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Abstract 

 

The most important challenge facing many electricity markets is dealing with the increasing 

penetration of wind power and other intermittent generation.  Several simulation studies have 

pointed to the advantages of trading closer to the time of delivery when large amounts of 

intermittent power are installed in an electricity system.  Using two years of hourly data from 

Denmark and a simple linear probability model as well as a non-parametric technique, I show 

that an unexpected relationship exists between shortfalls and surpluses of wind power 

generation and the probability of trade on the Nordic hour-ahead market, Elbas.  Shortfalls 

increase the probability of trade but surpluses are actually shown to decrease the probability 

of trade.  This result is explained by Danish wind power policies that unintentionally 

discourages trading on short term markets and in turn likely results in unnecessarily high 

balancing costs.   
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1. Introduction 

 

Many deregulated electricity markets, including the common Nordic market, have 

traditionally relied heavily on a day-ahead market mechanism where trade is organized 

between 12 and 36 hours ahead of actual delivery.  The installation of large amounts of 

intermittent power sources such as wind power poses serious problems for this type of market 

mechanism.    

 

The reason is of course that wind power can only be forecast approximately. However this 

forecast becomes better the closer one gets to the time of delivery (Holttinen et al. 2006).  

Large amounts of wind power are therefore widely expected to lead to a heavier reliance on 

markets that trade closer to the time of delivery, like the Nordic hour-ahead market called 

Elbas (Nord Pool Spot, 2012).  

 

A growing literature has developed around the issue of dealing with intermittency in 

deregulated power markets.  Particularly relevant to this article is Holttinen (2005) who, using 

a simulation model, estimates that producers could reduce their balancing costs by 30% by 

trading on an hour-ahead market like Elbas as opposed to a day-ahead market.   Holttinen et 

al. (2006) uses two commercial wind power forecasting tools and data from a Finnish wind 

power farm to calculate a balancing cost of between .6 and .8 EUR/MWh if power is bid in 

the market between 12 and 36 hours ahead of delivery. Yet to my knowledge, no empirical 

studies exist on the effects of intermittent energy and forecast error on the use of markets that 

trade closer to real time.   

 

Previous empirical studies investigating the effects of wind power on balancing costs have 

used total amount of wind power as a proxy for the effects of forecast error (Morthorst (2003), 

Forbes and Zampelli (2007)).  However I will show that the use of total amount of wind 

power can introduce a potentially severe bias in the estimation since it does not take into 

account the asymmetric effects of positive versus negative forecast errors.  In this paper, I use 

data on day-ahead forecasted as well as settled wind power in western Denmark in order to 

create measures of positive and negative forecast errors.   

 

Figure 1 shows the ex-ante expected relationship between the forecast error of wind power 

and the probability of trade on the Elbas market.  Negative forecast errors - where actual wind 



power produced is less than that estimated a day ahead – can be expected to lead to a higher 

probability of trade on the Elbas market.  As wind power producers realize that they will not 

be able to generate as much electricity as they had expected, they have a strong incentive to 

go on the Elbas market in order to make up for the shortfall.  By doing so, they reduce the 

costs they incur in the balancing market.   

 

The same logic should apply for positive forecast errors - where more wind power is delivered 

than forecast.  Wind power producers have an incentive to go on the Elbas market to sell the 

excess electricity in order to avoid incurring balancing costs. 

 

 

 

 

 

Yet an empirical estimate of the relationship gives a more nuanced picture, as figure 2 shows.    

A shortfall of wind power production has the expected result of increasing the probability of 

trade on the Elbas market.  This result provides strong support to the idea that trading closer 

to real time can reduce the balancing costs associated with having large amounts of wind 

power and other intermittent generation.   However, a surplus of wind power has the 

unexpected effect of reducing the probability of trade on the Elbas market.   

 

 

Figure 1: Ex-ante expected relationship between wind forecast 

error and probability of trade on the Elbas market.   



 

 

 

 

The most likely reason for this unexpected relationship is that subsidies and regulation 

intended to encourage investment in wind power have led to a perverse incentive for wind 

power producers to avoid the Elbas market when they produce surplus wind power.  

 

I use a linear probability models to estimate both the effect of wind forecast errors on the 

probability of market trading.  The models are specified to allow for a quadratic relationship 

between forecast errors and probability of market trade.  They also allow for a non-linearity at 

zero – that is, the slopes are allowed to differ between positive and negative forecast errors.    

