, ignoring the truncation will be even more problematic
when considering the dependence on the competing event (death prior to breast cancer).
Table 5 gives the dependence estimates taking the truncation into account. As expected
the dependence is estimated somewhat too high if the truncation is ignored. In Figure
1, we show the concordance probabilty estimates based on the random effects model
ignoring the truncation and correcting for it, versus the marginal estimate that would be
the strongest possible correlation, and under independence. As expected when correcting
for the truncation we get a lower estimate of the concordance probabilities, that are now
2.2% and 1.4% for the MZ and DZ twins, respectively.

The conclusion from these initial analyses and the estimates of dependence on the
probability scale is that monozygotic twins are much more strongly dependent than
dizygotic twins. A formal test for equivalent variance yield that the dependence is
significantly different (p < 0.001), see Scheike et al. (2010); Scheike & Sun (2011). This
suggest a genetic component in breast cancer. We shall now try to quantify the size and
type of the genetic components.

We also considered several structured random effects models with genetic and en-
vironmental variance components. All models involving both additive genetic, A, and
environmental, C, components did not converge. In particular we found that the ACE
model did not fit well. This is particularly so when we corrected for truncation as we
should. We use the standard terminology and for example talk about the AE model, even
though our E term is included in our link function implicitly due to the fixed marginals.
Clearly, this avoids some complications and sensitivity to choice of link-function when
estimating the E term that is just a matter of choosing link-function. We here thus only
estimate correlation parameters, and later return to how to translate these numbers into
heritability estimates.

Table 6 around here
We note that all methods lead to comparable conclusions. If we compare the differ-

ence random effects models, we see that the simple model with different random effects
variances for MZ and DZ twins, is comparable to what is achieved by the AE model,
even though the AE model overestimated the dependence for DZ and underestimated
the MZ dependence. This is further improved for the DCE and DE model, where D
is the dominant genetic component. The ADE model also fits quite well, and almost
achieves the estimates from the unstructured model. Clearly, when comparing the de-
rived dependence based on the different models, it is evident that the ADE, DCE and
DE model all fits the data very well, thus indicating that the genetic component in part
may be driven by dominant genetic effects. We stress that what model to use should
also involve biological reasoning in addition to pure statistical fitting.

Correcting for the truncation makes all models with unique environmental factors
inconsistent with the data. The DCE model corrected for truncation lead to a C estimate
at −0.02(0.61) in a model without positive constraints, thus leading to a C component
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that is on the boundary if a positivity constraint is enforced. Similarly, the ACE model
lead to a C estimate at −0.30(0.39). Among the remaining models the DE model fits
the data quite well and is almost equivalent with the simple unstructured model (UN).
We note that the AE model has a rather poor fit, and is thus not consistent with the
data.

In the next section we discuss one simple approach for translating the dependence
estimates into heritability estimates. The random effects models considered here, clearly
suggest that the genetic component is present and must be considerably larger than the
shared environmental effects. The shared environmental effects was estimated to 0 for
most considered models, and without positive constraints we got negative estimates for
the C component of the ACE and DCE models. The different genetic models can be
compared in terms of the concordance probabilty function for the MZ and DZ twins,
that in essence reflects the size the shared variance.

7.1 Heritability

We argued that the ACE or AE model lead to a heritability

h2(t) = 2
CMZ(t)− CDZ(t)

F1(t)(1− F1(t))

where F1(t) is the marginal cumulative incidence and C(t) is the cumulative concordance
probability (see Section 3). Note, that we here use that the marginals are same for MZ
and DZ twins.

First, we aim to estimate a lifetime heritability where we estimate the heritability
at age 100 years, denoted as h2(100), where the concordance probability estimates are
based solely on the life-time dependence that is estimated from considering the lifetime
occurrences only. This leads to heritability at 0.25 using the RR model. Note that this
estimate could be obtained using the Probit model and inverse probabilty of censoring
weighting and the derived concordance probabilty estimates from this model. We could
also estimate this heritability using the assumption that RR(t) is constant over time and
then we get 0.23. The estimate is 0.22 when the truncation is taken into account. Using
some of the other models make the estimate change slightly. The lifetime heritability is
thus in the neighborhood of 0.22. Similarly, the lifetime multilocus estimate is 3.9 thus
suggesting dominant genetic effects, i.e. gene-gene interactions.

