Matching and edge-connectivity in graphs with given maximum degree

Michael A. Henning^{1,*} and Anders Yeo²

¹Department of Mathematics and Applied Mathematics University of Johannesburg Auckland Park, 2006 South Africa

²Department of Mathematics and Computer Science University of Southern Denmark Campusvej 55, 5230 Odense M, Denmark

Abstract

In this talk, we determine tight lower bound on the matching number of a graph with given maximum degree and edge-connectivity in terms of its order and size. For a graph G of order n, size m, matching number $\alpha'(G)$, edge-connectivity $\lambda(G) \geq \lambda \geq 1$ and maximum degree $k \geq \lambda$ we determine best possible constants $a_{k,\lambda}$, $b_{k,\lambda}$ and $c_{k,\lambda}$ (depending only on k and λ) such that $\alpha'(G) \geq a_{k,\lambda} \cdot n + b_{k,\lambda} \cdot m - c_{k,\lambda}$. Further if k and λ have different parities, we determine best possible constants $d_{k,\lambda}$, $e_{k,\lambda}$ and $f_{k,\lambda}$ (depending only on k and λ) such that $\alpha'(G) \geq d_{k,\lambda} \cdot m - e_{k,\lambda} \cdot n - f_{k,\lambda}$. We also show that $\alpha'(G) \geq n - \frac{1}{\lambda}m$ unless $\alpha'(G) = \frac{1}{2}(n-1)$ in which case $\alpha'(G) \geq n - \frac{1}{\lambda}m - \frac{1}{2}$. We prove that the above bounds are tight for essentially all densities of graphs.

References

- P. E. Haxell and A. D. Scott, On lower bounds for the matching number of subcubic graphs. J. Graph Theory 85(2) (2017), 336–348.
- [2] M. A. Henning and A. Yeo, Tight lower bounds on the matching number in a graph with given maximum degree. J. Graph Theory 89(2) (2018), 115–149.
- [3] M. A. Henning and A. Yeo, Matching and edge-connectivity in graphs with given maximum degree, manuscript.
- [4] Suil O and D. B. West, Matching and edge-connectivity in regular graphs. European J. Comb. 32 (2011), 324–329.

^{*}speaker