 

It might be questionable whether such a simple linear model sufficiently captures the 

relationship between forecast errors and probability of trade.  To give an idea of the 

appropriateness of the linear model, I also use a simple non-parametric estimation of the 

effect of forecast errors on the probability of market trade.  This provides a visualization of 

the expected probability of trade given the forecast error.   From this, the simple quadratic 

specification is shown to have a surprisingly good fit.   

 

To give the results a causal interpretation I rely on the assumptions that the wind forecast 

error variables are exogenous and independent.  Though such assumptions can often be 

strong, I argue that in this case they are justifiable.  I also discuss potential violations of these 

assumptions and test for their relevance.   

  

Figure 2: Estimated relationship between wind forecast error and 

probability of trade on the Elbas market   



 

2.  Market, Data and Methodology 

 

The Nordic market is a good testing ground for the effects of intermittency and forecast error 

on short-term market trading.  The Nordic market is one of the oldest market-based electricity 

systems, dating back to the Norwegian electricity market reform of 1991, and is generally 

seen as being well functioning and efficient.  For a thorough history and overview see Rud 

(2009).  The Nordic market also has several market mechanisms: a day-ahead market – the so 

called “Spot” market, a continuous hour-ahead market called Elbas, and balancing and 

regulating markets operated at a national level.   

 

Denmark, which became fully integrated in the Nordic market in 2003 has a relatively long 

history of feeding large amounts of wind power into its grid.  In 2011 wind power made up 

approximately 27% of all electricity production in the country (Energistyrelsen, 2012).  About 

75% of this wind power is produced in the western Denmark price area, consisting of Jutland 

and Fyn.   

 

The hour-ahead Elbas market began operation in Sweden and Finland in 1999.  Eastern 

Denmark joined in 2004 and western Denmark joined in 2007.  Elbas has later been extended 

to Norway, Estonia and northern Germany.  In addition the market has been linked with the 

Dutch-Belgian intraday market. 

 

The timing of trade in Denmark is shown in figure 3.  Bids for the day-ahead “Spot”
1
 market, 

operated by the Nordic central exchange, Nord Pool, must be received by noon the day before 

delivery.  Producers and consumers submit bids for every hour of the following day and from 

these bids Nord Pool establishes virtual demand and supply curves.  Prices for each hour are 

determined by the intersection of these demand and supply curves.  In Denmark two price 

areas exist – Denmark East and Denmark West.  Prices in these areas diverge from the Nordic 

wide system price if congestion occurs on the transmission net.   

                                                           
1
 To avoid confusion, I will from now on refer to this market as the “day-ahead” market, though the official 

name is the Nord Pool Spot Market 



 

 

 

In Denmark, Elbas is opened for trade at 15:00 the day before delivery and continues up to an 

hour before delivery.  In the figure, 12:00 in day t is shown as the time of delivery purely for 

illustrative purposes.  In practice trading on the Elbas market can happen between an hour to 

at most 32 hours ahead of delivery.  Unlike the day-ahead market, no single settled price 

exists for each hour since the Elbas market operates continually – buyers and sellers directly 

choose to accept bids placed on the market. 

 

Finally a balancing market exists in order to deal with any imbalances close to real time.  The 

Danish balancing market is operated locally by the Danish transmission system operator, 

Energinet, but is integrated with the Nordic wide system called NOIS.  Producers make bids a 

day ahead
2
 to provide either upward regulation – where they add power to the grid or 

downward regulation – where they reduce power to the grid.  Energinet then activates the bids 

in order of price.  The price for any given hour is established by the highest activated bid.  

The day-ahead spot price is regulated to be the minimum regulation-up price and the 

maximum regulation-down price.  For more details on the balancing market see Energinet 

2008) 

 

                                                           
2
 Producers can also adjust their bids up to 45 minutes before the time of delivery 

Figure 3: The time series of the wind power forecast error is centered around zero and can be 

shown to be stationary.   



Unlike the day-ahead market, activity on the Elbas market is relatively light and not enough to 

support trading at every hour.  In the sample of data I use in the years 2010 and 2011, trading 

happened only in 46% percent of the hours.   Given the supposed advantages of trading closer 

to real-time, this can seem a bit puzzling.  Weber (2010) takes up this question by looking at 

issues of liquidity in intraday markets.  The author argues that without sufficient liquidity, a 

potential bidder may be able to influence the price in the market which in turn can act as a 

major transaction cost for the participant.  The author also notes that a continuous trading 

system – such as the Elbas market – does not have the same price transparency as day-ahead 

markets.  In a similar vein, day-ahead markets are able to aggregate liquidity into hourly 

auctions rather than individual trades. 

