Technical barriers, import licenses and tariffs as means of limiting market access

Jan G. Jørgensen* Philipp J.H. Schröder†

Abstract

Technical barriers (standards), import licenses and tariffs may be deployed as means of limiting the market entry of foreign firms. The present paper examines these measures in a setting of monopolistic competition. It is established that – contrary to what one would expect – a technical barrier to trade can dominate a tariff in terms of consumer welfare, even when tariff revenues are fully redistributed. This case occurs for high levels of protection. Furthermore, an import license with full redistribution of revenues dominates both the technical barrier and the tariff for all levels of protection.

Key Words: non-tariff barriers, technical trade barriers, standards, import licenses, monopolistic competition.

JEL: F12, F15

1 Introduction

With the far-reaching progress of global trade liberalisation, interest groups in industry and governments alike have relied on non-tariff trade barriers to protect their markets from foreign competition, see e.g. Baldwin (1984), Bhagwati (1988), Maskus and Wilson (2001). Technical barriers or standards in particular are often abused as protective measures, for example to

*University of Southern Denmark, Department of Economics, Campusvej 55, DK-5230 Odense M, Denmark, Tel.: +45 6550 2151, Fax: +45 6615 8790, E-mail: jgj@sam.sdu.dk
†Aarhus School of Business, Department of International Business, Fuglsangs Alle 4, DK - 8210 Aarhus V, Tel.: +45 8948 6392, Fax: +45 8948 6125, E-mail: psc@asb.dk
discourage foreign firms from accessing the domestic market. With the continuing liberalization of visible trade barriers such as tariffs and quotas, the importance of technical regulations as means of restrict trade and limiting market entry has gained in importance. \footnote{See Maskus and Wilson (2001) for a survey on both theoretical and empirical approaches to technical barriers and trade.} A study by the US Department of Agriculture by Roberts and DeRemer (1997) finds that in 1996, 57 European regulations effected US exports in agriculture corresponding to an estimated trade impact of 899.55 million dollars. Weyerbrock and Xia (2000) identify further EU/US technical regulations impeding bilateral trade. The EU Commission has calculated that in 1996, over 79 per cent of intra-EU trade is potentially affected by standards (EU-Commission, 1998). According to Brenton et al. (2001), the success of EU enlargement with up to 10 new member states in terms of trade depends crucially on the full access of those countries to the internal market of the EU, and hence on the removal of technical barriers to trade. However, technical regulation differs across sectors and hence, due to differences in industry specialization the impact and importance of technical barriers varies across the countries set to become new members of the EU (Brenton and Manzocchi (2002)).

Alternative means of controlling market access are, of course, tariffs or import licenses, whereby the latter tool is the most direct means of controlling the entry of foreign firms. The purpose of this paper is to examine the impact of these different means of restricting market access on firm entry decisions, firm size and welfare. The paper is not concerned with the rationale for such protectionist policies, but with their economic impact and the expected welfare effect from replacing the one type of policy with another.

Overall, our results show that in a world of monopolistic competition featuring intra industry trade, the different means of limiting market access are non-equivalent in terms of the welfare consequences that arise. Reducing the number of foreign firms servicing the domestic market below the free trade equilibrium always reduces total consumer welfare. In terms of converting a certain existing technical barrier to trade, then, for moderate levels of protection, replacing the technical barrier by a tariff or an import license – while still permitting the same number of foreign firms – increases welfare, whereby the import license generates the highest welfare. However, for high levels of protection – i.e. a severe restriction on the number of foreign firms – replacing the technical barrier by a tariff in fact reduces welfare, while the creation of a licensing scheme still improves welfare. These welfare rankings carry potentially important insights for the efforts of the Uruguay round trade liberalisation to replace technical barriers to trade. The resulting tariff
– for monopolistic competitive industries – actually reduces welfare if high levels of market protection are maintained while a replacement of technical barriers with simple import licenses would increase welfare. This insight that the direct policy tool of import licenses commands the highest welfare implies a clear policy recommendation, though it may come at little surprise for economists. Finally, our results also show that the harmonisation of standards (reducing technical barriers) will improve welfare unambiguously.2

