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Abstract 

 
Population aging has emerged as a major demographic trend around the globe.   Aging 

is a process that is determined by millions of genetic factors. The identification of the  set 

of genetic factors that has a significant role in the aging process is a highly challenging 

task. This paper studies the association between genetic factors and the aging rate.  We 

first calculate the so-called polygenic risk score (PRS) by following a well-designed algorithm 

for the selection of the significant single nucleotide polymorphisms (SNPs) and subsequently 

considering a weighted sum of those significant SNPs. Next, we construct a new mortality 

model, which allows the aging rate to depend on the PRS. Our statistical analysis is based 

on a rich dataset from the Health and Retirement  Study. 

 

Keywords: Aging rate; Genome-wide association study; Mortality rate; Polygenic risk 
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1 Introduction 

 
The world’s population is growing as well as aging. Population aging has emerged as a major 

demographic trend around the globe. According to predictions made by demographers, the fraction 

of elderly dependents will reach rather high levels. Today, three countries (Germany, Italy, and 

Japan) are characterized as super-aged (i.e., more than 21% of the national population is aged 65 

or over). It is expected that Bulgaria, Finland, Greece, and Portugal will become super-aged in 

the next five years. In the following decade, other European countries, such as Austria, France, 

Sweden, United Kingdom, as well as non-European countries such as Canada and South Korea, 

are expected to become super-aged, too. 

Population aging is a phenomenon with profound societal implications. Numerous studies have 

investigated the impact of human aging on global health care expenditure, economic growth of 

countries, and individual retirement decisions. Thus, detailed analysis of the underlying aging 

process is becoming an increasingly crucial task, as it can help us acquire a better understanding 

of the process, and more importantly, enable us to provide more accurate predictions of future 

mortality. 

Aging is a process that is determined by millions of genetic factors. The identification of 

the set of genetic factors that has a significant role in the aging process is a highly challenging 

task. The main difficulty lies in the fact that individual genetic factors may have no effect,  but 

a combination of these factors could be a strong predictor of the mortality outcome. Given the 

ultra-high dimension of the problem due to the presence of millions of genetic factors, the finding 

of appropriate genetic combinations with an effect on the aging process is a very complicated 

problem. 

The main objective of this paper is to build a new model that can help researchers realize 

what the role of genetic factors in the aging process is. To achieve this objective, we contribute to 

the existing literature by constructing a mortality model that associates several genetic influences 

with the mortality outcome. First, we combine a large number of single nucleotide polymorphisms 

(SNPs) into a single numerical score. The choice of those significant (for mortality) SNPs is 

made by following a well-designed selection process. In particular, by means of a genome-wide 
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association study (GWAS) we estimate the effect of each SNP on the mortality outcome. Next, we 

rank the SNPs using the p−value of the corresponding estimated coefficient as a ranking criterion. 

Finally, we estimate the so-called polygenic risk score (PRS) by considering the weighted sum of 

the significant SNPs. The current study is the first to make use of a huge number (∼ 30000) of 

SNPs for the construction of the PRS when mortality is the outcome under consideration. Our new 

statistical methodology is applied to mortality and genetic data from the Health and Retirement 

Study. 

Second, we introduce a new mortality model that allows the aging rate to be a function of the 

PRS and analyze the effect of the latter on the former. To the best of our knowledge, this paper 

is the first one in the field of mortality studies that models the aging rate as individual-specific. 

The implication of the explicit relationship between aging rate and the PRS is that each individual 

has his/ her own aging rate, which depends on the PRS- that is, on individual genetic influences. 

We apply our new model to compare the aging process in two different cohorts: 1911-1920 and 

1921-1930. 

The remainder of the paper is organized as follows. Section 2 provides a brief discussion of 

the PRS and its use in different studies in the past. Section 3 focuses on the methodology for 

estimation of the PRS from our data. Section 4 focuses on nonparametric statistical inference and 

gives some preliminary results on the relationship between mortality outcomes and the PRS. In 

section 5, we provide a short review of existing mortality models and discuss the implied aging rate 

for each of these models. Section 6 introduces a new model for the estimation of the aging rate as 

a function of the PRS. Section 7 presents the empirical results obtained by using the new model. 

Section 8 concludes and discusses possible extensions of the current work and, more importantly, 

different methods for the estimation of the PRS. In the appendix, we have included some technical 

details of the paper. 

 
 

2 Polyegenic Risk Score 

 
In recent years, there has been a growing interest in studying how genetic factors can affect the 

likelihood of a certain phenotype outcome such as disease, death, or health-risky behaviour (e.g. 
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smoking and/or use of alcohol). It is well-known that it is possible for many of the factors to have 

no marginal effect on their own, but when they are combined they can provide a good prediction 

mechanism for the phenotype outcome under consideration. To capture such a (potential) depen- 

dence between a set of genetic factors and a phenotype outcome, researchers have developed the 

concept of PRS. In a nutshell, the PRS is obtained by combining several genetic factors into a sin- 

gle numeric score. To give a more formal definition, the PRS is equal to the sum of trait-associated 

alleles across many genetic loci, weighted by effect sizes as calculated from a GWAS. Dudbridge 

(2013) provides a nice introduction to the increasingly important concept of PRS. PRS analysis 

has been widely performed in numerous studies in order to identify the effect of genetic factors on 

health-risky behavior. Among many others, Vink et al. (2014) try to investigate whether there are 

overlapping genetic factors that can explain the well-established association between smoking and 

the use of alcohol and cannabis. Another example of such studies is Belsky et al. (2013), who build 

a PRS in order to identify a possible association between genetic factors and progression to heavy 

smoking, nicotine dependence, and diffculties with cessation of those two health-risky   outcomes. 

