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Since the days of Archibold Garrod1, it has been
increasingly accepted that the aetiology of most com-
mon diseases involves not only discrete genetic and envi-
ronmental causes, but also interactions between the
two. Garrod suggested that “the influences of diet and
diseases” might “mask” some of the “inborn errors of
metabolism”that he proposed, and that “idiosyncracies as
regards drugs”were presumably due to inherited differ-
ences — thereby presaging the field of PHARMACOGENETICS

by more than half a century.
In the context of medical genetics and EPIDEMIOLOGY,

the study of gene–environment interactions is useful for
several reasons (BOX 1). If we estimate only the separate
contributions of genes and environment to a disease,
and ignore their interactions, we will incorrectly esti-
mate the proportion of the disease (the ‘population
attributable risk’) that is explained by genes, the envi-
ronment, and their joint effect. Restricting analysis of
environmental factors in epidemiological studies to
individuals who are genetically susceptible to the expo-
sure should increase the magnitude of relative risks,
increasing our confidence that the observed associations
are not due to chance. The identification of susceptibility
and/or resistance alleles in CANDIDATE-GENE STUDIES provides
direct evidence that these genes and their biological
pathways are relevant to specific diseases in humans.
Understanding these pathways might help to determine

which compounds in a complex mixture cause disease.
Ultimately, understanding gene–environment interac-
tions might allow us to give individualized preventive
advice before disease diagnosis, in addition to offer-
ing personalized treatment after a disease, or disease
susceptibility, has been diagnosed.

Some gene–environment interactions can be identi-
fied without any molecular analysis; one example is the
much stronger effect of sunlight exposure on skin can-
cer risk in fair-skinned humans than in individuals with
darker skin2. Others can be observed as a reproducible
effect of an environmental exposure on a susceptible
individual; for example, the flushing response seen after
alcohol ingestion in individuals with low-activity poly-
morphisms in the aldehyde dehydrogenase gene3.
However, our rapidly expanding ability, particularly
after the completion of the Human Genome Project,
to define genetic differences at the DNA-sequence level
is opening up a vast new terrain in the search for
gene–environment interactions.

Although the phrase ‘gene–environment interaction’
is frequently used to imply a specific relationship
between genes and the environment, the many existing
disease models differ with respect to the statistical asso-
ciation between genes and the environment. At least in
part because of the many potential models of interac-
tion, a gene–environment interaction will only be

GENE–ENVIRONMENT
INTERACTIONS IN HUMAN DISEASES
David J. Hunter

Abstract | Studies of gene–environment interactions aim to describe how genetic and
environmental factors jointly influence the risk of developing a human disease. Gene–environment
interactions can be described by using several models, which take into account the various ways
in which genetic effects can be modified by environmental exposures, the number of levels of
these exposures and the model on which the genetic effects are based. Choice of study design,
sample size and genotyping technology influence the analysis and interpretation of observed
gene–environment interactions. Current systems for reporting epidemiological studies make it
difficult to assess whether the observed interactions are reproducible, so suggestions are made
for improvements in this area.

PHARMACOGENETICS

The study of drug responses that
are related to inherited genetic
differences.

EPIDEMIOLOGY

A discipline that seeks to explain
the extent to which factors that
people are exposed to
(environmental or genetic)
influence their risk of disease, by
means of population-based
investigations.

Program in Molecular and
Genetic Epidemiology,
Department of
Epidemiology, Harvard
School of Public Health,
677 Huntington Avenue,
Boston, Massachusetts
02115, USA, and the
Channing Laboratory,
Brigham and Women’s
Hospital, Boston,
Massachusetts 02115, USA.
e-mail: dhunter@hsph.
harvard.edu
doi:10.1038/nrg1578

© 2005 Nature Publishing Group 

 



CANDIDATE-GENE STUDIES

Studies of specific genes in
which variation might influence
the risk of a specific disease,
usually because the gene is part
of a biological pathway that is
plausibly related to the disease.

BIOMARKER

A molecular marker of a
biological function or external
exposure.

ASSOCIATION STUDY

An approach to gene mapping
that looks for associations
between a particular phenotype
and allelic variation in a
population.

PRIOR PROBABILITY

An attempt to distinguish
between more likely and less
likely interactions on the basis of
knowledge of biological
mechanisms, before an
interaction is observed.
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the two can be examined, is becoming more common,
and greater use of population-based designs in genetic
epidemiology has been advocated4. As studies of
genetic susceptibility and environmental exposures
have been largely pursued by different groups of inves-
tigators, multidisciplinary collaboration is necessary to
generate the best studies in the field.

However, even with well-designed studies, there are
many ways of declaring ‘success’ in the search for inter-
actions. This is largely because of variability in the
qualitative and statistical models of interaction, and
the difficulty of assessing biological plausibility (either 
a priori — that is, when trying to prioritize PRIOR PROBA-

BILITIES in these analyses — or once an interaction has
been observed). These factors are described below.

Qualitative models. In the simplest case of dichotomous
genotype (such as carriers versus non-carriers of a gene
variant) and dichotomous exposure (for example,
exposed versus non-exposed), the four possible combi-
nations of genotype and exposure can be displayed in 
a 2 × 4 table5, and the relative risks can be shown in a
graph such as that shown in FIG. 1A. However, even in this
simplest case there are several models for describing
interactions between genetic susceptibility and environ-
mental exposures in different diseases6,7 (BOX 2). The
possibilities are more numerous if there are many cate-
gories of environmental exposure (for example, three or
more categories of exposure; see FIG. 1B) and/or many
genetic categories (as in the case of three genotypes for a
biallelic system) or different genetic models (recessive,
co-dominant and dominant) (BOX 2). So, many depar-
tures from the null result — where the risk of disease is
the same in all cross-classified categories of exposure and
genotype — might be compatible with the overall
hypothesis of gene–environment interaction.