The paper develops a simple, symmetric, two-country trade model based on Krugman (1980 and 1981) and using extensions by Venables (1994). Technical barriers to trade or standards are modelled as fixed cost increases without any direct welfare implications stemming from the technical barrier or standard as such, i.e. the barrier is only viewed as a means of controlling market access without any real implications for product quality, etc. Hence, it is viewed as a pure cost increase as in, e.g., Ganslandt and Markusen (2001) and Brenton, et al (2001). The license, on the other hand, is modelled as an import permit sold by the government to foreign producers, with a price set to limit access of foreign firms to the domestic market, whereby all license revenues are redistributed to consumers.3 Finally, following Gros (1987), an ad valorem tariff is introduced into the model, again reducing the number of foreign firms while redistributing all revenues to consumers. From these three measures, we derive analytical solutions for a clear welfare ranking, each time keeping the number of foreign firms that will export into the domestic market at a certain level below the free trade benchmark. The following results are obtained: For low levels of protection, the tariff is welfare superior to a technical barrier, but for high levels of protection the technical barrier generates the higher welfare. An import license dominates both these arrangements for all levels of protection.

What drives these welfare rankings of the three measures is the nature of the cost imposed upon the foreign producer. While technical barriers or standards tie up resources, e.g. firms have to hire people to deal with administrative red tape or face additional costs from implementing foreign regulation and safety requirements before their goods can access the foreign

\[\text{\footnotesize \cite{Casella1997}} \] has another focus: she analyzes how product standards are influenced by private coalitions of firms in open economies. Ker’s (2000) focus is on modelling technical barriers and uncertainty where the uncertainty arises from the variation in product attributes.

\[\text{\footnotesize \cite{Gervais2000}} \] formally study the impact of the different WTO import license allocation mechanisms on welfare. Import licenses auctions under imperfect competition are studied in detail by Krishna (1993).
market, a license simply imposes a fixed cost, still reducing entry but absorbing no actual resources. Rather, the license fee is reallocated from the foreign producer to the domestic government and eventually consumers. Similarly, a tariff does limit the number of importing firms by distorting their cost structure, yet reallocates all revenues. Still, for high levels of protection, a tariff results in lower total consumer welfare than a technical barrier to trade (and hence also less welfare than a license). The reason for this is that although all the different measures limit the number of foreign firms, only the tariff succeeds in actually reducing the trade volume, since foreign firms react to it by increasing prices, resulting in lower sales. On the other hand, under a technical barrier or import license, those foreign firms that decide to enter the domestic market will in fact increase their export volume so as to be able to recover the increase in fixed costs caused by the technical barrier or license.

The paper is structured as follows. Section 2 introduces the model. In Section 3, the equilibria – prices, quantities and the number of firms – are derived for the three protective measures. Section 4 presents the resulting welfare rankings, and Section 5 concludes the paper.

2 The Model

The starting point for the present model is Krugman’s (1980) application of the Chamberlinian monopolistic competition approach – building on the contributions of Spence (1976) and Dixit and Stiglitz (1977) – to international trade.

It is assumed that the world consists of two symmetric countries with firms producing in the same industry. In both countries, market conditions are described by monopolistic competition, increasing returns to scale in production and differentiated goods. The industry has a large number of potential variants, which enter symmetrically into demand. Variants at home and abroad are different. Consumers want to consume both home and foreign variants.

The utility function of the model is based on Krugman (1981); it reinterprets the original version with a distinction into home and foreign products and applies the specific functional form from Krugman (1980) to both product groups. As the two countries are completely identical, it is sufficient to concentrate on the specification of the home country. Foreign variables are indicated by *. All individuals are assumed to have the same utility function,
\[U = \ln \sum_{i=1}^{N_H} c_{H,i}^\theta + \ln \sum_{i^*=1}^{N_M} c_{M,i^*}^\theta \]

(1)

where \(0 < \theta < 1 \) and \(c_{M,i^*} \) is consumption of the \(i^* \)th variant of imports and \(c_{H,i} \) is consumption of the \(i \)th variant of home products. In this setup, the imports (\(M \)) of one country equal the exports (\(Z^* \)) of the other country and vice versa. Furthermore, symmetry ensures that an implicit balanced trade assumption is employed. \(N_H \) and \(N_M \) define large numbers of potential variants of both home and foreign products. The number of variants actually produced, \(n_H \) and \(n_M \), is assumed to be large, although smaller than \(N_H \) and \(N_M \).