Furthermore, PRS analysis has been extensively applied to understand disease risk. In par- 

ticular, Aly et al. (2011) calculate a PRS related to prostate cancer and show that it can be a 

good tool for prediction of the disease. In fact, the authors claim that a proper prediction mecha- 

nism for prostate cancer can reduce the number of biopsies in the future. In a well-known study, 

Cross-Disorder Group of the Psychiatric Genomics Consortium and others (2013) identify genetic 

contributions to five different diseases: autism spectrum disorder, attention deficit-hyperactivity 

disorder, bipolar disorder, major depressive disorder, and schizophrenia. Stahl et al. (2012) carry 

out a PRS analysis and develop a new approach to infer which genetic factors play an important 

role in the onset of rheumatoid arthritis. Additionally, Derks et al. (2012) apply a PRS analysis 

to examine whether there is a genetic association between quantitative measures of psychosis and 

schizophrenia. 

The study of the association between PRS and mortality is a new topic. Yashin et al. (2012) dis- 

cuss how the PRS influences individual lifetime by applying several statistical procedures. Specif- 

ically, they first choose a set of significant SNPs by using six different methods: (i) normal linear 
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regression, (ii) Cox regression, (iii) logistic regression; (iv) the generalized estimation equation, 

(v) the mixed model and finally (vi) the gene frequency method. After identifying the set of sig- 

nificant SNPs for each applied method from an initial 550K set, they also obtain 27 SNPs from the 

intersection of those different six estimation methods. In the second step, for each of these 6 + 1 

methods (the seventh method uses the SNPs from the intersection of the six different methods), 

they calculate the PRS and estimate the effect of PRS on life span by employing linear regression. 

Trying also to determine the channel through which those SNPs affect the mortality outcome, they 

find out that almost half of the genes related to the 27 SNPs play a role in cancer development 

and one third of the 27 SNPs play a significant role in brain activities that are highly relevant to 

brain aging. 

In an attempt to (partially) explain exceptional longevity, Sebastiani et al. (2012) focus on 801 

centenarians. They conduct a PRS analysis and confirm that the genetic contribution is largest 

for the oldest ages. By means of Bayesian as well as frequentist statistical approaches, they first 

rank SNPs based on their degree of association with mortality outcomes. The association analysis 

makes use of almost 250000 SNPs. Next, they use a Bayesian classification model and divide 

their sample into a training sample and a test sample in order to choose the most significant (for 

the lifespan) SNPs. The strength of this approach is that it does not impose any restriction on 

the number of SNPs that play a signifiant role for the lifespan. The proposed method yields 281 

predictive SNPs- that is, those SNPs give a high posterior probability of exceptional longevity. 

Walter et al. (2012) begin with a set of 43 SNPs. They finally select five SNPs as predictors for 

mortality. However, they claim that the predictive gains due to the inclusion of those five SNPs 

is rather low as long as other socioeconomic characteristics are taken into account for mortality 

prediction. 

Ganna et al. (2013) have an initial set of 5488 SNPs from 1128 different studies. By following 

a multi-step procedure, they end up with a set of 707 SNPs and estimate the resulting PRS as the 

sum of the corresponding risk alleles. Next, they use a Cox proportional hazard model to make 

statistical inference regarding the association between (i) PRS and age at death and (ii) PRS and 

age at incidence of one the following nine major diseases: coronary heart disease, stroke, heart 
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failure, diabetes, dementia, as well as lung, breast, colon, and prostate cancers. Furthermore, in 

order to prove that their analysis is robust to any possible mispecificaton concerning the calculation 

of the PRS, they also develop 17 other PRSs by considering different number of SNPs for each 

different PRS. 

We have also carried out a little study to investigate whether there are common significant 

SNPs among the four aforementioned papers, namely: Yashin et al. (2012), Sebastiani et al. 

(2012), Walter et al. (2012), and Ganna et al. (2013). Our finding is that there is only one single 

common SNP between the second and the fourth papers. rs2075650 is the SNP that is present in 

both studies. 

Finally, Hamad and Rehkopf (2015) are the first to try to establish a causal relationship between 

telomere length and health status. Provided that these two variables are affected by unobserved 

factors, they use genetic factors as an instrument in order to identify the effect of telomere length 

on various health outcomes. Specifically, they estimate the PRS based on a set of significant SNPs 

and use that variable as an instrument for the telomere length. They also apply a Cox proportional 

hazard model to determine the relationship between the PRS and mortality outcomes. 

 
 

3 Our Polyegenic Risk Score 

 
Our analysis makes use of data from the Health and Retirement Study. That study has genotyped 

individuals in two different waves: 2006 and 2008. It has also collected phenotype information 

during the period 1992-2012. In our analysis, we end up with 9480 individuals of European ancestry 

for whom we have information about their (possibly censored) mortality outcome, demographic 

characteristics (e.g., gender and education) and genetic profile. The individual genetic profile in 

this study consists of almost 1.2 million SNPs. Note that for the estimation of the PRS we use the 

entire sample (i.e., 9480 individuals), whereas for the analysis of the mortality outcomes we focus 

only on two cohorts due to heavy censoring of the younger cohorts. Another reason for working 

with two cohorts is to compare the underlying aging processes. As will be shown later, those two 

cohorts are different in terms of the distribution of the PRS as well as the aging process. 