The ‘multiple comparisons’ problem that is inherent
in examining thousands or even hundreds of thou-
sands of SNPs in association studies is relatively famil-
iar. For gene–environment interactions, however, we
face a comparison problem that arises from a model
involving multiple genes, multiple exposures and mul-
tiple interactions. In addition to using statistical
approaches to control the false-positive rate, the repro-
ducibility of gene–environment interactions across two
or more studies will be crucial. Current models of pub-
lication of individual studies favour suppression of
‘negative’ results, leading to publication bias8. This is par-
ticularly problematic for interactions owing to the large
number of comparisons being made and to the limited
space in conventional publications for the main effects of
genotype, let alone gene–environment interactions.
Databases of results, and/or prior coordination of large
studies, will be required to assess the reproducibility of
gene–environment interactions.

Statistical models. In addition to the many qualitative
models of interaction described, there are several meth-
ods of assessing the statistical significance of interactions9.
In the simplest case of dichotomous environmental
exposure and genotype, perhaps the most commonly

accepted if it can be reproduced in two or more studies
and also seems plausible at the biological level. Obtaining
this evidence will necessitate a high degree of coordina-
tion between studies, and will require mechanisms for
pooling unpublished data across studies, to prevent
publication bias. High-throughput genotyping tech-
nologies such as whole-genome SNP scans hold the
promise of finding the major genetic variants that con-
tribute to the risk of common diseases over the next 5 to
10 years. Obtaining high-quality information on envi-
ronment and lifestyle in conjunction with biological
samples to assess these genetic variants will be crucial in
the assessment of gene–environment interactions.
Planning for these studies is needed now if reliable data
on gene–environment interactions are to keep pace with
rapidly emerging genetic knowledge.

This article reviews some of the challenges in the
design and analysis of studies that are intended to
uncover and confirm gene–environment interactions,
and proposes some means by which data on the repro-
ducibility of these interactions can be assessed before they
are incorporated into public-health and clinical practice.

Describing gene–environment interactions
The study of gene–environment interactions requires
information on both elements of the relationship.
Genetic predisposition can be inferred from family his-
tory, phenotype (for example, skin colour), or direct
analysis of DNA sequence. Environmental and lifestyle
factors are measured in epidemiological studies using
self-reported information; this can be obtained by
interview or questionnaire, from records or direct mea-
sures in participants (for example, anthropometry), or
BIOMARKER-based inference on environmental exposures.
Until recently, many studies of genetic predisposition
(for example, pedigree-based studies) obtained little
information on environment and lifestyle. Similarly,
many typical epidemiological studies of unrelated indi-
viduals (ASSOCIATION STUDIES) did not obtain blood samples
or other sources of DNA that would allow direct assess-
ment of genetic variation. More recently, in both family-
based and association studies, collection of both genetic
and environmental data, so that the interaction between

Box 1 | Rationales for the study of gene–environment interactions

• Obtain a better estimate of the population-attributable risk for genetic and
environmental risk factors by accounting for their joint interactions.

• Strengthen the associations between environmental factors and diseases by examining
these factors in genetically susceptible individuals.

• Help to dissect disease mechanisms in humans by using information on susceptibility
(and resistance) genes to focus on the biological pathways that are most relevant to that
disease, and the environmental factors that are most relevant to the pathways.

• Determine which specific compounds in the complex mixtures of compounds that
humans are exposed to (such as diet or air pollution) cause disease.

• Use the information on biological pathways to design new preventive and therapeutic
strategies.

• Offer tailored preventive advice that is based on the knowledge that an individual
carries susceptibility or resistance alleles.
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rather than relative risks, and proposes that the joint
effect of genes and the environment is different from the
expectation that the incidence rate in cell d in FIG. 1A is
described by adding the rates in cells b and c in FIG. 1A.
This additive model is often said to be of greater rele-
vance to assessing the public-health impact of an interac-
tion9.Again, the option to use either of these two models
adds further potential for multiple comparisons to the
statistical analysis of gene–environment interactions.

Biological plausibility. Screening a large number of
potential gene–environment interactions in datasets
with a large number of genotypes and many variables of
exposure greatly increases the chance of finding false-
positive results at conventional levels of statistical signif-
icance. As most studies are not powerful enough to
detect modest interactions, demanding small p values 
to counteract this problem will result in a lower proba-
bility of declaring true-positive interactions as ‘signifi-
cant’. Restricting the search for gene–environment
interactions to those that involve gene products and
exposures that plausibly interact in the same biological
pathways is an attractive option. Furthermore, restrict-
ing analysis to gene variants that plausibly alter gene
function is also attractive, although for variants that
affect gene regulation this science is in its infancy10.
However, defining plausibility a priori has a large subjec-
tive component, and one person’s ‘plausible candidate’
might be another person’s ‘low-probability hypothesis’.

Study designs for gene–environment interactions
Genetic epidemiology has been dominated by the use of
family-based designs from which inherited susceptibil-
ity can be inferred. However, with the advent of meth-
ods for assessing DNA-sequence variability directly,
association studies using unrelated individuals are
increasingly being used.

used procedure is to test departure from the multiplica-
tive model of interaction. This involves testing whether
the relative risk for joint exposure (cell d in FIG. 1A) is sta-
tistically significantly greater (‘supermultiplicative’) or
smaller (‘submultiplicative’) than would be expected by
multiplying the relative risks for environmental expo-
sure or genetic predisposition alone (that is, multiplying
the relative risks of cells b and c in FIG. 1A). Another
commonly used test for interaction uses rate differences

Wild type Variant
No

Yes

Genotype

R
el

at
iv

e 
ris

k

R
el

at
iv

e 
ris

k

Wild type Variant

Genotype

b

c

d

a Low

Medium

High

A B

1.0 1.0

En
vir

on
m

en
ta

l

ex
po

su
re

Envir
onmen

tal

ex
posu

re

Figure 1 | Models of gene–environment interactions. A | In the most simplified example of a dichotomous genotype (for
example, carriers versus non-carriers of an allele corresponding to a dominant trait), and dichotomous exposure (for example,
‘exposed’ versus ‘non-exposed’), three categories of joint exposure can be compared with a reference category (for which
the relative risk is, by definition, 1.0). Using this simple scheme, BOX 2 shows the different patterns of risk that are observed in
some diseases in which inherited susceptibility clearly interacts with environmental exposures to jointly determine disease
risk. In the example shown here, the relative risk of developing a disease is much greater in individuals who are both
genetically susceptible to the condition and have been exposed to the environmental variable (cell d), than in individuals who
carry the wild-type genotype and are not exposed to the environmental variable (cell a), or who are either only exposed to the
environment or genetically susceptible (cells b and c, respectively). B | In the slightly more complex situation in which there
are three categories of exposure, it has been proposed that genetically susceptible individuals could be at risk of disease at
lower levels of exposure; in this model, the difference in risk between genotypes among individuals at the medium level of
exposure is the only indication of an interaction.