On the supply side, it is assumed that there exists only one factor of production: labour. Firms can produce their specific variant for the home market, the foreign market, or both. When supplying the home or the foreign market, each firm produces with the same cost function:

\[l_{j,i} = \frac{\alpha_j}{2} + \beta x_{j,i} \]

(2)

where \(j = H, Z \) and \(l_{j,i} \) is labour used in the production of the \(i \)th variant of the home industry for servicing market \(j \), \(x_{j,i} \) is output of that variant for the respective market. Total labour in the production of the \(i \)th variant is thus \(l_i = l_{H,i} + l_{Z,i} \). This specification includes fixed costs, which are assumed to be some form of market-specific access costs (marketing, advertising, distribution). For simplicity these are here assumed to be equal across countries, hence \(\frac{\alpha_j}{2} = \frac{\alpha}{2}, j = H, Z \). Furthermore, \(\beta \) is a constant marginal cost; hence average costs decline at a diminishing rate. Each variant is produced by only one firm, and each firm produces only one variant. Labour requirements (2) are converted into nominal costs by multiplying them by the wage rate, \(w \).

The market clearing condition demands that the output of each variant should be equal to the total world consumption of that variant; more precisely that the markets for imports and home goods have to clear. Assuming full equality between the number of workers, \(L \), and the number of consumers, this gives \(x_{H,i} = L c_{H,i} \) and \(x_{Z,i} = L c_{M,i} \). Due to symmetry \(L = L^* \), \(x_{Z,i} = x_{M,i^*} \) and \(c_{M,i} = c_{M,i^*} \). Also, labour market clearing demands \(L = l_i n \) and \(L^* = l_{i^*} n^* \). Since each variant behaves identically, subscripts \(i \) and \(i^* \) are omitted in the remainder of the paper.

Finding equilibrium in this model follows the standard procedure; free entry and exit of firms, the zero-profit condition and labour and goods market clearing are assumed (see e.g. Krugman 1980). The firms’ maximisation can be separated for the two markets based on the profit functions \(\Pi_j = \)
\(p_j x_j - (\frac{\alpha}{2} + \beta x_j)w \) where \(j = H, Z \). The benchmark free trade equilibrium — with no technical barrier, import license or tariff — is characterised by prices \(p \), output per firm \(x \), and number of firms \(n \).

\[
\begin{align*}
 p_H &= p_Z = \frac{\beta w}{\theta} \\
 x_H &= x_Z = \frac{\theta \alpha}{2(1 - \theta)\beta} \\
 n_H &= n_Z = \frac{(1 - \theta)L}{\alpha}
\end{align*}
\]

Firms produce equal quantities for the home and for the foreign market and exported (thus also imported) and home goods have the same price. The free trade benchmark in (3) also shows that each firm will want to produce its variant for both the home and the foreign market.

3 Equilibrium with market access barriers

This section analyzes the effects of a technical barrier or standard, a license and a tariff on the market equilibrium. All measures will be applied bilaterally: in other words, we consider symmetric Nash equilibria. However, in principle even unilateral technical barriers or standards are captured by the exposition below, since what matters in such cases is that standards are different for the two markets. This will be true even if only one country creates a new domestic standard.