 

On the other hand, Energinet explains the relative lightness of trade on Elbas compared to the 

day-ahead market as being due to the higher transaction costs involved.  Trading on the Elbas 

market requires activity and market surveillance over 24 hours.  Given how close the prices 

generally are in the day-ahead, Elbas, and balancing markets, it generally makes more sense 

to bid into the day-ahead market and let the transmission system operator deal with 

imbalances by way of the balancing market.  At the same time, market actors highly value 

being able to use the Elbas market to correct for mistakes or unexpected events (Rosted 

2012). 

 

I use hourly data on both wind forecast error and trading on the Elbas market in the years 

2010 and 2011 – a total of 17,520 observations.  The data on estimated and settled wind 

power as well as on trading and prices on the Elbas market is publicly available on the 

website of Nord Pool Spot (www.nordpoolspot.com) and the Danish transmission system 

operator, Energinet (www.energinet.dk).  A cleaned dataset as well as the R code for the full 

analysis is available on my website at: 

https://sites.google.com/site/johannesmauritzen/home/publications 

 

I only use data as far back as the beginning of 2010 because Nord Pool only started publishing 

data on both realized and estimated wind power production in Denmark in late 2009.  

Previously only realized wind power production was published.  It would have been 

interesting to investigate the effect that wind power forecast errors have on turnover as well.  

Unfortunately, turnover data for the Elbas market is not published by Energinet or Nord Pool.   

 

http://www.energinet.dk/


The data on estimated wind power production is from Energinet’s forecasting model that they 

run and publish the day before delivery.  The five large power companies that are responsible 

for trading their own wind power as well as that of smaller producers have their own 

forecasting models that they use to bid into the day-ahead market.  However, neither their bids 

nor the results from their models are publicly available.  Yet the estimate from Energinet will 

still likely serve as a good unbiased estimator of day-ahead expected wind power.  Energinet 

could easily detect a persistent bias between its own estimates of wind power production and 

that bid into the day-ahead market.  They could then either investigate any irregularities or 

adjust their model.    

 

The time series of wind power forecast errors is plotted in figure 4.  The series is centered 

around zero – or to be more precise a mean of zero cannot be rejected.  The series can also be 

shown to be stationary by way of an Augmented Dicker-Fuller (ADF) test.  Stationarity – in a 

very simplified sense the idea that the mean and variance of a series is constant - is important 

in establishing the validity of the coefficients estimated below.  For further details see, for 

example, Hamilton (1994).   

  

  

 

The empirical probability model I use is simple, but flexible enough to allow for two likely 

non-linearities.  The first is an inflection point at zero for the effect of the forecast error.  The 

relationship between a positive error and a negative error are unlikely to be completely linear, 

and I allow for different slopes in the positive and negative direction.  Since the left-hand side 

Figure 4: The time series of the wind power forecast error is 

centered around zero and can be shown to be stationary.   



is a probability, we would also expect the effects of the forecast error to curtail at a certain 

point.  At the extreme, it would of course be nonsensical to have a probability of above 100%. 

Therefore I also include quadratic terms for both the effects of wind error in the positive and 

negative error.   

 

The simple model can be written as in equation 1.   

 

     
                    

     (         ) 
              

    (         ) 
        ( ) 

 

Here      
      represents the probability of trade on the hour-ahead Elbas market for each 

hour, t.            represents either the positive (+) or negative (-) forecast error.  These are 

of course mutually exclusive.     represents the error term and   and the     represent 

parameters to be estimated.   

 

Because I estimate both the positive and negative forecast error in a single equation I am 

implicitly assuming constant variance.  However, estimating the effects of positive and 

negative forecast errors separately, and thus allowing for differing variances, does not 

significantly change the results.   

 

Because of the properties of the wind forecast error variable that I use, I claim that I can give 

my results a causal interpretation.  My identifying assumption is that the wind forecast error is 

both exogenous to trading activity on the Elbas market and that the forecast error is 

independent of other factors that could affect the probability of trading activity.   

 

In many contexts exogeneity and independence of a variable can be strong assumptions.  