Box 2 | Some patterns of relative risk in gene–environment interactions

The table shows just three examples of different patterns of relative risk for three classical
genetic diseases that have an environmental component, assuming dichotomous genetic
susceptibility and environmental exposure (the data are from REFS 5,6).

In the first example, xeroderma pigmentosum (XP), exposure to ultraviolet 
light increases the risk of developing skin cancer in non-carriers of XP mutations,
but the combination of these mutations and exposure to ultraviolet light vastly
increases the risk of skin cancer. In theory, if individuals with XP mutations
completely avoid ultraviolet light their risk of skin cancer becomes close to the
background risk.

The example in the second column is that of phenylketonuria (PKU); only individuals
with recessive mutations in the causative gene (phenylalanine hydroxylase) that are
exposed to phenylalanine in the diet are susceptible to PKU.

In the third column, exemplified by a deficiency in the α-1 antitrysin gene, both 
non-smokers that are at genetic risk and smokers that are not at genetic risk have an
increased risk of developing emphysema, and the combination (smokers that are at
genetic risk) is associated with the highest risk.

There are many other patterns of gene–environment interactions, including ‘protective’
alleles and exposures.

Gene variant Environmental Relative risk Relative risk Relative risk
exposure (XP) (PKU) (emphysema)

Absent Absent 1.0 1.0 1.0

Present Absent ~1.0 1.0 Modest

Absent Present Modest 1.0 Modest

Present Present Very high Very high High
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Association studies: retrospective design. The main
limitations of retrospective studies, particularly
case–control studies, are well described15; for example,
selection bias (in particular, the use of controls who
do not represent the population in which the cases
occurred) is an important potential problem. If the
race or ethnicity of the controls is substantially differ-
ent from that of the cases, then spurious associations
with gene variants that differ by race or ethnicity (that
is, POPULATION STRATIFICATION16,17) will occur. The poten-
tial influence of population stratification is still con-
troversial, with some authorities in the field pointing
out that it can be substantially eliminated with atten-
tion to appropriate choice of controls and by control-
ling for self-reported ethnicity16,18. Methods to assess
the population substructure of cases and controls by
genotyping non-causal gene variants (‘genomic con-
trol’) have been proposed, and can be used to correct
for this phenomenon19,20.

Even if the optimal population of controls can be
identified, obtaining a high participation rate can 
be challenging, particularly as genetic studies also
require a blood or buccal sample for DNA analysis.
Although estimates of interaction parameters might be
unbiased even if the main effects of genotype and
environment are distorted by selection bias21, this is of
little comfort as we are usually interested in obtaining
estimates of both the main effects and their interaction.
In a rapidly fatal disease, only a fraction of the original
cases might be available for interview, leading to ‘sur-
vivor bias’ if genotype or exposures differ between
those who succumb quickly compared with longer-
term survivors. With respect to gene–environment
interactions, the principal problem is likely to consist
of misclassified (‘noisy’) or biased information on
environmental exposures. Bias can arise if cases
report their pre-diagnosis exposure histories differ-
ently once they are diagnosed with the disease com-
pared with what they would have reported before
diagnosis (recall bias). Interestingly, however, the
presence of a biased main effect for the environmental
factor does not automatically imply a biased estimate
of gene–environment interaction22.

Of more concern in retrospective studies is the pos-
sibility that poor recall (misclassification) of past expo-
sures among both cases and controls might attenuate
the estimates of risk to the point where any difference
in risk according to genotype cannot be reliably detected.
The potential for these biases and misclassification can
be reduced, but rarely eliminated, by paying careful
attention to best practices in enrollment and exposure
assessment. The chief advantage of case–control studies
is the potential for the sample size to be limited only by
cost and by the number of cases of the disease that are
available in the study area. Given the need for large
sample sizes (see below) in gene–environment studies,
this is a great potential advantage, which, when com-
bined with the potential for increased detail of expo-
sure assessment and disease phenotype (see below),
might make the case–control study the design of choice
for some diseases.

Family-based studies. By comparing disease concor-
dance rates between monozygotic and dizygotic twins,
twin studies can be used to partition components of
VARIANCE between genetic and shared and non-shared
environmental factors11. Most reports of studies from
twin registries do not include information on environ-
mental exposures that could be shared (or different)
between the twins, precluding any inferences about
specific gene–environment interactions.

Analyses of multigenerational pedigrees might pro-
vide a preliminary assessment of the hypothesis that the
PENETRANCE of a mutation has changed over chronologi-
cal time, which would indicate that changes in lifestyle
and environment have influenced gene penetrance. For
example, in an analysis of 333 North American women
who were carriers of BRCA1 (breast cancer 1, early
onset) mutations, mainly from high-risk breast- and
ovarian-cancer families, penetrance increased with
more recent birth cohorts12. This indicates the influence
of environmental and lifestyle factors that are more
prevalent in recent birth cohorts, although it does not
provide direct clues about specific factors. A further lim-
itation of this approach is that assessments of this nature
can only be made for relatively highly penetrant gene
mutations (that is, where the penetrance is sufficiently
high to cause clear familial aggregation).

Incorporation of environmental data into pedigree
or other family-based designs (for example, studies that
use sib-pairs or case–parent designs) allows direct esti-
mates of specific gene–environment interactions. In
some cases, fewer matched sets might be required for
these designs than for case–control studies using unre-
lated controls13. Collection of adequate numbers of sib-
pairs, however, might take more effort than the use of
unrelated controls and, for late-onset diseases, the avail-
ability of living parents might limit case–parent
accrual.