Technical barriers and standards

Following Maskus and Wilson (2001), a technical barrier or standard is modelled as an increase in fixed costs. Let \(\sigma \) denote an additional additive market access costs that firms encounter when they want to supply the foreign market, i.e. when they have to employ staff to deal with local regulation or adapt the design or specification of their product etc. The cost of the barrier is only encountered when exporting, thus the cost function for a firm that supplies the foreign market becomes

\[
\tilde{l}_Z = \frac{\alpha Z}{2} + \sigma + \beta \tilde{x}_Z
\]

where \(\tilde{l}_Z \) is labour used for the production of exports of the variant, and \(\tilde{x}_Z \) is the output of that variant for the export market under the presence of a technical barrier or standard.
The profit of a home firm, producing a variant and servicing both markets, is then given by \(\bar{\pi} = \bar{p}_H \bar{x}_H + \bar{p}_M \bar{x}_z - (\bar{l}_H + \bar{l}_Z)w \), where \(\bar{p}_M = \bar{p}_Z \), i.e. consumer import prices (identical to the export prices) are identical in both countries and where \(\bar{l}_H \) equals \(l_H \) given in (2). The firm’s problem can be split into two independent maximisations for the home and the foreign market respectively:

\[
\begin{align*}
\bar{\pi}_H &= \bar{p}_H \bar{x}_H - \left(\frac{\alpha}{2} + \beta \bar{x}_H \right) w \\
\bar{\pi}_Z &= \bar{p}_Z \bar{x}_Z - \left(\frac{\alpha}{2} + \sigma + \beta \bar{x}_H \right) w
\end{align*}
\]

Following the same procedures as above, the prices and quantities in each market and the resulting number of firms can be derived. The important characteristic of a technical barrier or standard is that labour is actually used in the process. Firms have to employ extra resources in order to circumvent the trade barrier. The workers employed in jobs associated with the technical barrier or standard still get wage \(w \), and will demand both home and imported products – hence, total spending power in the economy is unchanged. However, given a higher fixed cost of accessing the foreign market, not all firms will find it profitable to actually export their variant.

\[
\begin{align*}
\bar{p}_H &= \bar{p}_Z = \frac{\beta w}{\theta} \\
\bar{x}_H &= \frac{\alpha \theta}{2 \beta (1 - \theta)} , \quad \bar{x}_Z = \frac{\alpha \theta}{2 \beta (1 - \theta)} \frac{\alpha + 2 \sigma}{\alpha} \\
\bar{n}_H &= \frac{(1 - \theta) L}{\alpha} , \quad \bar{n}_Z = \frac{(1 - \theta) L}{\alpha + 2 \sigma}
\end{align*}
\] (5)

The number of firms is derived via the condition (stemming from the maximisation of utility function (1)) that consumers will use equal shares of their income on imported goods and on home goods, i.e. \(\bar{p}_j \bar{n}_j \bar{x}_j = \frac{wL}{\theta} \), \(j = H, Z \). Comparing the resulting equilibrium (5) with the free trade case (3) we see that the number of firms on the home market, the supply and price of home goods to the home market remains unchanged. Yet for exports, quantities have risen, while the number of firms (variants) that are supplied has fallen. This means that under the presence of a technical barrier not all firms find it worthwhile to export.\(^4\) Which variants will actually be exported

\(^4\)This finding of a wedge between exporters and non-exporters as a result of a fixed cost in exporting was first established by Venables (1994). Yu (2002) utilises this feature in his work on the role of entrepreneurship in foreign trade.
remains indeterminant within the model. Thus, by symmetry, the technical barrier σ succeeds in curtailing the market access of foreign firms to the domestic market. For subsequent comparison it is useful to define the number of foreign firms, \tilde{n}_M, that will choose to access the domestic market given a certain technical barrier to trade $\tilde{\sigma}$, which simply is given by:

$$\tilde{n}_M = \frac{(1 - \theta)L}{\alpha + 2\tilde{\sigma}}$$ \hspace{1cm} (6)