Rather than settling for a cumulative lifetime heritability we can also estimate the
cumulative heritability for different ages. To do this it is important to model the depen-
dence structure and as a consequence the concordance probabilty functions in a flexible
manner that can be faithful to the data. We first considered a fully non-parametric con-
cordance probability estimator based on inverse-probability censoring weighting. This
curve is shown in Figure 2 (solid line). A compromise between a fully non-parametric
estimator and a structured model is to assume that for example RR(t) = RR(t, θ) de-
pends on time and model parameters θ and is piecewise constant or linear in time for
both MZ and DZ twins. We estimated the heritability assuming that log(RR(t)) was
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linear leading to the dashed line in Figure 2. We also estimated the cumulative heri-
tability using two piecewise constant models for RR(t), and these are depicted with the
dotted and dash-dotted lines in Figure 2.

Figure 2 around here
The non-parametric estimate could be given confidence bands, but it is clear that

the variability is very high. A trend test using a log-linear model for RR(t) results
in a negative trend for both MZ and DZ twins, and an overall negative trend for the
heritability, but the trend is not significant for neither MZ nor DZ twins with p = 0.15
and p = 0.25, respectively.

We note that the heritability has a vaguely decreasing trend over time, which is
consistent with the hypothesis that the early breast cancers in particular are due to
heritable factors. All models yield somewhat similar estimates and it is obvious that the
assumed structure for the dependence in the RR(t) model has a considerable impact on
the heritability estimates. The cOR model leads to a very similar conclusion.

An alternative characterization of the difference between the dependence among MZ
and DZ twins is to consider the multilocus index that we introduced earlier. A time-
dependent version of it, can be estimated assuming that the RR(t) is piecewise constant
as we also did for the heritability modeling above. This leads to the estimates in Table
7.

Table 7 around here
We note that the dependence is stronger in the early time-period and seems to de-

crease over time. This is consistent with the expected stronger dependence among early
cancers. The multilocus index suggests that there may be some indication of multiplica-
tive effects, but the index does not differ significantly from 2 in any of the time-intervals.

8 Discussion
We have proposed a framework for estimation of dependence for specific diseases in the
presence of competing risks, right censoring and truncation. The dependence measures
considered here are based on the cumulative incidence function thus extending the clas-
sical Probit random effects model to a more refined framework. In addition we have
shown how to estimate these dependence measures in the presence of right censorings.
Our simulation set-up revealed that the bias from ignoring the censorings is dramatic
and depends on the specific censoring patterns among DZ and MZ twins. The direct
modeling approaches in terms of the cross-odds ratios or relative risk measures lead to
straightforward interpretations of the dependence. We further separated these measures
into heritable factors and shared environmental factors using specific random effects
models, such as the ACE model. This leads to a useful separation of the genetic and
environmental factors.

Our random effects models relied on Gamma distributions for computational conve-
nience, but the choice of the random effects distribution will lead to different types of
dependence, see Hougaard (2000). We compared our concordance estimates of different
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models and concluded based on this that the Gamma distribution was not seriously vi-
olated. Further, research could develop goodness of fit methods and study the different
types of dependence induced by the random effects.

A technical aspect was that we showed how to correct for truncation in assessing the
dependence. This required additional modeling, and we here used a truncation weight
given from some other frailty model.

To compute a heritability measure we tried to separate the variation on the scale
of the observed data, thus bringing in the variation due to the probability scale as
well. This had the advantage that the otherwise somewhat artificial E component of
non-shared random effects was not modeled directly in the random effects models, thus
avoiding sensitivity to the choice of the link-function. This separation relied on directly
modeling the correlation of the observed binary responses through ACE or DCE type
models. We stress that the choice of genetic model should be considered carefully in a
biological context. Further as expected the dependence modeling had great impact on
the time-dependent heritability estimates obtained from these models. We note that the
extension of the classical liability threshold (or probit) modeling to account for censored
paired observations by IPCW techniques as devised could be a useful way to correct for
bias in many studies of dichotomous traits in twins having time to event available. Note,
however, that our heritability measure is different from the heritability on the liability
scale. We will explore models that are aimed more directly at estimating heritability in
future work. Another topic for further research that we are considering in ongoing work
is how to use a full maximum likelihood approach to increase the efficiency.

We have implemented the methods in the R-packagemets that is available at CRAN.
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MZ
DZ

0% 28% 55% 82% 0% 28% 55% 82%

0% 0.120 0.101 0.082 0.064 0.034 0.027 0.021 0.018

25% 0.103 0.083 0.063 0.044 0.032 0.024 0.016 0.013

55% 0.086 0.065 0.044 0.025 0.033 0.023 0.013 0.007

82% 0.078 0.054 0.029 0.006 0.069 0.045 0.021 0.002

Lifetime prevalence Lifetime concordance

Table 1: Lifetime disease prevalence and lifetime concordance for MZ twins estimated
using Liability threshold model ignoring censoring for different censorings patterns of
MZ and DZ twins. Cross odds-ratio dependence parameter 3 and 2 for MZ and DZ,
respectively.