In contrast to previous studies, which determine a small set of significant SNPs and then 
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j 

i 

estimate the PRS, our estimation method for the PRS makes use of a large number of significant 

SNPs. We first conduct a GWAS that examines the association between each SNP and a given 

phenotype, which is mortality in the present study. This allows us to estimate the marginal effect 

of each SNP and obtain the respective weights. In summary, the GWAS involved running about 

1.2 million logistic regression models, each with the mortality indicator (i.e., whether death is 

observed) as the dependent variable , the SNP as the explanatory variable, and adjusting for 

covariates (sex, age, etc.). 

In mathematical notation, let Di be an indicator that is equal to 1 if death is observed for 

individual i and 0 otherwise, where i ∈ {1, 2, ..., 9480}. Also, let Ri denote the covariate set for 

individual i without including any of the individual SNPs in that set. SNPs are coded as 0,1,or 

2, depending upon the participant’s number of minor alleles for that SNP. Formally, to estimate 

the effect of an individual SNP j on the mortality outcome indicator Di, we consider the following 

logistic regression for each j ∈ J 
 

ln 
P(Di  = 1|Ri, SNPi ) = βj + γj SNP j j

 

1 − P(Di = 1|Ri, SNP j ) i   + δ Ri, (1) 

 

where J := {1, 2, ..., J } and the cardinality of J (i.e., J ) is the initial number of SNPs   under 

consideration. In particular, J = 1271442. 

Therefore, for each j we get the estimates β̂ j , γ̂ j , and δ̂ j . The main problem in this step is to 

determine the set of the most significant SNPs associated with death. The selection process begins 

by defining a p-value cut-off point. We choose the, rather conventional in the literature, value 

of 0.05. Based on the p−value of the estimated γ̂ j , we rank the SNPs in ascending order. The 

number of SNPs with p−value of the estimated coefficient γ̂ j smaller than 0.05 is close to 65000. 

After ”pruning”, meaning clumping SNPs based on their correlations and distance, the number 

of significant SNPs, S, is close to 40000, specifically S = 38219. In summary, empirical estimates 

of Linkage Disequilibrium are used in order to group the SNPs that have p−value smaller than 

0.05. To carry out the grouping procedure, a distance of 250 kilobases and an R2 threshold of 0.50 

are adopted. See Levine et al. (2014) for the selection procedure of significant SNPs in case the 

depressive symptoms is the outcome of interest. 
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i 

After having identified the set of singificant SNPs we proceed with the estimation of the PRS 

for each individual i. Specifically, we have for each i ∈ {1, 2, ..., 9480} 

 

 

S 

PRSi = 
, 

SNP j γ̂ j           = SNPi1γˆ1 + SNPi2γˆ2 + ... + SNPi γ̂ S . (2) 

j=1 

 

With a slight abuse of the notation, the subscript j in the above equation refers only to the 

significant SNPs. Note that, in contrast to existing studies with focus on the association between 

the PRS and the mortality outcome, we weight each SNP j with the estimated coefficient γ̂ j . The 

reason why we choose to adopt such a weighting scheme is that each SNP makes its own individual 

contribution to the mortality outcome. 

Figure 2 plots the local linear estimator of the density function of the variable PRS. 
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Figure 1: Local linear point estimator of the density function of the PRS. The estimator makes use 
of the Gaussian kernel, and the bandwidth is chosen according to the Silverman Rule-of-Thumb. 
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just right of the median (−0.19). Additionally, the distribution of the PRS is unimodal with the 

median to the right of the unique mode. 

Figure 2 illustrates the relationship between realized lifetime versus PRS. Moreover, it depicts 

the local linear estimator of the lifetime expectancy as a function of the PRS. Only uncensored 

observations have been used for the creation of the plot and the graph. Note that our plot uses 

only positive values of the PRS as negative values of the PRS are observed only for censored 

observations. 

 
 
 

 

0.2 0.4 0.6 0.8 1.0 1.2 1.4 

PRS 

 

Figure 2: Plot of realized lifetime versus PRS by using only the uncensored observations from 
the whole dataset. The solid line represents estimated lifetime expectancy; it is obtained by local 
linear regression, where the Gaussian kernel is employed. The bandwidth is chosen according to 
the Silverman Rule-of-Thumb. 
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4 Nonparametric Association between Polygenic Risk Score 

and Mortality Outcomes 

Recall that for the analysis of the relationship between the PRS and mortality outcomes, we 

consider for comparison purposes only two cohorts: 1911-1920 and 1921-1930. Table 1 gives 

information about basic statistical measures of the variable PRS for the cohorts 1911-1920 and 

1921-1930. 

 

Cohort (Size in parentheses) Mean Median Standard Deviation Min Max 

1911-1920. (500) 
1921-1930 (1944) 

0.28 
0.19 

0.76 
-0.39 

1.14 
0.99 

-1.74 
-1.84 

2.53 
2.85 

 

Table 1: Descriptive analysis of the PRS for the cohorts 1911-1920 and 1921-1930. 

 
The PRS take a range of values from −1.74 to 2.53 for the cohort 1911 − 1920 and −1.84 to 

2.85 for the cohort 1921-1930 The expected value of PRS is 0.28 for the first cohort and 0.19 for 

the second cohort. Additionally, the median PRS in our two cohorts is 1.14 and 0.99, respectively. 