Import license

The license is different from a technical barrier, because – even though it enters the producer’s problem as before – the license fee remains in the system. No real resources (labour) are used up when purchasing the license. It is assumed that all license revenues are redistributed to consumers. Consider an import license sold to foreign producers at price S. Purchase of the license entitles a firm to supply its variant to the market. How the license is allocated (by auction or sale), and how its price is determined is of no concern here; what matters is its effect on the firm’s maximisation. The profit function of a firm supplying both markets under the presence of a foreign licensing policy becomes $\hat{\pi} = \hat{p}_H \hat{x}_H + \hat{p}_M \hat{x}_Z - (\hat{l}_H + \hat{l}_Z)w - S$. The license fee in real terms is given by $s = \frac{\hat{S}}{w}$, and the firm’s profit function for the two markets can be restated as:

$$\begin{align*}
\hat{\pi}_H &= \hat{p}_H \hat{x}_H - \left(\frac{\alpha}{2} + \beta \hat{x}_H \right)w \\
\hat{\pi}_Z &= \hat{p}_Z \hat{x}_Z - \left(\frac{\alpha}{2} + s + \beta \hat{x}_Z \right)w
\end{align*}$$

From the firm’s perspective, the situation under an import license is identical to the situation under a technical barrier to trade. Namely, the license expenditure enters the exporting firms’ profit function as an increase in fixed costs. What has changed is that the license revenue is redistributed to consumers. Again free entry and exit ensure that competition reduces industry profits to zero. The equilibrium is depicted by:

$$\begin{align*}
\hat{p}_H &= \hat{p}_Z = \frac{\beta w}{\theta} \\
\hat{x}_H &= \frac{\alpha \theta}{2(1 - \theta)\beta} \\
\hat{x}_Z &= \frac{\alpha \theta}{2(1 - \theta)\beta} + \frac{\alpha + 2s}{\alpha} \\
\hat{n}_H &= \frac{(1 - \theta)L}{\alpha + (1 + \theta)s}, \hspace{0.5cm} \hat{n}_Z = \frac{(1 - \theta)L}{\alpha + (1 + \theta)s}
\end{align*}$$ \hspace{1cm} (7)
The number of firms can be calculated by utilising the fact that half the income\(^5\) is spent on home goods and half on imports. The redistributed license fee is now included in household income, so that \(\hat{p}_Z \hat{n}_Z \hat{x}_Z = \frac{wL^* + \hat{S} \hat{n}_M}{2}\) must hold. Using the fact that \(L = L^*\) and \(\hat{n}_Z = \hat{n}_M^*\), one can calculate the number of firms that want to supply the foreign market and subsequently the number of firms that also want to supply the home market. As before, it turns out that not all firms will want to supply the foreign market. In comparison to the case of technical barriers and the free trade benchmark, the the number of firms on the home market has increased, i.e. the license protection as opposed to a technical barrier has promoted the emergence of home firms, however, these are firms supplying the home market only.

To facilitate subsequent welfare comparisons it is useful to calculate the license fee \(\hat{S}\) that limits the number of foreign firms, \(\hat{n}_M = \hat{n}_M^*\) to the level \(\bar{n}_M\), given in (6), generated by a certain technical barrier \(\hat{\sigma}\). The corresponding import license must be:

\[
\bar{s} = \frac{2}{1 + \hat{\theta} \hat{\sigma}}
\]

(8)

Thus – aiming at the same market protection – the license fee has to be set higher than the cost of a technical barrier, because the redistribution of the license revenue stimulates some additional demand for foreign variants as well. With the \(\bar{s}\) given in (8), the concrete \(\hat{x}_Z\) and \(\hat{n}_H\) corresponding to a given restriction on foreign firms can be calculated.

Tariff

A tariff can limit the market penetration of foreign firms by distorting the foreign producers’ revenue structure. Furthermore, under the implementation of tariffication or otherwise motivated reductions of existing technical or license trade barriers, a typical policy response is to replace the existing barrier by a tariff. Introducing tariffs into the model enables us to evaluate the welfare consequences of such a policy. Formally denoting variables under the presence of a tariff by \(\tilde{\cdot}\), and using \(t\) as the bilaterally imposed \textit{ad valorem} tariff we obtain the following profit functions for the two markets:

\[
\tilde{\pi}_H = \hat{p}_H \hat{x}_H - \left(\frac{\alpha}{2} + \beta \hat{x}_H\right) w
\]

\[
\tilde{\pi}_Z = (1 - t) \hat{p}_Z \hat{x}_Z - \left(\frac{\alpha}{2} + \beta \hat{x}_Z\right) w
\]