Association studies in unrelated individuals. Epidemi-
ology has been remarkably successful at identifying the
main risk factors for many common diseases; use of
the best available study designs and data-collection
methods has been important in this success. The rela-
tive merits of population-based epidemiological stud-
ies are well established. However, the search for
gene–environment interactions imposes some further
constraints on the use of these designs (outlined in
TABLE 1). In retrospective case–control studies, data on
environmental and lifestyle factors, and samples for
DNA and biomarker studies, are obtained after diag-
nosis of disease in the cases. In prospective cohort
studies, environmental and lifestyle data are obtained
at baseline (the start of the study), and ideally at other
points before diagnosis. Samples for DNA and bio-
marker studies are also ideally obtained at baseline,
although in prospective studies that do not have
banked samples, DNA can be obtained after diagnosis
from living cohort members. It should also be noted
that, under certain assumptions, gene–environment
interactions can be estimated from case–case studies
without controls14.

VARIANCE

A statistic that quantifies 
the dispersion of data about the
mean. In quantitative genetics,
the phenotypic variance (Vp) 
is the observed variation of a
trait in a population. Vp can be
partitioned into components,
owing to genetic variance (Vg),
environmental variance (Ve)
and gene–environment
correlations and interactions.

PENETRANCE

The frequency with which
individuals that carry a given
gene variant will show the
manifestations associated with
that variant. If penetrance of a
disease allele is 100% then all
individuals carrying that allele
will express the associated
disorder.

POPULATION STRATIFICATION

The presence of multiple
subgroups with different allele
frequencies within a population.
The different underlying allele
frequencies in sampled
subgroups might be
independent of the disease
within each group, and they can
lead to erroneous conclusions of
linkage disequilibrium or disease
relevance.
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mixed by intercontinental migration17. However, again
this bias can be minimized by collecting information on
and controlling for ethnic background, or by using
genomic control methods.

The principal problem with prospective studies is
that adequate sample sizes of cases will only be
obtained for common conditions, such as hyperten-
sion, myocardial infarction and stroke, and common
cancers, in the population that is being followed. Rare
diseases, such as sarcomas, will not occur at sufficient
frequency to provide statistical power, so retrospective
studies are essentially the only option. A typical cohort
study might only accrue several hundred cases of a dis-
ease of moderate incidence (for example, Parkinson
disease) over many years, and because most cohort
studies enroll men and women in middle life, diseases
with relatively early onset (for example, multiple sclero-
sis) will be under-represented. In addition, some of the
special requirements for genomic analyses might only
be met in case–control studies. For certain diseases,
particularly cancers, expression-array analyses indicate
that cancer types that look histologically similar might
represent more than one disease process23. Obtaining
the fresh-frozen tissue or tumour blocks necessary to
subtype these outcomes might be difficult in prospec-
tive studies, but more feasible in cases that are studied
in a limited number of institutions.

Phenotypic assays, such as assays that measure the
activity of an enzyme or biochemical pathway by giving
a test dose of a compound and measuring metabolites
in blood, might be possible in a limited number of cases
and controls, but are unlikely to be feasible in large
prospective studies. Information on disease diagnosis
and subtype from non-genomic tests, such as histology

Association studies: prospective design. The problems
of selection and recall bias in case–control studies can
be minimized in prospective studies. Here, DNA sam-
ples and exposure information are obtained from par-
ticipants in a longitudinal cohort who are followed up,
usually for years or decades. If follow-up rates are high,
then a virtually complete set of cases can be assembled
and compared with a sample of individuals who did
not develop the disease. The use of this ‘nested’
case–control study minimizes selection bias because
the population that gave rise to the cases is defined.
Because information on exposures is collected before
diagnosis (in most cases, years to decades before),
recall bias is eliminated as knowledge of diagnosis can-
not influence the reporting of exposures. However,
particularly in the many cohort studies that only have
a baseline assessment and do not involve repeated
measurements during follow up, a single measure 
of an exposure might not be a good reflection of the
pattern of exposure over time.

A variant of the true nested case–control approach
might be useful in studies that include prospectively col-
lected environmental and lifestyle data, but that lack a
source of DNA for genetic analyses. In this design, an
attempt is made to obtain a DNA sample from cases
arising in the cohort, and from matched or unmatched
non-cases. Although the environmental data should be
secure from recall bias in this design, failure to obtain
DNA samples from a high proportion of cases and con-
trols can result in selection bias in the same manner as
in a conventional case–control study. Differential partic-
ipation by cases and controls according to ethnicity
could give rise to population stratification, particularly
in populations whose ancestors have been recently

Table 1 | Observational study designs for the analysis of gene–environment interactions

Characteristics Nested case–control 1* Nested case–control 2‡ Case–control§

Potential for Low if follow-up rate is high Moderate if DNA is not obtained Moderate to high
selection bias from almost all cases

Population Minimized by sampling from a Possible if DNA is not obtained from Risk potentially increases if source 
stratification defined cohort all cases and controls; sampling from a population for controls is hard to define; 

defined cohort should reduce the risk controlling for ethnicity should reduce the 
risk; genomic control methods might also
mitigate the risk

Survivor bias Nil Moderate potential if DNA is not obtained Moderate to high potential
from all cases and controls

Recall bias Nil Nil Moderate to high potential

Environmental Usually limited Usually limited Potentially higher than alternative designs 
exposure detail

Ability to use Yes No No
plasma phenotypes

Disease-phenotype Might be possible from medical Might be possible from medical Medical records and tissues might be 
subtyping records; tissues are often difficult records; tissues are often difficult easier to obtain; diagnostic procedures 

to obtain to obtain might be more uniform

Achievable sample sizes

Common diseases Adequate if the follow up is Adequate if the follow up is Depends mainly on the funds that are 
sufficiently long sufficiently long available

Rare diseases Inadequate unless data are pooled Inadequate unless data are pooled Might require enrollment at many centres
across many studies across many studies

*Prospective collection of both environmental and lifestyle data and DNA. ‡Prospective collection of environmental and lifestyle data, retrospective DNA collection.
§Retrospective collection of both environmental and lifestyle data and DNA.
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exposure can have a substantial impact on bias relating
to the interaction parameters26. It is possible that, as we
identify the main genetic influences on common dis-
eases, case–case methods might become more popular in
assessing the interaction of established causal genotypes
with environmental factors, particularly as these studies
can form the baseline cohort for finding prognostic
markers of disease outcomes.