Figure 3 depicts the nonparametric density of the PRS for the cohorts 1911-1920 and 1921-1930. 
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Figure 3: Local linear point estimator of the density function of the PRS for the cohorts 1911-1920 
(brown line) and 1921-1930 (green line). The Gaussian kernel is employed and the bandwidth is 
chosen according to the Silverman Rule-of-Thumb. 

 
 

Looking at the above figure, we notice two peaks for each probability density function- that is, 

the underlying densities are bimodal. However, the difference between the two densities is that the 

density of the first cohort is more symmetric in the sense that the values of the density evaluated 

for the two modes are almost the same. On the other hand, the PRS distribution of the second 

cohort has ”more” density concentrated to the right of 0, with the value of density evaluated at 

the first mode being larger than the value of the density evaluated for the second mode. 

Table 2 and Table 3 provide descriptive statistics for one of our main variables, that is, mortality 

outcome. In the cohort 1911-1920, about half of the mortality outcomes are censored, while in the 

cohort 1921-1930 the censoring is more pronounced given that about 3 in 4 mortality outcomes, 

75%, are censored. 

 

Case (Size in parentheses) Mean Median Standard Deviation Min Max 

Uncensored obs. (262) 
Censored obs. (238) 

92.56 
96.21 

92.29 
96 

2.23 
2.79 

86.58 
94 

99.17 
103 

 

Table 2: Descriptive analysis of mortality outcomes for individuals born between 1911 and 1920 
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Case (Size in parentheses) Mean Median Standard Deviation Min Max 

Uncensored obs. (499) 
Censored obs. (1445) 

84.42 
87.66 

84.50 
87 

3.13 
2.72 

75.58 
84 

91.58 
93 

 

Table 3: Descriptive analysis of mortality outcomes for individuals born between 1921 and 1930 
 
 

In order to reach a first understanding of the association between PRS and mortality outcomes, 

we nonparametrically estimate the survival function for two subpopulations of the cohorts 1911- 

1920 and 1921-1930. Specifically, the first subpopulation refers to all individuals with a PRS 

between 1 and 1.5, whereas the second subpopulation refers to all individuals with a PRS between 

1.5 and 2. Figure 3 (cohort 1911-1920) and Figure 4 (cohort 1921-1930) depict the Kaplan-Meier 

estimates of the survival curves for each of the two subpopulations. The red line is for the first 

subpopulation and the blue line is for the second subpopulation. 
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Figure 4: Plot of the Kaplan-Meier survival curves for two subpopulations of the cohort 1911-1920: 
individuals with PRS between 1 and 1.5 (red line), individuals with a PRS between 1.5 and 2 (blue 
line). 

 
 

P
ro

b
a

b
ili

ty
 

0
.0

 
0

.2
 

0
.4

 
0

.6
 

0
.8

 
1

.0
 



13  
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Figure 5: Plot of the Kaplan-Meier survival curves for two subpopulations of the cohort 1921-1930: 
individuals with PRS between 1 and 1.5 (red line), individuals with a PRS between 1.5 and 2 (blue 
line). 

 

Looking at the Figures 4 and 5, we can conclude that for any given age the probability of 

survival for the first subpopulation (small values of PRS) is larger than the probability of survival 

for the second subpopulation (large values of PRS). In other words, the higher the PRS the higher 

the likelihood of death at each age. Consequently, as can be expected from these two figures, 

the life expectancy will be a strictly decreasing function of the PRS. This is confirmed by Figure 

6, which contains two plots (PRS versus realized lifetime) and two estimated life expectancies as 

a function of the PRS. The life expectancies have been estimated by employing the local linear 

estimator. For the two plots as well as the nonparametric estimators, only uncensored observations 

have been used. 
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Cohort 1911−1920 Cohort 1921−1930 
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Figure 6: Plot of realized lifetime versus PRS for only the uncensored observations from two dif- 
ferent cohorts: 1911-1920 and 1921-1930. The solid lines represent estimated lifetime expectancy; 
they are obtained by local linear regression where the Gaussian kernel is employed. The bandwidth 
is chosen according to the Silverman  Rule-of-Thumb. 

 
In the next section, we introduce a new mortality model which tries to give an in-depth expla- 

nation of the expected lifetime differences due to different values of the PRS. 

 
 

5 Aging Rate 

 
The mortality rate is the focal point of model building in mortality analysis. In the sequel, we will 

use the generic symbol m to represent the individual mortality rate. In particular, let X be the 

stochastic variable that represents the age at death. The realization of that stochastic variable is 

denoted by x. The mortality rate, m(x), at age x is defined as follows 

 

m(x) :=  lim (dt)
−1 

P(x ≤ X < x + dx|X ≥ x). (3) 
dt→0 

 

In words, the quantity m(x) gives the instantaneous rate of death at age x given that the individual 

has survived until the age x−. 

One of the most fundamental concepts in mortality studies is the aging rate, which determines 
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the evolution of the mortality rate over the lifespan. By definition, the aging rate equals to the 

growth rate of the individual mortality rate. In other words, the aging rate equals the derivative 

of the logarithm of the mortality rate with respect to age. Denote by ar(x) the aging rate at age 

x. In mathematical notation we have: 

 
 

ar(x) := 
∂ ln m(x) 

 
 

∂x 

∂m(x) 

=    ∂x     , (4) 
m(x) 

 

where the symbol ∂ refers to the partial derivative. 