However in this case, they likely hold.  The wind forecast error is the difference between day-

ahead expected wind power production and actual realized wind power production.  In the 

short term, with a relatively stable amount of installed wind power capacity, both of these are 

fundamentally a function of the wind speed and location.  The speed and location of wind is 

of course not something that can react to market conditions or prices.  More so the marginal 

production costs of wind power producers are very low– they have little reason to hold back 

power even at low prices.   

 



A few possible exceptions to the exogeneity of wind power are worth mentioning. Though 

actual wind production may be exogenous, wind power producers may have an incentive to 

not bid their expected value of wind power on the market (see Rud (2009)).  Systematic under 

or overbidding, though, is likely easily identifiable by Nord Pool or the transmission system 

operator.   

 

The Nordic market is characterized by dominant producers at the national level, and in 

Denmark, Dong Energy has an approximately 50% share of the power market.  Presumably 

such a company with a range of generation technology might have the incentive to hold back 

wind power in order to generally increase prices.  Again, this would likely be relatively easy 

for the transmission system operator to detect.  More so, given the relatively generous feed-in 

tariffs that wind power receives in Denmark, it is difficult to think of a scenario where 

producers would willingly withhold wind power production.   

 

The assumption that wind power forecast errors are independent can be argued in a similar 

vein as its exogeneity.  Even if a factor was correlated to actual wind power production – such 

as other weather conditions like rain or cold that could affect conditions on the market – it is 

unlikely that they would be correlated with the forecast error.  The forecast error can, in other 

words, be considered a truly random event that can be seen as an exogenous “shock” on the 

operation of electricity markets.   

 

A few plausible exceptions exist for the independence assumption.  The first is total amount 

of wind power, which is shown to be correlated with wind forecast errors.  If the amount of 

wind power has an effect on Elbas trading on top of the effect of increased forecast errors, 

then the exclusion of this variable could lead to biased estimation.  Another potential factor 

that could both affect trading on the Elbas market as well as be correlated with wind forecast 

errors could be consumption forecast errors.  For example, unexpectedly windy weather might 

lead to both a surplus of wind power as well as more consumption than was expected as more 

people stay inside and use appliances.  Luckily, data exists for both total amount of wind 

power and consumption forecast errors, and the inclusion of these factors cannot be shown to 

affect the estimation. 

 

It is also worth briefly discussing the meaning of the error term,  , in these models, and in 

turn the idea of a probability of trading on the Elbas market.  The idea is not to imply that 



trading on the Elbas market is an inherently random process, like rolling a dice.  Instead the 

error term contains a host of both observed and unobserved factors that affect whether trade 

happens or not.  But as discussed these factors are argued to be independent of the forecast 

error and therefore their omission as explicit factors in the model will not bias the results.   

 

Factors such as expectations of prices on the balancing market and day-ahead market as well 

as congestion on the transmission grid all likely play a role in determining the amount of trade 

on Elbas and the interaction of these variables is an interesting and important research 

question.  Though some discussion of these factors is provided, a thorough investigation of 

the interaction of such factors likely requires a structural econometric modeling and/or 

simulation type modeling, and is well outside the narrow scope of this article.    

 

To give an idea of the conditional relationship between variables as well as to check the 

appropriateness of my linear model, I use a simple non-parametric technique.  Instead of 

estimating probabilities by way of a parametric model, I take the means of ordered sub-

samples – or “bins” - in effect creating a series of conditional expectation estimates of the 

dependent variable at different values of the independent variable.  I then use a kernel 

smoother to draw a line - or non-parametric regression - through the estimated conditional 

expectation estimates. My intent is not to provide a rigorous non-parametric regression, but 

instead to simply help motivate the linear model and provide a visualization of the 

relationship between variables.  Therefor I leave out much of the technicalities of non-

parametric regressions such as bandwidth calibration, curve-wise standard error estimation, 

etc.   

 

Logit or probit models are popular choices when using binary dependent variable data.  The 

estimates from these models can be somewhat more efficient compared to those from linear 

probability models if the implied structural assumptions imposed are true.  Yet those 

functional and distributional assumptions can often be difficult to justify in practice. I choose 

to use the simpler linear probability model, which when estimated by ordinary least squares 

(OLS) has a straightforward interpretation and is always the minimum mean squared error 

linear estimate of the underlying conditional expectations function (Angrist and Pischke 

2009).   