Technical challenges
Sample size. Some of the distinctions between retro-
spective and prospective studies can seem like method-
ological niceties compared with the biggest problem in
the field — the need for large sample sizes. A long-
standing rule of thumb for calculating sample sizes has
been that the sample size required to detect a departure
from the expectation that the joint effect of two vari-
ables is multiplicative is at least four times the sample
size that is needed to evaluate the main effect of each of
the variables27. FIGURE 2 illustrates some estimates of the
sample sizes that are needed for alleles with different
frequencies, with optimistic assumptions about the fre-
quency of genotypes, exposure and interaction effects. If
information on exposures is misclassified, then the
power to detect interactions is attenuated, and even
larger sample sizes are required28,29. As many epidemio-
logical studies are underpowered for main effects, this
predicts that they will be seriously underpowered to
detect interactions. Therefore, a substantial problem for
the foreseeable future is the occurrence of false-negative
findings for interactions in individual studies, unless the
interactions are strong.

It has been pointed out that most cohort studies will
not accrue sufficient numbers of cases for rare diseases
and might have only marginal power for common dis-
eases30. Therefore, rigorously designed case–control
studies will remain the only option for assessing
gene–environment interactions for rare diseases, and
should be considered as a cost-effective approach for
common diseases. A potentially effective means of miti-
gating the lack of power in prospective studies is to pool
data across these studies. For example, the US National
Cancer Institute (NCI) Breast and Prostate Cancer and
Hormone-Related Gene Variants Cohort Consortium
is examining gene–environment interactions in over
6,000 cases of breast cancer and 8,000 cases of prostate
cancer, pooled across 10 prospective studies; over
800,000 people are being followed up and over 7 million
years of life  of follow up have already been accrued. A
further advantage of coordinated pooling of data is that
genotyping can be standardized to ensure inter-study
comparability of the genetic variants that are ascertained.
The emerging interest in assessing HAPLOTYPE-TAGGING SNPs

makes prior coordination particularly desirable, as it
might not be possible to pool data from studies that have
used different SNPs to capture haplotypes. Maximizing
the power of ongoing prospective studies in this man-
ner can mitigate the main weakness of prospective
studies (that is, the limited number of incident cases)
while capitalizing on the methodological strengths of
the prospective design.

or imaging, might also be hard to obtain in a uniform
manner in a prospective study, in which almost all cases
might be diagnosed at different institutions, as opposed
to a case–control study that operates in a limited
number of hospitals.

Association studies: case-only designs. It has been shown
that when a genotype is not correlated with an environ-
mental factor and a disease is rare (few ‘controls’ are
likely to have undiagnosed or incipient disease), then
departure from multiplicative interaction can be tested
by examining information from the cases only14,24. In
this case–case design, the prevalence of the exposure in
the genotype-positive cases would be expected to be the
same as the prevalence of the exposure in the geno-
type-negative cases. Statistically significant departures
from this expectation of equal prevalence indicate an
interaction between genotype and exposure.

The idea of dispensing with the need to identify
appropriate controls and enroll them is attractive.
However, we are usually interested in obtaining an esti-
mate of the main effect of genotype (particularly given
the explosion of potential candidate genotypes as our
knowledge of gene function and common gene variants
increases), and we are frequently interested in new, or as
yet unproven, environmental hypotheses. To estimate
these an appropriate control group is needed. In addi-
tion, for high-penetrance genes, the assumption that
the disease is rare among exposed individuals is vio-
lated, leading to a distortion of the interaction esti-
mates25. Furthermore, relatively modest violations of
the assumption of independence between genotype and

HAPLOTYPE-TAGGING SNP

One of a small subset of SNPs
that is needed to uniquely
identify a complete haplotype.
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Figure 2 | Number of cases needed to detect a range of multiplicative interactions,
according to allele prevalence. The model assumes the following: a dominant genetic model,
a dichotomous exposure prevalence of 10%, a relative risk for a genotype of 1.5, a relative risk for
exposure of 1.5 and a 1:1 case:control ratio. As the graph shows, thousands of cases and
controls are needed to detect interactions with relative risks of 1.5 and 2. Calculations were
carried out using Quanto Beta version 0.5 (REF. 13). 
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Box 3 | Examples of gene–environment interactions from epidemiological studies

A growing number of studies have reported that polymorphisms in drug-metabolism genes alter responses to therapy
(for a review see REF. 40). There are fewer examples of polymorphisms that are known to affect the response to drugs that
are being given for chemoprevention. It could be argued that these will be even more important to find, as the potential
for harm owing to toxicity is greater in healthy individuals who are being given a drug for prophylaxis rather than for
therapeutic purposes. Furthermore, without a parameter for measuring short-term therapeutic response (for example,
blood pressure for an antihypertensive drug) to allow dose titration or to indicate a switch from an ineffective drug,
inter-person differences in response to long-term preventive drugs cannot be clinically measured. A functional
genotypic variant at the UGT1A6 (UDP glycosyltransferase 1 family, polypeptide A6) locus modifies the protective
association of aspirin on colorectal polyp formation. In two studies (see panel a; data for the figure on the left are from
REF. 57 and on the right are from REF. 58), the protective association was essentially limited to the group with the ‘slow’
allele of UGT1A6, which takes longer to metabolize aspirin57,58. Further studies are needed to see whether this variant
also modifies the effects of aspirin on gastrointestinal bleeding, haemorrhagic stroke and prevention of heart attack.
The risk–benefit balance of prophylactic aspirin use could depend on aspirin-metabolism genotype.