\(^5\)Including the income stemming from license revenues.
Applying the procedures of profit maximisation, free entry and exit, and market clearing, the following equilibrium is derived.

\[
\tilde{p}_H = \frac{\beta w}{\theta}, \quad \tilde{p}_Z = \frac{\beta w}{(1-t)\theta} \\
\tilde{x}_H = \frac{\alpha \theta}{2(1-\theta)\beta}, \quad \tilde{x}_Z = \frac{\alpha \theta}{2(1-\theta)\beta} \\
\tilde{n}_H = \frac{(1-\theta)L}{\alpha} \frac{2}{2-t}, \quad \tilde{n}_Z = \frac{(1-\theta)L}{\alpha} \frac{2-2t}{2-t}
\]

\[\text{(9)}\]

The number of firms has to be calculated in two steps. The first is to establish the number of firms that wish to export via the condition \(\tilde{p}_Z \tilde{n}_Z \tilde{x}_Z = wL^* + \tilde{t} \tilde{p}_M \tilde{n}_M \tilde{x}_M\), using the fact that \(L = L^*, \tilde{p}_M = \tilde{p}_Z, \tilde{x}_M = \tilde{x}_Z\) and \(\tilde{n}_M = \tilde{n}_Z\). The second is to derive the number of firms which want to supply the home market from \(\tilde{p}_H \tilde{n}_H \tilde{x}_H = wL^* + \tilde{t} \tilde{p}_M \tilde{n}_M \tilde{x}_M\), using the fact that \(\tilde{n}_M\) equals the \(\tilde{n}_Z\) (just derived above) and that \(\tilde{x}_M = \tilde{x}_Z\). In line with other models with tariffs when industries are monopolistic competitive (see Gros (1987)), the tariff distorted equilibrium features a price increase for foreign goods and fewer foreign firms that supply the same volume each as under free trade. Thus again, not all home firms will export. What in fact has happened is that those firms that also export their variant have passed the tariff on to foreign consumers via the price increase, hence their per unit operating surplus remains unchanged. This means that their free trade output volume still results in them breaking even – free entry ensures that this applies to all exporting firms. However, as profits are extracted from the exporting activity, there is not as much room for firms, and hence fewer firms find it attractive to actually export. Thus \(\tilde{n}_Z\) is below the free trade benchmark, while \(\tilde{n}_H\) is above. The later effect stems from the redistributed tariff revenue.

Finally the tariff level \(\bar{t}\) that limits the number of foreign firms, \(\tilde{n}_M\) to the level \(\bar{n}_M\), given in (6), generated by a certain technical barrier \(\tilde{\sigma}\) can be calculated:

\[
\bar{t} = \frac{4\tilde{\sigma}}{\alpha + 4\tilde{\sigma}}
\]

With this \(\bar{t}\), the concrete \(\tilde{p}_Z\) and \(\tilde{n}_H\) that emerge under a certain restriction on foreign firms can be calculated.

4 Welfare comparisons

Utility function (1) and the characterisations of equilibrium under free trade (3), under a technical barrier (5) with a certain restriction \(\bar{\sigma}\), under a license
regime (7) with the license fee \bar{s} given in (8) and under a tariff regime (9) given the tariff \bar{t} from (10) are used to calculate total consumer utility under the different policies.

$$U = 2 \ln \left(\frac{(1 - \theta)L}{\alpha} \left(\frac{\alpha \theta}{2(1 - \theta)\beta} \right)^\theta \right)$$ \hspace{1cm} (11)$$

$$\hat{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \left(\frac{\alpha + 2\sigma}{\alpha} \right)^\theta \right)$$ \hspace{1cm} (12)$$

$$\hat{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \frac{\alpha + \theta \alpha + 4\sigma}{(1 + \theta)(\alpha + 2\sigma)} \left(\frac{\alpha(1 + \theta) + 4\sigma}{\alpha(1 + \theta)} \right)^\theta \right)$$ \hspace{1cm} (13)$$

$$\hat{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \left(\frac{\alpha + 4\sigma}{\alpha + 2\sigma} \right) \right)$$ \hspace{1cm} (14)$$