 

 



 

3.  Results 

 

Table 1 shows the results from the regressions of the probability of trade on the Elbas market.  

The first column of the table shows the results from where I naively try to estimate the effect 

of total amount of wind power generated in western Denmark on the probability of trade on 

the Elbas market.  The coefficient on total amount of wind power, labeled TotalWind, cannot 

be shown to be significantly different from zero.  This might suggest that wind power has no 

effect on the probability of trade in the Elbas market.  In turn one might come to the 

conclusion that trading closer to real-time does not have a significant effect on reducing 

balancing costs.  However this regression suffers from a severe bias. 

 

Table 1. Probability of Elbas Trade and Wind Power Forecast Errors 

 1 2 3 4 

Intercept 0.466 0.475 0.469 0.468 

 
(0.000) (0.000) (0.000) (0.000) 

TotalWind 0.000 n/a 0.002 0.002 

 
(0.816) 

 
(0.370) (0.405) 

error_neg n/a 0.066 0.064 0.065 

  
(0.000) (0.000) (0.000) 

error_neg_sq n/a -0.004 -0.004 -0.004 

  
(0.000) (0.000) (0.000) 

error_plus n/a -0.052 -0.056 -0.055 

  
(0.000) (0.000) (0.000) 

error_plus_sq n/a 0.006 0.006 0.006 

  
(0.003) (0.003) (0.003) 

cons.error.plus n/a n/a n/a -0.001 

    
(0.899) 

cons.error.neg n/a n/a n/a 0.001 

    
(0.701) 

     
17436 observations 
P-values are in parenthesis, based on Newey-West standard errors 
Right hand variables are in 100 mWh units 
 

 

In principle, large amounts of wind power can be handled by a day-ahead market mechanism 

with little problem – if it is accurately forecasted.  In practice, the amount of wind power and 

the size of the forecast errors are correlated.  Figure 5 shows how wind power is positively 

correlated with both negative and positive forecast errors.  Thus the use of total amount of 

wind power as a proxy for forecast error implicitly acts as if the sign of the forecast error is 



not important.  In turn, using total amount of wind power can only serve as a reliable proxy 

for the effects of forecast error if the effect on the variable of interest is symmetric.  This is 

certainly not the case for activity on the Danish Elbas market, as will be shown.   

 

 

 

The second column of the table shows the results from the regression with negative and 

positive forecast errors and their square terms.  The fitted model can then by written as in 

equation 2. 

 

     
                         

        (         ) 
               

       (         ) 
         (2) 

 

The smooth black line in figure 6 shows the fitted model.  As discussed earlier, the results 

indicate that a negative forecast error leads to a higher probability of trade on the Elbas 

market but a positive forecast error has the unexpected effect of reducing the trade on the 

market.  The magnitudes of these effects are quite similar, which explains why a regression on 

total amount of wind power led to an estimated coefficient of zero.  The effects of negative 

and positive forecast error, both positively correlated with total amount of wind power, cancel 

each other out in this regression.   

Figure 5: The relationship between wind power forecast 

errors and total amount of wind power.     



 

 

 

 

Clearly, we cannot extrapolate from the estimated quadratic function too far in either 

direction.  Taken literally the function implies that beyond a certain negative forecast error the 

probability of trading on the Elbas market would actually decrease and vice versa for positive 

forecast errors.  With the above estimated coefficients this would occur just below -600 mWh 

and just above 700 mWh.  Still, the vast majority of forecast errors in the sample happened 

between -600 mWh and 600 mWh as the histogram in figure 7 shows.  In this respect, the 

quadratic form seems adequate.  

 

 

 

 

 

Figure 7: The vast majority of forecast errors are between -600 

and 600 mWh.  The quadratic model is therefor likely adequate 

as it provides sensible probability estimates within this range.   

Figure 6: The kernel smoothed nonparametric estimation 

of the effects of forecast error indicates that the quadratic 

model has a surprisingly good fit to the data.   



 

 

The estimated coefficients of the simple quadratic model are all highly statistically significant. 

Yet some doubt is warranted on how well-fitting this simple model is in describing the 

relationship between wind forecast errors and trading on the Elbas market.  It is not hard to 

imagine more complex or more non-linear relationships.  For example, a threshold level of 

forecast error that leads to a jump in Elbas market trading.   