The reproducible association of common polymorphic gene variants with risk of disease does not automatically
imply that there will be any benefit to assessing these variants in clinical or public-health practice. For example,
perhaps the most robust association of a common variant with a serious disease is the association of the
apolipoprotein E4 (APOE4) allele with risk of cognitive decline and Alzheimer disease. Expert panels that were asked
to assess whether it is worth screening for carriers of the APOE4 allele have, however, almost uniformly recommended
against this. Their argument is that, in the absence of an intervention that reduces risk in APOE4 carriers, screening
would constitute ‘prediction without promise’; it would expose people to the potential psychological and social risks of
learning they have a high risk of disease without offering them any means to reduce this risk59. However, recent studies
suggest that the risk of cognitive decline is particularly high in APOE4 carriers who have untreated hypertension 
(the APOE4+/HT+ group in panel b; the panel shows the interaction observed in two studies of the APOE4 allele and
untreated hypertension with cognitive function; TICS is a test of cognitive function; data on the right are from REF. 60

and data on the left are from REF. 61). Although it could be argued that treatment of high blood pressure is a uniform
recommendation that should not depend on any specific genotype, only a proportion of people with high blood
pressure are treated. Motivation for blood-pressure control might be higher among people who are at elevated risk for
dementia, and would therefore justify screening for an allele that does not otherwise meet the criteria for a useful
screening measure. CI, confidence interval; p, the probability that the observed interaction is due to chance.
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that the association of red meat intake with colorectal
neoplasia is stronger in carriers of the ‘rapid’ NAT2
(N-acetyltransferase 2) alleles, which have been shown
to be associated with a faster metabolism of various
substrates, including heterocyclic amines. As the hete-
rocyclic amines are metabolized by NAT2, and are
probably therefore the red-meat-specific substrate, this
indicates that heterocyclic amines are the causal car-
cinogens in red meat. In this manner, the finding of an
interaction between exposure to a complex mixture
and a specific variant of a metabolic gene ‘points the
finger’ at the substrates of the gene as the causal com-
ponents of the complex mixture. This might also lead
to the identification of unsuspected disease-causing
exposures37.

The related concept of ‘Mendelian randomization’
has been used to argue that a reproducible effect on
disease risk of a genotype that alters the level of an
intermediate biomarker indicates that the relation of
the biomarker to disease risk is unlikely to be com-
founded by other lifestyle variables, because in most
cases, these other lifestyle variables would not be
expected to correlate with genetic variation38,39.

Some applications
Assessing inference in complex mixtures. An enduring
problem in environmental epidemiology is deciding
which components of ‘complex mixtures’ — such as
air pollution, diet or cigarette smoke — cause disease.
This is difficult to study observationally as most com-
ponents of complex mixtures are highly correlated, so
that their effects cannot be statistically separated. If the
effect of the environmental factor differs according to
variation in one or more specific genes, then the func-
tion of the gene might help to isolate the causal compo-
nents in the complex mixture. For example, heterocyclic
amines formed by the high-temperature cooking of
proteins are carcinogenic in animal models, and are
sometimes found in grilled and pan-fried meats31. Red
meat intake has been consistently associated with risk
of colorectal cancer. However, the chemical compo-
nents of red meat that are responsible for this risk —
such as fatty acids, haem iron or protein — are unclear.
Exposure to heterocyclic amines is one hypothesis, but
obtaining information on the degree to which meats
are usually cooked is problematic in epidemiological
studies. Some studies32–35, but not all36, have found

Table 2 | Selected examples of gene–environment interactions observed in at least two studies

Gene symbol Variant(s) Environmental exposure Outcome and nature of interaction References

Genes for skin Variants for fair skin Sunlight or ultraviolet light B Risk of skin cancer is higher in people 62
pigmentation (for colour with fair skin colour that are exposed
example, MC1R) to higher amounts of sunlight 

CCR5 ∆-32 deletion HIV Carriers of the receptor deletion have 41
lower rates of HIV infection and disease 
progression

MTHFR Ala222Val Folic acid intake Homozygotes for the low activity Ala222Val 63
polymorphism variant are at different risk of colorectal 

cancer and adenomas if nutritional folate 
status is low

NAT2 Rapid versus slow Heterocyclic amines in cooked Red meat intake is more strongly associated 33
acetylator SNPs meat with colorectal cancer among rapid acetylators

F5 Leiden prothrombotic Hormone replacement Venous thromboembolism risk is increased in 64
variant factor V Leiden carriers who take exogenous 

steroid hormones

UGT1A6 Slow-metabolism Aspirin Increased benefit of prophylactic aspirin use 58
SNPs in carriers of the slow metabolism variants

APOE E4 allele Cholesterol intake Exaggerated changes in serum cholesterol 65
in response to dietary cholesterol changes in 
APOE4 carriers

ADH1C γ-2 alleles Alcohol intake Inverse association between ethanol intake 66
and myocardial infarction; risk is stronger in 
carriers of slow-oxidizing γ-2 alleles

PPARG2 Pro12Ala Dietary fat intake Stronger relation between dietary fat intake 67
and obesity in carriers of the Pro12Ala allele

HLA-DPB1 Glu69 Occupational beryllium Exposed workers who are carriers of the 68
Glu69 allele are more likely to develop chronic 
beryllium lung disease

TPMT Ala154Thr and Thiopurine drugs Homozygotes for the low-activity alleles of 69
Tyr240Cys TPMT are likely to experience severe

toxicity when exposed to thiopurine drugs

ADRB2 Arg16Gly Asthma drugs Arg16Gly homozygotes have a greater 70
response in the airway to albuterol