Figure 1 shows these utility levels for the three policies, with the degree of protection measured by $\bar{n}_M = \frac{(1 - \theta)L}{\alpha + 2\sigma}$ on the x-axis. Without protection ($\bar{\sigma} = \bar{s} = \bar{t} = 0$) we have the free trade number of firms, n_M, and all three regimes start in the utility level of the free trade benchmark. Then, moving to the left, protection increases as the market entry of foreign firms is gradually restricted. The locus of the technical barrier (\hat{U}) crosses the tariff (\hat{U}) at some value \bar{n}_{cM}, while the utility under a license (\hat{U}) even though below the free trade level is always above the two other policies for the entire range of limited market access. These patterns are established formally in the following results.

First of all it can be shown that $U > \hat{U}, \bar{U}, \bar{U}$, i.e. free trade utility is larger than utility under the presence of a technical barrier, an import license or a tariff (see appendix A.1). Furthermore, since the derivatives of (12), (13) and (14) with respect to $\bar{\sigma}$ are negative, i.e. $U', \bar{U}', \bar{U}' < 0$, a first immediate result concerns the abolishment of trade barriers and the harmonization of technical standards:

Lemma 1. Reductions in technical barriers, the harmonizations of standards, the abolishment of import licensing and the liberalisation of tariffs are all welfare improving policies.

More importantly – and less obvious – the welfare rankings between the different policies can be derived. Since $\hat{x}_H = \hat{x}_H$ and by definition $\hat{n}_Z = \hat{n}_Z = \hat{n}_M$ but $\hat{n}_H < \hat{n}_H$ and $\hat{x}_Z < \hat{x}_Z$ the following result can be stated:
Lemma 2. Given a certain restriction, \(\bar{n}_M \), on the number of foreign firms that access the domestic market, protection with an import license is always preferable to protection with a technical barrier or standard, in particular
\[
\hat{U}(\bar{s}) > \breve{U}(\bar{\sigma}).
\] (15)

The utility under the license regime (13) is larger than the utility under a technical barrier to trade (12). Thus keeping the number of foreign firms on the domestic market constant, utility is improved, as technical barriers or standards are replaced by license arrangements. The intuition behind this ranking is as follows: Technical barriers to trade or standards burn up resources (resources which give no utility). An import license on the other hand, does also succeed in reducing the number of foreign firms. However, since no resources are actually used, but merely redistributed, it allows for a greater – compared to a technical barrier – total production volume (and hence also consumption).

Comparing a tariff restriction to an import license one attains the somewhat surprising insight that a licensing scheme is associated with higher welfare than a tariff-driven market entry barrier. Formally:

Lemma 3. Given a certain restriction, \(\bar{n}_M \), on the number of foreign firms that access the domestic market, protection with an import license is always preferable to protection with a tariff, in particular
\[
\hat{U}(\bar{s}) > \hat{U}(\bar{t}).
\] (16)
For proof see appendix (A.2). The utility under the license regime (13) is larger than the utility under a tariff barrier (14); lemma 3 holds for all levels of protection. Thus keeping the number of firms importing to the domestic market constant, utility is lost, as a licensing regime is replaced by a tariff arrangement. Thus such a policy of tariffification would in fact reduce utility. The intuition behind this ranking is that both policies, the license and the tariff, redistribute the revenues that are harvested from foreign producers, so in this respect, the two methods are identical and the total spending power within the economy is maintained – in contrast to the situation with a technical barrier to trade. However, only the tariff – in contrast to the license (and in fact the technical barrier) – does in fact reduce the total import volume \((\tilde{n}_M \tilde{x}_M)\) as well as the market access of foreign firms. What is happening is that the tariff, a tax on foreign producers, forces firms to raise prices, and thus reduces their sales. The results are opposite in the case of a license: the increased fixed costs induce firms to increase their output volume, so as to be able to recover their increased market access costs. With increased output volume per firm, there is room for fewer firms (less entry). Thus while the number of firms is reduced, the total import volume \((\tilde{n}_M \tilde{x}_M)\) stays constant, resulting in higher utility compared to the tariff.