In the analysis of mortality data, the vast majority of researchers use one of the following three 

mortality models: (i) Cox regression, (ii) the Gompertz model, and (iii) the model developed by 

Vaupel et al. (1979). There are a couple of differences between these three models. For instance, the 

first one is semiparametric, as the baseline hazard is not parameterized. Moreover, the difference 

between the model introduced by Vaupel et al. (1979) and the other two is that the former includes 

an extra term, which accounts for individual unobserved variables that presumably affect the 

mortality rate. As we will explain below, in spite of these major differences the implication of 

the three models for the aging rate of any given cohort is the same: all individuals have identical 

aging rates. However, such an implication is not plausible provided that the existence of genetic 

influences will possibly result in different aging rates among individuals. Therefore, each individual, 

based on genetic influences, will have his/ her own pace of mortality increase. Below, we first give 

an overview of the three most popular mortality models employed by empiricists and we discuss 

why all of them yield an identical aging rate for all individuals of a given cohort. 

Let y be a vector of observed socioeconomic, demographic, or genetic characteristics that affect 

the mortality rate. The well-known Cox regression model has the following structure: 

 

mCox(x|y) = χ(x) exp(ky), (5) 

 

where the function χ(x) is positive and is left unspecified. Of course, ln mCox(x|y) = ln χ(x) + ky. 

Assuming that the function χ(y) is differentiable, the aging rate corresponding to this mortality 

model is equal to arCox(x) = ∂ ln mCox(x|y) = ∂ ln χ(x) . 
∂x ∂x 
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∂x 

 1 

0 

On the other hand, the popular Gompertz model assumes that the mortality rate exponentially 

increases with age. Particularly, for some positive parameters a and b 

 

mG(x|y) = a exp(bx) exp(ky). (6) 

 
In view of the definition of the aging rate, we have ln mG(x|y) = ln a + bx + ky. It then follows 

that arG(x|y) = ∂ ln a+bx+ky  = b. 

One major drawback of the two models above is the absence of unobserved (to the researcher) 

factors that possibly affect the mortality rate. In their seminal paper, Vaupel et al. (1979), intro- 

duce a new mortality model that accounts for those genetic/environmental influences. Specifially, 

let Z be a nonnegative random variable that captures those (unobserved) characteristics. The 

mortality rate can now be expressed as follows 

 

mV (x|y, Z) = a exp(bx) exp(ky)Z. (7) 

 

The variable Z is commonly referred to as frailty and accordingly the above hazard model is 

called the frailty model. A widely used assumption for the distribution of Z is that it is gamma 

distributed. Namely, the density fZ  of Z is equal  to 

 

  1 k−1 

fZ (z) = v 

kk Γ(k) 
exp(−kv), z > 0, k > 0, 

 

where the Γ is computed by Γ(k) = 
( ∞ 

ωk−1 exp(−ω)dω.  The fact that the scale parameter is 

equal to k is just a normalization. One consequence of modeling the distribution of Z as gamma is 

that the resulting unconditional (on Z) survival functional has a closed-form expression. Another 

rationale behind this assumption is that it generates an observed mortality rate (i.e., mortality rate 

not conditional on Z), which levels off at high ages. In subsection 7.3, we discuss a combination of 

this model and our model and show that after using genetic data in our analysis, we do not need to 

account for unobserved heterogeneity in the new model that we study in this article. Regarding the 

aging rate found by using the mortality model (7), we have ln mV (x|y, Z) = ln a + bx + ky + ln Z. 
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∂x The latter gives arV (x|y) =  ∂ ln a+bx+ky+ln Z
 = b. 

In conclusion, although there are some fundamental differences between models (5), (6), and 

(7), the resulting aging rate has the same property for all these models. Specifically, all individuals 

who belong to a certain cohort are subject to the same aging process. In fact, the aging rate is 

time-varying for model (5), whereas it has a fixed value (i.e., b) for the mortality models (6) and 

(7). However, the time dependence of the first aging rate is the same for all individuals of a given 

cohort, and thus the aging rate is identical across all individuals. 

 
 

6 Aging Rate as Function of the Polygenic Risk Score 

 
Given the presence of genetic characteristics in the underlying mortality process, we firmly believe 

that the aging rate will depend on (some of) those characteristics. Our aspiration is to develop 

a new statistical model that will explicitly link the genetic characteristics to the aging rate. Our 

major contribution with respect to the study of the association between the PRS and the aging 

rate is to construct a model that will yield an individual-specific aging rate, which is not true for 

the mortality models (5), (6) and (7). 

To achieve this, we specify the aging rate as a function of the PRS. We write down the mortality 

rate m(x|PRS) as follows 

 

m(x|PRS) = a exp(b exp(c ∗ PRS)x), (8) 

 

where the parameter c captures the effect of the PRS on the aging rate. In case c = 0 (i.e., the 

polygenic score has no effect on the aging rate), m(x) = a exp (bx), which is the standard Gompertz 

model. Provided that we control for genetic factors (through the PRS), we temporarily choose, in 

contrast to Vaupel et al. (1979), not to add an unobserved frailty term. Later, we will also study 

a specification with unobserved factors and as we will discuss our estimation findings suggest that 

such unobserved heterogeneity does not exist once we adjust for genetic characteristics through 

the PRS. 
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∗ 

∂x 

P RS2 

The aging rate for the new model (8) can be calculated as follows 
 

a(x|PRS) = ∂ ln m(x|P RS) 
=

 
∂x 

∂(ln(a) + b exp(c ∗ P RS)x) 
= b exp(c PRS). (9)

 
∂x 

 

Looking at the above equation, we understand that the aging rate is individual-specific since it 

depends on the PRS through the term exp(c ∗ PRS). Clearly, for c > 0 (c < 0) the PRS has a 

positive (negative) effect on the underlying aging rate. In view of graphs 4, 5, and 6, we expect 

that the value of c will be strictly positive. For c > 0, individuals age faster and consequently live 

shorter on average. This is explained by the fact that the instantaneous probability of death at 

each age, given survival up to that age increases with the PRS. Consequently, individuals will have 

a lower life expectancy. In the appendix, we provide closed form expressions for the survival as 

well as density functions. We also conduct a Monte Carlo experiment to show that the estimation 

algorithm works. 