ADH1C, alcohol dehydrogenase 1C (class I), γ-polypeptide; ADRB2, adrenergic, β-2-, receptor, surface; CCR5, chemokine (C–C motif) receptor 5; APOE, apolipoprotein E;
F5, coagulation factor V; HIV, human immunodeficiency virus; HLA-DPB1, major histocompatibility complex, class II, DP β-1; MC1R, melanocortin receptor 1; 
MTHFR, 5,10-methylenetetrahydrofolate reductase (NADPH); NAT2, N-acetyltransferase 2; PPARG2, peroxisome proliferative activated receptor-γ; TPMT, thiopurine 
S-methyltransferase; UGT1A6, UDP glycosyltransferase 1 family, polypeptide A6.
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the sole determinants of the corresponding infectious
diseases. There is increasing evidence that some inter-
population and inter-individual differences in the attack
rate and prognosis of specific infectious organisms are
due to inherited genetic variants. Perhaps the best recent
example is the role of a 32-bp deletion in the HIV core-
ceptor chemokine (C–C motif) receptor 5 (CCR5) gene
in blocking HIV infection in the homozygous state and
slowing disease progression in heterozygotes41. The
recognition of this gene–environment interaction con-
firmed the crucial importance of the CCR5 receptor in
humans that are exposed to HIV. In addition, the exis-
tence of healthy individuals who carried the homozy-
gous deletion that abrogates CCR5 function implied
that drugs that block CCR5 would not cause side effects
related to immune deficiency. A new class of chemokine
receptor antagonist drugs designed to mimic the inher-
ited deletions in these receptors is being studied for
activity in slowing HIV disease progression42. Therefore,
understanding the biological interaction of an inherited
polymorphism with an infectious organism can suggest
new therapeutic strategies.

How will we get the interactions right?
The need for coordination. Despite much information on
both genetic and environmental disease-risk factors, there
are relatively few examples of robust, replicated
gene–environment interactions in the epidemiological
literature (some examples are given in TABLE 2). The main
reason is that many individual studies have been designed
to examine the main effects of individual factors and do
not have adequate power to examine interactions.

Even then, to convincingly show the main effect of a
single factor might require a meta-analysis of many
studies, and it is uncommon for this level of detail to be
available for interactions. As replication of results will 
be even more important for interpreting interactions —
the large number of comparisons that will be required
will increase the inherent potential for false positives —
it will be necessary to obtain data that will allow pooling
of results across many studies. These data are unlikely to
be routinely available through the published literature,
as only a small subset of interaction analyses, if any, are
usually included in a published article. There are two
approaches to mitigate this problem: to facilitate web-
based presentation of unpublished results in supple-
mentary tables43, and to pre-plan analyses across many
studies so that the data are analysed and displayed in as
uniform a format as possible. The latter approach is a
prospective variant of the ‘meta-analysis of individual
participants’ data’ approach that has been reviewed in
the context of genetic epidemiology studies, with the
extra advantage that pre-planned analyses allow more
consistent treatment of LINKAGE DISEQUILIBRIUM (LD) and
haplotype definition44. This necessity for coordination
and other future needs are presented in BOX 4.

The study of gene–environment interactions has at
least one advantage over that of conventional two-way
environmental interactions because it should be possi-
ble to measure a defined functional genetic polymor-
phism almost without error. However, when several

Pharmacogenetics of chemoprevention (‘personalized
prevention’). The field of pharmacogenetics is a special
case of gene–environment interaction in which the
environmental exposure (a drug) is usually well mea-
sured, or even randomly assigned (in the context of a
randomized clinical trial). This area has been extensively
reviewed40, and has the potential to identify individuals
who are at risk for adverse drug reactions or treatment
failure; these individuals can then either avoid exposure
to the drug or have their dose modified. It has been
argued that, with the exception of life-threatening ill-
nesses or avoidance of severe toxic reactions, the ability
to predict drug response in therapeutic situations might
not have compelling advantages over the standard algo-
rithms that titrate drug type and dose to the clinical
response.

However, in chemoprevention applications, in which
drugs are given to large numbers or whole populations
of healthy people to prevent a future disease, even a few
adverse reactions could tip the risk–benefit balance away
from benefit. Similarly, if there is a group in which the
benefit is not substantial (for example, wild-type
homozygotes at the UGT1A6 (UDP glycosyltransferase 1
family, polypeptide A6) gene obtain a lesser reduction of
colorectal adenoma risk from taking aspirin), then the
intervention risk–benefit might not favour these people
(BOX 3A). Therefore, tailoring drug dose to genetic profile
might be necessary to maximize the risk–benefit ratio in
chemoprevention. Even for interventions that would
routinely be recommended across the board (for exam-
ple, the treatment of hypertension), there might be
some benefit in identifying people in whom this treat-
ment might confer further benefits (for example,
among carriers of the apolipoprotein E4 (APOE4) allele;
see BOX 3 figure part b).

Infectious diseases. Among the better-understood
disease-causing components of the environment are
infectious-disease agents, which we often assume to be

LINKAGE DISEQUILIBRIUM

(LD). A measure of whether
alleles at two loci co-exist in a
population in a non-random
fashion. Alleles that are in LD are
found together on the same
haplotype more often than
would be expected by chance.

Box 4 | Future needs for the study of gene–environment interactions

• Increase the power of analyses for common diseases by studying larger cohorts over a
longer time.

• Add DNA collection and informed consent to ongoing prospective studies that do not
have biobanks, particularly studies among minority groups that are under-represented
in current studies.

• Start new prospective studies to replace the current generation of studies.

• Coordinate continuing and future studies to ensure maximum compatibility of the
genetic and environmental information obtained.

• Encourage mechanisms for presenting unpublished and unpublishable results that are
an inevitable result of the large amounts of data on interactions made available from
these large, long-term studies.

• Ensure that well-designed case–control studies of less common diseases collect DNA
samples and obtain appropriate informed consent.

• Refine and validate methods for whole-genome amplification, and associated informed
consent, to ensure the maximum benefit from current and future studies.

• Develop new statistical approaches to integrate epidemiological data with information
on biological processes that are obtained from applying systems-biology approaches.
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New technologies. The ability to carry out large-scale SNP
analysis and to pool data across studies has been ham-
pered by concerns about ‘running out of DNA’. Few stud-
ies, and none of the large studies, have the resources to
establish cell lines from cohort participants. However,
recent results from new whole-genome amplification
techniques indicate that nanogram amounts of DNA can
be amplified to microgram amounts, without altering the
genotypes obtained before and after amplification49–51.
This technique has the potential to revolutionize our abil-
ity to ask questions about gene–environment interactions
across many studies. However, it will be necessary to
establish mechanisms for collaboration across studies
that operate within the boundaries of the original
informed consent given by study participants, and to
keep the environmental and lifestyle data confidential.