 

Because of the simplicity of the quadratic specification, the appropriateness of the model is 

easily verified by using the simple non-parametric technique described in the previous 

section.  Referring back to figure 6, the small circles are the conditional expectation estimates 

of the probability of Elbas trade from each forecast error bin.  For example, one point might 

represent the average of all the observations where the wind power forecast error was between 

-100 and -105 mWh.    The red line is the kernel smoothing function through these 

points.  These are both overlaid on the fitted parametric model estimated above, which is the 

black line.  By inspection, the fit of the quadratic model appears surprisingly good. 

 

The dispersion of the conditional expectation estimates visible towards the ends of the 

function come from the fact that there are a much higher number of observations per bin 

closer to zero.  The points towards the ends are then estimated with higher variance.   

 

The results do not carry over to eastern Denmark (see table 2 in the appendix) where no 

significant relationship between forecast error and probability of trade in the eastern Denmark 

price area can be estimated.  Western Denmark contains approximately 75% of Denmark’s 

wind power capacity as of 2012, thus wind power makes up a significantly larger part of total 

generation capacity in the western part of Denmark compared to the eastern Denmark. 

 

I argue that the reason I can use such a simple model to estimate the effects of wind forecast 

errors on Elbas trade is that the forecast errors are unlikely to be correlated with any factors 

that in turn are also correlated with trade on the Elbas market.  The wind forecast errors can 

be seen as random exogenous shocks independent of other factors.  Two plausible exceptions 

to this may exist and could potentially introduce a missing variable bias.  The first, as has 

been discussed, is total amount of wind power, which is positively correlated with the forecast 

errors.  In the third column in the table I include both total amount of wind power as well as 



the forecast errors.  The inclusion of total amount of wind power has no substantial effect on 

the estimated coefficients on the forecast error terms.  Furthermore, the estimated coefficient 

on wind power itself is not significantly different from zero.  It is worth repeating: wind 

power generation in itself can be handled on a day-ahead market, it is the associated forecast 

errors that can lead to higher balancing costs and the desirability of trading closer to real time.   

 

The other potential exception to the independence of the forecast error variables is if they are 

correlated with consumption forecast errors, which in turn may have an effect on trading in 

the Elbas market.  In the fourth column I therefor include a measure of positive and negative 

consumption errors for Denmark.  These are created using Energinet’s day-ahead forecast of 

consumption as well as settled consumption.  The regression results indicate that these 

variables do not affect the estimated coefficients on the wind forecast error variables.  

Furthermore, the estimated coefficients on the consumption error variables are not 

significantly different from zero.   

 

4. Explaining the asymmetry: internal displacement, the balancing market 

and subsidy policy 

 

To a certain extent, an asymmetry in the effects that positive and negative wind power 

forecasting errors has on trading in the Elbas market was to be expected.  As the decision tree 

in figure 7 shows, whether or not to go on the Elbas market is potentially complex, involving 

factors such as a power company’s portfolio of power plants and prices on the day-ahead and 

balancing markets.   

 

One source of potential asymmetry between the effects of positive and negative forecast 

errors is the ability of large power companies to displace their own production.  Much of the 

wind power in Denmark is owned by large power companies with a diversified portfolio of 

generation.  More so small wind power producers generally do not trade on the markets 

directly, but instead contract out trading to one of the large “balancing responsible” power 

companies.  These power companies then have an ability to internally balance any surpluses 

or deficits of wind power.  However it may be easier to internally deal with a surplus – by 

turning off a gas-powered unit for example, than dealing with an unexpected deficit of power.   

      



 

 

 

 

 

 

 

 

Another source of potential asymmetry is the relationship between the Elbas market and the 

balancing market.  The price on the balancing market – which the producers do not know 

ahead of time –determines the penalty that the producers pay for their imbalance.  The 

balancing market is organized as a two-price model.  If a producer’s imbalance is in the same 

direction as the total imbalance, then they must pay the balancing market price – either the up-

regulation price or the down-regulation price.  However, if the producer’s imbalance goes in 

the opposite direction of the system imbalance, in effect helping to resolve the system 

imbalance, they will receive the day-ahead price.  Thus the penalty that a producer expects to 

pay for an imbalance is affected by both their expectations of what the price will be on the 

balancing market as well as the probability that that their imbalance is in the same or opposite 

Figure 8: The decision of whether to go on the Elbas market can 

be complex, involving both prices in the day-ahead and 

balancing market, as well as power companies’ ability to deal 

with imbalances internally.    



direction as the system imbalance.  Complicating the picture is the fact that prices on the 

balancing market are themselves dependent on forecast errors, as figure 8 shows.   