An alternative model for assessing the effect of the PRS on mortality could be 
 

m(x|PRS) = a exp(b ∗ PRS ∗ x). 

 
 

In this model, the aging rate is equal to ∂ ln m(x|P RS)
 

∂(ln(a)+(c∗P RS)x) 

∂x =  c ∗ PRS.  Note that 

we do not explicitly include parameter c, as it is absorbed the parameter b. This model is a bit 

problematic as it implies that the ratio of the aging rates of two individuals with polygenic scores 

PRS1 and PRS2, respectively, is equal to P RS1 - that is, the ratio does not depend on c. Finally, 

another limitation of the above model is that it does not include the Gomperrtz model as a special 

case. For any nonzero value of the product bc, the aging rate at the individual level will depend on 

the PRS. In the next section, we focus exclusively on model (8) and use that model to investigate 

the aging process for two different cohorts. 

= 
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7 Empirical Results 

 
In this section, we present the estimates for the parameters of model (8) for each of the two cohorts: 

1911-1920 and 1921-1930. 

 

7.1 Cohort 1911-1920 

 
Using the 500 observations from the cohort 1911-1920, we get the following estimates (with stan- 

dard errors in parenthesis) 

â = 1.147e − 17 (1.864e − 17), 

 

b̂ = 0.377 (0.0171), 
 

ĉ = 0.0535 (0.0033) 
 

Straightforward calculations give that the t− values for the above estimates are: 0.6157, 

22.0181, 16.6082. In view of those numbers, we can conclude that we have strong statistical evi- 

dence that parameter c is significantly different from zero. Equivalently, the PRS has a significant 

effect on the aging rate. Figures 7 and 8 plot point estimates of the life expectancy as a function 

of the PRS and point estimates of the aging rate as a function of the PRS, respectively. 
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Figure 7: The life expectancy plotted as a function of the PRS for the cohort 1911-1920. 
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Figure 8: The aging rate plotted as a function of the PRS for the cohort 1911-1920. 

 
7.2 Cohort 1921-1930 

 
Using the 1944 observations, we get the following estimates (with standard errors in parenthesis) 

 

 

â = 2.446e − 15 (1.881e − 15), 

 
b̂  = 0.337 (0.0085), 

 

ĉ = 0.071 (0.0024). 
 

Working in an analogous manner as in the cohort 1911-1920, we first calculate the following 

t− values for the three estimates: 1.1621, 33.9635, 29.5596. Therefore, for this cohort too, we find 

out that there is significant relationship between the PRS and the aging rate. 9 and 10 plot point 

estimates of life expectancy as a function of the PRS and point estimates of the aging rate as a 

function of the PRS, respectively. 
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Figure 9: The life expectancy plotted as a function of the PRS for the cohort 1921-1930. 
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Figure 10: The aging rate plotted as a function of the PRS for the cohort 1921-1930. 
 

Figures 7 and 9 depict lifetime expectancy as a function of the PRS. Our conclusion is that 

the average lifespan in the cohort 1911-1920 is larger than its counterpart for the cohort 1921- 

1930. In fact, the average lifespan discrepancy is more pronounced for low values of the PRS. 

Figures 8 and 10 graphically show the relationship between the aging rate and the PRS. One key 

conclusion that arises is that for any given value of the PRS, individuals of the cohort 1911-1920 

age faster than individuals of the cohort 1921-1930. At first glance, the following statement may 
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κ 

seem contradictory: individuals born between 1911 and 1920 age faster than individuals 1921-1930, 

yet they live longer. An explanation of such puzzling observation is given by the (estimated) values 

of a. We notice that the estimated value of this parameter is larger for the cohort 1921-1930. This 

essentially implies that the initial mortality conditions of individuals born during 1911-1920 are 

better than these ones of individuals born during the period 1921-1930. In other words, individuals 

in the former cohort have better health conditions than individuals in the latter cohort. Hence, 

compared to the cohort 1911-1920, the average lifespan loss due to initial health conditions that 

individuals of the cohort 1921-1930 experience is smaller than the average lifespan attributed to 

the aging process. Finally, note that for both cohorts the estimates for parameters a and b in 

our model are substantially different than their counterparts, which are usually obtained using the 

standard Gompertz model. This fact is hardly surprising provided that in our model we control 

for genetic factors, and thus our parameter estimates are not comparable to the estimates that 

will be obtained with the Gompertz model. 

 
7.3    Mortality Model with PRS and Unobserved Heterogeneity 

 
Recall that the new model (8) developed in this paper explicitly allows the aging rate to depend 

on genetic factors through the PRS. Of course, someone could claim that there is some unobserved 

heterogeneity left (mainly environmental factors) that is not captured by this specification. In this 

subsection, we also briefly discuss the following hazard rate model 

 

m(x|PRS, Z) = a exp (b exp(c ∗ PRS)x) Z. (10) 

 

The above hazard model combines features from two models: the (7) developed by Vaupel et al. 