New statistical methods will be needed to extract
meaning from large data sets and to incorporate knowl-
edge from other branches of science. SYSTEMS BIOLOGY

approaches to integrating ‘omics’ information from
many sources is predicted to lead to new insights about
cellular and whole-organism function52. This informa-
tion will have to be integrated into the interpretation of
studies of genes and the environment. Incorporating
pharmacokinetic knowledge of specific biochemical
pathways has been proposed as the first step in this
direction for carrying out epidemiological studies of
gene variants in these pathways53. Predicting the proba-
bility that a SNP alters function on the basis of phyloge-
netic or biochemical data, or from predicted effects on
protein structure, might help to determine which SNPs
to genotype, as well as the interpretation of subsequent
results54. Reporting of false-positive probability by
incorporating the prior probability of an interaction
might also be helpful for reducing false positives in the
literature55. As we move from a field that is accustomed
to hypothesis-testing to a more neutral data-mining
approach, large changes in the philosophies and meth-
ods of statistical analysis that are applied to epidemio-
logical data will be required to cope with these issues of
scale and disparate data sources.

Future prospects
A common model for future preventive health care
proposes that, initially, physicians will test their
patients for hundreds or thousands of genetic vari-
ants, and that ultimately we will all have our entire
genome sequence on a card or chip. Advice on disease
prevention will be based on this information, imply-
ing that the relevant gene–environment interactions
will have been proposed, replicated and validated, so
that this advice is evidence-based. We face the
prospect that affordable individual genome sequenc-
ing will be the easy part; developing a credible data-
base on replicable gene–environment interactions will
be the challenge.

In addition, the concept of ‘personalized prevention’
might also seem to conflict with the view, articulated by
Geoffrey Rose56, and others, that population-wide inter-
ventions are usually more effective in reducing the inci-
dence of common diseases than interventions that target

polymorphisms in a gene contribute to altered function,
measuring a subset will result in misclassification and so
will increase the sample size that is required to detect
interactions45. Furthermore, if we do not know the func-
tional gene variants — for example, if we are trying to
detect genetic association through LD — it is likely that
there will be substantial misclassification of the genetic
variable, leading to dilution of the relative risk for the
interaction.

With a plethora of imminent association studies
owing to the rapid expansion in genotyping capacity,
different researchers will probably genotype different
sites in the same gene; this will lead to difficulties in
assessing replication of genetic main effects and of
gene–environment interactions. With the increasing use
of haplotype-tagging or LD-tagging SNPs to explore
genetic associations in candidate genes and regions, there
is even more potential for incompatible information.
Some degree of coordination of the main studies in each
disease area would at least reduce the potential for
incompatibility of information, and could hasten 
the confirmation of replication of both genetic effects
and gene–environment interactions. The NCI Breast and
Prostate Cancer and Hormone-Related Cohort Consor-
tium, for example, is a planned assessment of the same
genetic variants in 53 candidate genes across 10 studies
that collectively contribute more than 6,000 cases of
breast cancer and 8,000 cases of prostate cancer.
Consortia such as this have the potential to provide
much more uniform data and analyses than are available
through post-hoc or literature analyses.

The need for new studies. Although a substantial num-
ber of people around the world have already given
DNA samples as part of long-term prospective studies,
many high-quality continuing prospective studies do
not have a source of DNA from most, or any, partici-
pants. A highly cost-effective way of increasing the
number of studies that can contribute to future
gene–environment interaction analyses would be to
collect samples for future prospective analyses in those
already established studies in which it can be demon-
strated that this can be done efficiently. The development
of relatively simple methods for obtaining buccal-cell
DNA through a mouthwash method has greatly exp-
anded the potential for obtaining DNA in these stud-
ies46,47, although a blood sample is usually preferred
because of the potential to measure exposures using
plasma or serum biomarkers.

Collecting specimens in ongoing studies offers the
opportunity of capitalizing on many years of follow up
and environmental data collection and phenotyping.
New prospective studies that are being planned, such as
the UK BioBank and the US National Institutes of
Health AGES study48, will also be needed to replace the
current generation of studies. However, feasibility and
informed-consent issues will be important challenges to
these large centralized studies. For diseases that will be
simply too rare for study through prospective mecha-
nisms, population-based case–control studies that
involve many research centres will need to be carried out.

SYSTEMS BIOLOGY

The study of the complex
interactions that occur at all
levels of biological information
— from whole-genome
sequence interactions to
developmental and biochemical
networks — and their functional
relationship to the phenotypes
of organisms.
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and susceptibility screening, but the uptake of these tests
should be highly dependent on the development of
proven interventions to take advantage of this knowl-
edge. However, the scope of new knowledge that is likely
to be uncovered by incorporating information on
genetic variation among individuals into epidemiologi-
cal studies of disease risk is likely to be vast. An attempt
to distinguish between more likely and less likely inter-
actions on the basis of knowledge of biological mecha-
nisms, before an interaction is observed, but whether the
interventions are lifestyle changes or drugs, modification
of inherited susceptibility by altering environmental
exposures is likely to become an accepted part of future
public-health and clinical practice.

high-risk individuals.We could imagine that the idea that
inherited susceptibility as a chief determinant of disease
risk could increase latent feelings of genetic determin-
ism and undermine support for ‘broad-brush’ and ‘one-
size-fits-all’ preventive recommendations that are the
cornerstone of many public-health campaigns. Past
experiences, such as screening programmes for sickle-
cell anaemia, warn of the complexity of extending
genetic testing beyond the counselling-intensive, high-
penetrance disorders. The financial costs, and potential
psychological consequences, of genotyping individuals
to make preventive recommendations are still uncertain
and need to be established. It seems inevitable that some
DNA-based tests will become part of adult risk-factor
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