 

 

 

A full analysis of the dynamics of the Elbas market with the day-ahead and balancing markets 

would require a structural econometric or simulation approach and is well outside the scope of 

this paper.  However, the discussion should make clear that though these factors may lead to 

an asymmetry in the magnitude of the effect of positive verses negative forecast errors, it does 

not explain why positive forecast errors are associated with a lower probability of trade on the 

Elbas market.  

 

But a simpler explanation exists:  the Electricity Supply Act of 1999 covers all turbines built 

before 2003, when new rules came into place.  The act obligates the transmission system 

operator to purchase all wind power production for a period of 10 years from the date the 

turbine was connected to the grid (Energinet 2007).  Importantly, the producers do not need to 

pay for the balancing costs associated with their production.  Even after the 10 year period has 

expired and wind power producers must trade on market terms, the transmission system 

operator is still obligated to deal with balancing costs associated with production.   

 

The reason behind the asymmetry between the effects of positive and negative forecast errors 

on Elbas trade now becomes clear.  With a shortfall of wind power, a producer is still 

responsible for the balancing costs – the purchase obligation sensibly does not cover expected 

wind power.   Thus a producer with a shortfall of wind power has an incentive to go on the 

Figure 9:  Regulation prices also are affected by wind forecast 

errors. 



Elbas market in order to avoid the penalty on the balancing market.  However with a surplus 

of wind energy, producers have a guaranteed buyer and face no balancing costs.  They have 

no incentive to go on the Elbas market and the overall liquidity on the Elbas market decreases.   

 

Discussion and Conclusion 

 

Both the arguments and methodology of this article are relatively simple, yet three important 

results emerge.  The first is methodological.  Studies of the effects of intermittency on power 

markets that have used total amount of wind power as a proxy for forecast errors are likely 

introducing a bias in their estimation.  The reason is because total amount of wind power is 

positively correlated with both negative and positive forecast errors.  However the effect that 

negative and positive forecast errors have on market operation is likely to be asymmetric.  

The results from the Elbas market are likely an extreme example of this, but the effects that 

surpluses and deficits will have on balancing markets and other areas of market operation are 

also likely asymmetric. 

 

The second result is to show that a deficit of wind power compared to what was forecasted a 

day ahead will increase the probability of trade on the Elbas market.  This provides strong 

empirical evidence that the option of trading closer to the time of delivery can mitigate 

balancing costs associated with increased amounts of wind power.  

 

The final result is to show how a poorly designed subsidy scheme for wind power has 

inadvertently lead to unnecessarily high balancing costs by eliminating the incentive to use 

the short-term market when surplus wind power is produced.  While this result may seem to 

be limited to the particular design of the Nordic electricity market and Danish subsidy 

schemes, the implications are broader.  Such purchase obligation incentives for renewable 

energy are a widely used investment incentive
3
.  A country with a deregulated electricity 

market wishing to increase investment in wind power will likely be better off simply 

increasing the direct production subsidy, while keeping in place the market incentives for 

producers to deal with the balancing costs associated with forecasting errors.  

 

                                                           
3
 Purchase obligations can also refer to laws requiring that a certain percentage of a country or state’s 

electricity production comes from renewable energy.  To be clear, here I am referring only to the obligation of a 
transmission system operator to purchase all electricity produced by existing wind power.   
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Appendix 

 

   
 W. Denmark E. Denmark 

error_plus -.052 -.056 .012 

 (.012) (.012) (.015) 

error_plus ^2 .0058 .0060 -.0009 

 (.0019) (.0020) (.0009) 

error_neg .066 .063 -.040 

 (.010) (.010) (.045) 

error_neg ^2 -.0042 -.0041 .012 

 (.0009) (.0008) (.023) 

Tot. Wind n/a .0016 n/a 

  (.0018)  

Intercept .47 .47 .50 

 (.013) (.017) (.012) 

 

 

 

 

 

Table 2.  Effect of Wind Forecast Error on Probability of Elbas.  

Significant results can only be estimated for the western Danish 

price area.  Forecast Error is in 100 mw units.   

Newey-West standard errors in parenthesis.  17236 Observations 