(1979) and our new model (8). On the one hand, the variable Z represents unobserved factors 

that affect the mortality rate; a statistical feature that is present in (7). On the other hand, the 

mortality equation (10) allows the aging rate to explicitly depend on the PRS as is the case in the 

mortality equation (8). As in (7), the random variable Z captures some unobserved characteristics 

and follows a gamma distribution with a shape parameter equal to κ and a scale parameter equal 

to  1 (the latter is an innocuous normalization).  For  that distribution, we have that E (Z) =    1 
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and V ar(Z) = 1 . Let q(x|PRS) = a exp (b exp(c ∗ PRS)x) and Q(x|PRS) = 
( x 

q(ω|PRS)dω. By 
κ 0 

using simple Laplace Transform arguments, the survival function is written as 
 

1 κ 

S(x|PRS) = (1 + 
κ 

Q(x|PRS))−
 

 

. (11) 

 

The density function is expressed as 
 

1 

f (x|PRS) = q(x|PRS)(1 + 
κ 

Q(x|PRS))−
 

 

κ−1 
 
. (12) 

 

Our estimation results (available upon request) show that the parameter κ tends to infinity, 

which in turn implies that the variance of the stochastic variable Z goes to zero. Hence, the 

distribution of Z converges to a degenerate distribution concentrated on 1. The interpretation of 

this limiting result is that after having controlled for genetic factors through the PRS, there is no 

unobserved heterogenity left among individuals. 

 
 

8  Conclusions 

 
In this paper, we focus on identifying of the relationship between several genetic factors and the 

aging rate. By using genetic information and mortality outcomes for two cohorts, 1911-1920 and 

1921-1930, we estimate the effect of the polygenic risk score (PRS) on the aging rate and conclude 

that this effect is significantly different from zero. We also provide point estimates of life expectancy 

as a function of the PRS. 

The first step is to calculate the PRS after having conducted a genome-wide association study. 

In that step, we estimate the effect of each single nucleotide polymorphism (SNP) by means of 

a univariate logistic regression after controlling for different demographic characteristics. The 

number of SNPs under consideration is about 1.2 million. After having estimated the respective 

coefficients, we implement a certain algorithm to determine the most significant SNPs. The selec- 

tion criterion being employed in this algorithm is the corresponding p− value obtained for each 

individual estimated coefficient from the univariate logistic regressions. Particularly, we choose to 
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include in the significant set all the SNPs whose estimated coeffcient has a p− value larger than 

0.05. Next, we calculate the PRS by computing the linear combination of all significant SNPs, 

where the weights are the estimated coefficients from the logistic regression. 

The second step is concerned with the construction of a new mortality equation, which models 

the aging rate as a function of the PRS. Our model generalizes different existing mortality models 

by allowing dependence between the aging rate and the PRS. In case the effect of the PRS on 

the mortality rate is zero, the model reduces to the standard Gompertz model. Finally, having 

an explicit expression for the mortality rate as a function of the PRS, we obtain a closed-form 

expression for the probability density function of lifetime. Hence, for each value of the PRS we 

also obtain an estimate for life expectancy. 

We use our new mortality model to study the aging process of two different cohorts: 1911-1920 

and 1921-1930. One interesting finding is that despite the fact that the first cohort ages faster than 

the second cohort, it experiences a longer lifetime expectancy due to better mortality conditions 

at birth. 

In addition, we study a generalized version of our mortality model by allowing the presence 

of unobserved heterogeneity even after controlling for genetic factors. Our estimation results 

(available upon request) show that the variance of the stochastic variable that captures those 

unobserved influences goes to zero. This finding suggests that after adjusting for genetic factors 

through the PRS, there is no unobserved heterogeneity left . 

There are numerous ways in which the analysis of this paper can be extended. It would be 

interesting to estimate the PRS in the first step by making use of weights obtained by single Cox 

regressions. That is, instead of using logistic regressions in the first step, we could estimate the 

effects of the individual SNPs by employing the following univariate Cox regression for each SNP 

j: 

m(x|SNP j ) = λj (x) exp(γj SNP j ), (13) 
i i 

 

where the function λj (x) is left unspecified.  Having calculated for each SNP the corresponding 



25  

i 

coefficient, the PRS of individual i can now be estimated as 
 

PRSi  = SNP 1γ̂ 1   + SNP 2γ̂ 2   + ... + SNP S γ̂ S , (14) 
i i i 

 

 

where S denotes the number of the significant SNPs.  Alternatively, we could estimate another 

version of the PRS by using our new model. Therefore, 

 
m(x|SNP j ) = aj  exp 

(
bj  exp(cj  ∗ SNP j )x

) 
. (15) 

i i 

 

 

For this specification, the PRS of individual i can be estimated as 
 

PRSi  = SNP 1ĉ 1    + SNP 2ĉ 2    + ... + SNP S ĉS  . (16) 
i i i 

 

 

Another possibility for the calculation of the PRS is to follow a statistical machine learning 

approach, where the calculation of the number of significant SNPs for the estimation of the PRS 

would be chosen based on the (heuristic) minimization of a loss function.  The procedure for 

choosing the optimal number, S, of SNPs for the estimation of the PRS consists of three steps 

after dividing the sample into a training set and a test set. The first step is to rank the SNPs 

based on the corresponding p− values obtained by employing either regression (13) or (15). Then 

we could consider the first ρ SNPs from that step onwards, where ρ << 1200K. 

