

Integrating humanistic research in the development of training robots

Anders Stengaard Sørensen

University of Southern Denmark

Invited talk at: The full day workshop on bodily human robot interaction IEEE Human Robot Interaction Conference, Daegu Korea, 2019

March 11. 2019

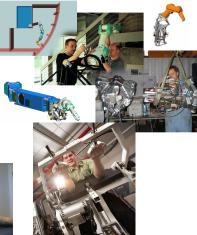
Created in LATEX

About me

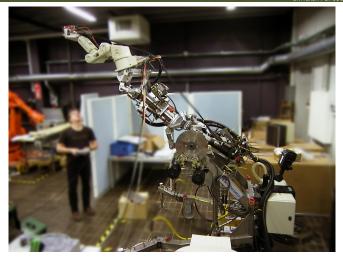
Anders Stengaard Sørensen

Ph.D. Associate Professor Head of Training Technology Lab

Expert in computer control


- Sensors
- Electronics
- Physics
- Math
- Embedded systems
- Robots

• Taking an interest in


- Training
- Rehabilitation
- Bodily HRI

$$\int e^{x} dx = e^{x}$$
$$e^{j\pi} + 1 = 0$$

Talent: Experimental robot controllers SDU 🏠

Ambition: μm precision — μs timing Genric controller platform

Training Robots

SDU Training Robots 2010 — today

- Rehab training
- Elite training
- Preventive & recreational training

Tech	Health	
Robotics	Training physiology	
Platform	Process	

Training Robots

SDU Training Robots 2010 — today

- Rehab training
- Elite training
- Preventive & recreational training

Tech	Health	Hum
Robotics	Training physiology	Social practices
Platform	Process	Meaning

Why humanities? What meaning? SDU .

Example: Maximum load eccentric training

Film:

There is more to physical human interaction than physics!

Unknown author

First steps

• Establishing the simplest possible framework

- Coordinated sequential interaction
- Examples of actions
- Examples of interaction sequences

• Establishing common concepts and terminology

- Discussions and debate
- Experiments and analysis
- Teaching engineering students EMCA & Embodied interaction
- Workshops

• Describing, analyzing and learning from experiments

- Impedance states
- Impedance transitions
- Actions that are recognized (Cataphoric)
- Actions that are not
- Tools for integrated video-, state- and sensor- analysis

Conclusions, suggestions and improvements

• <u>Repeat!</u>

Equipment

RoboTrainer-Light

- Rope pulling "robot"
- "Impedance machine" $F = \psi \left(t, x, \frac{dx}{dt}, \frac{d^2x}{dt^2}, \ldots \right)$
- High bandwidth dynamics FPGA control system (Much faster than humans)

Remember Gitte's talk? Embodied actions... Simplest possible robot equivalent?

- Production
- Perception
- Typification

Action and interaction

Remember Gitte's talk? Embodied actions... Simplest possible robot equivalent? State machine (DFA)

- Production
- Perception
- Typification

- Set of states
- Set of input 'symbols'
- Transition function

It is far from a perfect equivalent!

Action and interaction

Remember Gitte's talk? Embodied actions... Simplest possible robot equivalent? State machine (DFA)

- Production
- Perception
- Typification

- Set of states
- Set of input 'symbols'
- Transition function

It is far from a perfect equivalent!

Detailed:

Humans are oriented towards details when categorizing behavior as actions, and typifying these.

Action and interaction

Remember Gitte's talk? Fmbodied actions...

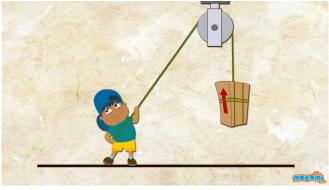
- Production
- Perception
- Typification

Simplest possible robot equivalent? State machine (DFA)

- Set of states
- Set of input 'symbols'
- Transition function

It is far from a perfect equivalent!

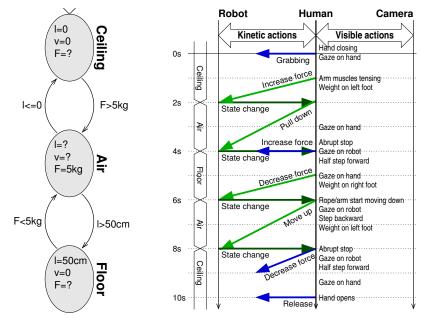
Detailed:


Humans are oriented towards details when categorizing behavior as actions, and typifying these.

Coarse:

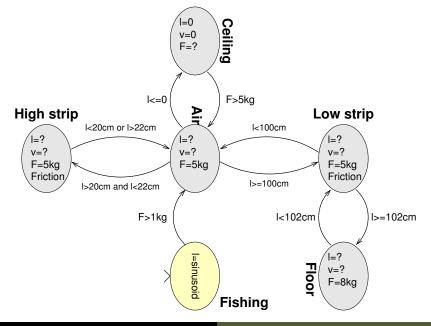
The robot's ability to differentiate human behavior onto a set of 'input sybols' is extremely limitied compared to the humans.

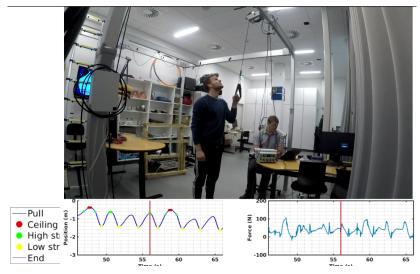
EMCA study of a pulley



Unknown artist

- 2 end-stops: Ceiling and Floor.
- Constant load in the air between them.


Example state machine


Adding details

Pratcital tests

Film:

Much can be learned about Bodily Human Robot Interaction from this.

Very obvious was:

- Subjects engage differently, highly influenced by intial visual cues.
- Subjects react differently to the slow range change.
- All subjects reacted identically to the floor. 60% force increase convinced everyone to change direction.

Always yield to the hands-on imperative!

• Patiently developing and testing the system together teach us the essentials of each others areas.

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.
- ② The RoBody method is mutual empowerment

Always yield to the hands-on imperative!

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.

Ine Robody method is mutual empowerment

• The partnership changes the way we think, by infusing our core fields into each other.

Always yield to the hands-on imperative!

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.

2 The RoBody method is mutual empowerment

- The partnership changes the way we think, by infusing our core fields into each other.
- As engineers, we do not merely consult humanists and interpret their knowledge in terms of math and technology.

Always yield to the hands-on imperative!

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.

2 The RoBody method is mutual empowerment

- The partnership changes the way we think, by infusing our core fields into each other.
- As engineers, we do not merely consult humanists and interpret their knowledge in terms of math and technology.
- With RoBody, we empower humanists to transform their expertise into technology using the hands of the engineer.

Always yield to the hands-on imperative!

- Patiently developing and testing the system together teach us the essentials of each others areas.
- Humanists quickly learn the possibilities and restrictions of the technology, and enjoy projecting their knowledge onto this.
- Engineers eventually learn the limitations of math when working with human behavior, and change focus from controlling it to exploring and synchronizing with it.

2 The RoBody method is mutual empowerment

- The partnership changes the way we think, by infusing our core fields into each other.
- As engineers, we do not merely consult humanists and interpret their knowledge in terms of math and technology.
- With RoBody, we empower humanists to transform their expertise into technology using the hands of the engineer.
- And we empower the engineers to understand and analyze human behavior as it is, not as math models

Thank you

Anders Stengaard Sørensen Integrating HUM & TECH in training robots