

Augmented Gravity: Making bodily interaction natural

Anders Stengaard Sørensen

University of Southern Denmark

Invited talk at: The full day workshop on bodily human robot interaction IEEE Human Robot Interaction Conference, Daegu Korea, 2019

March 11. 2019

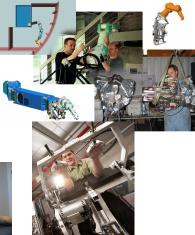
Created in LATEX

Anders Stengaard Sørensen Augmented Gravity

About me

Anders Stengaard Sørensen

Ph.D. Associate Professor Head of Training Technology Lab


Expert in computer control

- Sensors
- Robots
- Electronics
- Physics

Curious outsider in

- Training
- Rehabilitation
- HRI

Why do gravity need augmentation? SDU 5

Consider this scenario

Jesper Kiersgaard is Training his Biceps and Triceps (june 2011)

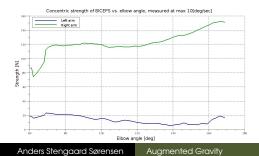
How much "weight" is he pulling here?

(Hint: I can pull 15-20kg)

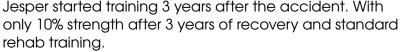
Gravity is 1...200% too strong!

How much weight is he pulling?

Gravity is 1...200% too strong!



How much weight is he pulling?


Answer: $\simeq 1 kg$

... and the robot is lifting the remaining 1kg of his arm

He is 90% paralyzed in left arm (motorcycle accident)

Robotrainer — procedure

Procedure:

- The robot "removes" gravity
- But provide resistance like friction
- It creates an illusion of the arm working
- That stimulates growth of neural pathways
- Jesper has been training $\simeq 3 \times 20$ minutes / week for 6 months.

Robotrainer — does it work?

Lets look at the data

Film: 3D-data Today, Jesper can use his arm — but shoulder is still lame

Anders Stengaard Sørensen Augmented Gravity

Robotrainer — next step

Exoskeletons - exotic

Simpler alternatives

Film: Universal Robotrainer

We want to develop feasible technology for ordinary people

- Cost
- Ease of use
- Acceptance

Generic robot training

A center with 10 Universal RoboTrainers

And $\simeq 2$ therapists Can perform 100-200 specialized sessions per day

Generic robot training

A center with 10 Universal RoboTrainers

And \simeq 2 therapists Can perform 100-200 specialized sessions per day But not at home — too expensive. Let's go simpler still.

Robotrainer-Light

An interactive crane assisting with the training

50% of the effect — for 1% of the price ... maybe

At 500EUR, it is feasible for home use, specialized for

- Stroke victims
- Accident victims
- Neurological diseases
- Muscle-skeletal impairments

film

High performance low-level controller SDU

- Implemented in FPGA
- Using TOS-NET framework
- Detailed control of motor switching
- Ultra fast DSP and control loop (800kHz)

- Optional link btw 15 robots
- USB connection to PC
- High level control on PC
- GUI on PC, Tactile UI on Robot

Gravity assistance — single limb

- 0...30 kg weight relief
- Full range of motion calibration
- Hysteresis control to counter spasticity
- Works with paralysis victims with 2...20% remaining strength

Film:


Full body

Film:

- Refurbished commercial lift
- 0...200kg relief
- Straight Walking
- Sit to stand
- Stair walking

Integrated Robot Training

- Case: 45 year stroke victim
- Left side paralysis
- $\simeq 2$ years of good rehab training
- Prognosis: Wheelchair for life
- Prognosis: Useless arm
- Training 3×90 min weekly
- For 16 weeks

Film:

Too little gravity?

Anders Stengaard Sørensen

Augmented Gravity

No gravity?

- Astronaut training
- Simulated microgravity
- Pulleys and long ropes
- Robots simulate 0...0.5*g*
- Normal strengths exercises

Film:

This research inspired the Tarzan device recently commisioned by ESA

Augmented Gravity appear to be effective and versatile

- Accident victim
- Stroke victim
- Astronauts
- Elite athletes

We will continue by:

- Creating a Clinic: RoboTrainer-Academy
- Collaborate with hospitals in taking in on more patients
- Collaborate with Danish Olympic Teams to train athletes
- Expand collaboration with Danish Aerospace Company
- Securing international partners for commercialisation