The (heuristically) optimal choice of the S SNPs from the set of the ρ candidate SNPs could 

be made by using stepwise forward selection. In summary, after having ranked the SNPs, we could 

construct the τ −th PRS by considering the first τ SNPs, where τ ∈ {1, ..., ρ}, starting from the 

first SNP (after having ranked them). Let PRSτ
 be the PRS that is estimated by using the first 

 

τ SNPs for individual i. For the sake of exposition, we stick below with the Cox model for the 

estimation of the PRS as well as the estimation of the effect of the PRS on the mortality rate. 

Assuming that the weights have been obtained by employing the Cox regression (13), we have in 
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i 

i 

i 

i 

mathematical notation 
 

 
PRSτ = SNP 1γ̂ 1  + SNP 2γ̂ 2  + ... + SNP τ γ̂ τ      . (17) 

i i i i 

 

 

The main challenge here is to choose the value of l for which the PRSl has the optimal predictive 

power. Nevertheless, there is one major difficulty with that approach. Mortality outcomes are often 

(heavily) randomly right censored, and thus it is not trivial how the predictive power of the PRS 

can be evaluated in the second stage. One solution to this problem is to write down a Cox regression 

for the censoring variable. In particular, let m(x|PRSτ ) and mC (x|PRSτ ) be the hazard rates of 
i i 

 

the mortality variable and the censoring variable Ci, respectively, for the i−th individual given 

the value PRSτ . Those hazard rates can be modeled as 

 

m(x|PRSτ ) = λτ (x) exp(ψτ PRSτ  ), (18) 
i i 

 
 

mC (x|PRSτ ) = λτ (x) exp(ψl  PRSτ  ). (19) 
i C C i 

 

The second step is to estimate (by keep using the training set) for each τ the equations (18) and 

(19). In the third step, we should use the test set observations in order to evaluate the predictive 

power of the PRSτ  . More precisely, we have from equations (18), (19) that 

 

   x 

ln m(ω|PRSτ ) = −ψlPRSτ + E, (20) 
i i 

0 

 
and  

   x 

ln mC (ω|PRSτ ) = −ψl  PRSτ  + EC , (21) 
i C i 

0 
 

where  E and  EC   follow  an  extreme  value  distribution.  The  quantities  on  the  left  as  well  as  right 

hand side (except for the error terms, of course) have been consistently estimated from the second 

step.  Hence, for fixed τ and each (un)censored observation with PRSτ
 in the test set, we   can 

 

predict the corresponding (un)censored observation for PRSτ  . By repeating the same procedure 

for each τ and developing an appropriate loss function, the optimal value of τ , which will minimize 

that loss function, can be determined. 
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0 

Appendix 

 
Recall that the mortality rate is equal to 

 

m(x|PRS) = a exp (b exp(c ∗ PRS)x) . (A-1) 

 

Therefore, the survival function S(x|PRS) can be written as S(x|PRS) = exp(−M (x|PRS)), 

where M (x|PRS) := 
( x 

m(ω|PRS)dω. Direct calculations reveal that 

 
a 

M (x|PRS) = 
b exp(c ∗ PRS)

(exp (b exp(c ∗ PRS)x) − 1). (A-2) 

The latter result implies that for each x > 0 

 

S(x|PRS) = exp 
( 

a 
\ 

− 
b exp(c ∗ PRS)

(exp (b exp(c ∗ PRS)x) − 1) 

 

. (A-3) 

 
Accordingly, the probability density function is expressed as 

 

f (x|PRS) = a exp (b exp(c ∗ PRS)x) exp 
( 

a 
\ 

− 
b exp(c ∗ PRS)

(exp (b exp(c ∗ PRS)x) − 1) . 

 

After having calculated the PRSi for the i−th individual, our data consist of the triplet 

 

(min(Xi, Ci), PRSi, Di), 

(A-4) 

 

 

where Ci is the censoring variable and Di is an indicator function equal to 1 for uncensored obser- 

vations ( i.e. Xi < Ci) and 0 for censored observations (i.e. Xi ≥ Ci). The individual likelihood 

contribution is equal to 

Dif (Xi|PRSi) + (1 − Di)S(Xi|PRSi). 

 
Next, we carry out a simple Monte Carlo experiment to investigate how the fully parametric 

estimator performs. Our numerical study is based on the following parameter values: a = 0.005, 

b = 0.09, c = 0.07. In addition, we assume that the variable PRS is uniformly distributed over the 
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interval [−1, 1]. We also generate a censoring variable that depends on PRS, too. In particular, 

we choose the following hazard rate for the censoring variable 
 

mC (x|PRS) = a exp (b ∗ 1.15 ∗ exp(c ∗ 0.9 ∗ PRS)x) . (A-5) 

 

The resulting average degree of censoring is about 32% for all Monte-Carlo experiments. The 

simulation experiments are conducted using a series of three different sample sizes: n = 100, 

n = 200, and n = 500. The number of replicated samples for each n is equal to 100. The results 

for each n are summarized in the Table 4. 1 

Sample Size Bias(a )̂  RMSE(aˆ) Bias(ˆb)  RMSE(ˆb) Bias(c )̂  RMSE(cˆ) 

n=100 4.419 e-05 0.0028 2.055 e-03 0.0171 3.65 e-03 0.068 
n=200 1.330 e-05 6.046 e-05 6.994 e-04 0.001 -3.04 e-03 0.0093 
n=500 5.694 e-05 0.0033 -1.471 e-03 0.0148 -3.86 e-03 0.0308 

 

Table 4: Bias and Mean Square Error results for the three parameter estimates. 
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