A C

MZ
DZ

0% 27% 55% 82% 0% 28% 55% 82%

0% 0.374 0.221 0.000 0.000 0.000 0.170 0.431 0.528

21% 0.473 0.461 0.046 0.000 0.000 0.026 0.429 0.581

55% 0.627 0.624 0.431 0.000 0.000 0.000 0.167 0.640

82% 0.988 0.979 0.949 0.257 0.000 0.000 0.000 0.494

Table 2: Estimates of variance for genetic (A) and environmental components (C) of
threshold liabilty model given different censoring patterns for MZ and DZ twins. Cross
odds-ratio dependence parameter 3 and 1.5 for MZ and DZ, respectively.

A C

MZ
DZ

0% 28% 55% 82% 0% 28% 55% 82%

0% 0.316 0.024 0.000 0.000 0.079 0.367 0.454 0.530

21% 0.513 0.255 0.000 0.000 0.000 0.229 0.496 0.585

55% 0.676 0.633 0.253 0.000 0.000 0.019 0.341 0.646

82% 0.990 0.981 0.954 0.179 0.000 0.000 0.000 0.578

Table 3: Estimates of variance for genetic (A) and environmental components (C) of
threshold liabilty model given different censoring patterns for MZ and DZ twins. Cross
odds-ratio dependence parameter 3 and 2 for MZ and DZ, respectively.
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Number of pairs at time of follow-up
MZ & DZ Status Breast cancer No cancer and dead No cancer and alive
Breast cancer 41 & 44 325 289
No cancer and dead 164 1005 & 1876 932
No cancer and alive 138 446 3967 & 6092

Table 4: Number of pairs by status at time of follow-up with MZ pairs in lower left
triangle and DZ pairs in upper. Censorings: 72% of a total of 30,638 twins are alive
without (diagnosed) breast cancer at time of follow-up.

log-cOR log-RR log-RR trunc. random effect random effect trunc.
MZ 1.01 (0.17) 0.90 (0.16) 0.78 (0.16) 1.48 (0.47) 1.04 (0.40)
DZ 0.40 (0.16) 0.39 (0.16) 0.25 (0.16) 0.48 (0.25) 0.21 (0.21)

Table 5: Within pair association in the occurrence of breast cancer under models for
cross-odds ratio, relative recurrence risk and random effects models against zygosity
(numbers in parentheses are estimated standard errors). For some models we corrected
for truncation.

Ignoring truncation
ADE DCE DE AE UN

D 0.72 (0.80) 1.20 (0.16) 1.52 (0.47)
C 0.23 (0.50)
A 0.72 (0.80) 1.32 (0.39)
MZ 1.44 1.43 1.52 1.32 1.48 (0.47)
DZ 0.54 0.54 0.38 0.66 0.48 (0.25)

Correcting for truncation
ADE DCE DE AE UN

D 1.12 (1.11) 1.10 (0.25) 1.06 (0.39)
C -0.02 (0.61)
A -0.05 (2.91) 0.89 (0.31)
MZ 1.07 1.08 1.06 0.89 1.04 (0.40)
DZ 0.25 0.26 0.27 0.47 0.21 (0.21)

Table 6: Variances of random effects for different genetic models (numbers in parentheses
are estimated standard errors), and derived variance for MZ and DZ twins. UN is simple
unstructured random effects model.
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Age DZ: log-RR (SE) MZ: log-RR (SE) Multilocus (SE)
0-70 0.944 (0.293) 1.630 (0.260) 2.62 (1.51)
70-80 0.503 (0.219) 1.220 (0.201) 3.63 (2.26)
80-90 0.354 (0.167) 0.838 (0.168) 3.08 (1.95)
90- 0.339 (0.156) 0.675 (0.162) 2.39 (1.53)

Table 7: Piece-wise constant RR(t) for MZ and DZ twins, and resulting multi-locus
index (numbers in parentheses are estimated standard errors).
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Figure 1: Estimated concordance probability function for breast cancer for random effects
model ignoring truncation and correcting for it.
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Figure 2: Heritability estimates for breast cancer based with pointwise 95% confidence
limits for the linear log(RR(t)) model.

26