Comparing utility under a tariff (14) with utility under a technical barrier (12), it can be established that the utility ranking switches within the possible range of market access limitation. The following result can be stated:

Proposition 1. There exists a unique protection level, \(\bar{n}_c^* > 0\) obtained by a corresponding unique technical barrier \(\bar{\sigma}_c > 0\) and tariff level \(\bar{t}_c = \frac{4\bar{\sigma}_c}{\alpha + 4\bar{\sigma}_c} > 0\) respectively, such that

(a) utility under a technical barrier is lower than utility under the tariff for lower levels of protection, namely \(\bar{U}_{|\tilde{n}_M > \bar{n}_c^*} < \bar{U}_{|\tilde{n}_M > \tilde{n}_M^*}\), and

(b) utility under a technical barrier is higher than utility under the tariff for higher levels of protection, namely \(\bar{U}_{|\tilde{n}_M < \tilde{n}_M^*} > \bar{U}_{|\tilde{n}_M < \tilde{n}_M^*}\).

Proof of the proposition is given in appendix A.3. Thus, from a welfare point of view, limiting the market access of foreign firms using a tariff instead of a technical barrier is preferable for moderate levels of protection, while for high levels of protection (in the sense of \(\tilde{n}_M^*\)) a technical barrier is preferable to a tariff regime, even though all tariff revenues are completely redistributed. Hence, tariffification of technical barriers to trade or standards can in fact reduce consumer utility if high levels of protection are maintained. Only for sufficiently low levels of protection will such a policy be beneficial.

The result is driven by the following mechanism: Under a technical barrier, the number of foreign firms is simply reduced (while each firm that
decides to export does increase its individual export volume), resulting in less utility stemming from imported goods (as there is love of variety) while the home market remains unaffected. Under a tariff, two opposing forces are at work. First, via the redistributed tariff revenue, consumers are partially compensated for the restriction of imports by being able to spend more funds on home goods. Second, the tariff actually reduces not only the number of foreign firms but also the export volume of each firm, and thus the total import volume. Proposition 1 is driven by the following intuition: For high levels of protection, the ability of the tariff to actually reduce the total import volume, $\tilde{n}_M \tilde{x}_M$, cuts severely into consumer utility. For low levels of protection, however, even so the total import volume is still smaller under the tariff than with a technical barrier, the redistribution of tariff revenues – and thus increased consumption of home goods – compensates consumers enough to achieve a higher utility than under the technical barrier.

5 Conclusion

The paper employs a simple two-country monopolistic competition model of international trade to study the welfare impact of technical barriers to trade, standards, import licenses and tariffs, policies that have been and still often are being (ab)used as means of limiting the market access of foreign firms. It deals with the welfare impact of such policies and more importantly, with the expected effects of replacing the one type of policy by another. It is found that – contrary to what one might expect – a technical barrier to trade can in fact command the higher total consumer welfare than a corresponding tariff, where both measures have imposed the same limit on the number of foreign firms that enter the domestic market. This case occurs for high levels of protection, i.e. a severe limitation on market access. For low levels of protection, i.e. a moderate limitation on market access, the tariff will be the better policy tool. In any case, the superior policy tool across the entire range of market access limitation is the direct tool of controlling market access via import licenses. Such a policy commands the highest consumer welfare.

The corresponding policy implications are that policies of tariffying non-tariff barriers can be problematic, and that import licensing schemes might not be bad policy tools after all, given that countries – for whatever reason – insist on restricting the market access of foreign firms. Yet, since licenses are a rather visible form of a non-tariff barrier, they might be avoided in favor of less visible technical barriers, even though technical barriers come at a welfare cost.

The intuition behind the welfare rankings found in this paper, is that
while both a license and a tariff redistribute the costs imposed on foreign producers, the technical barrier (or standard) burns up resources, such that a license and tariff should in principle create the higher welfare. However, the tariff, by distorting the foreign firms’ revenue structures, does reduce sales, such that the total import volume, and hence utility, under a tariff is reduced. For high levels of protection, this latter effect might become so strong that the tariff in fact creates less utility than the corresponding technical barrier, which, even though it “wastes” resources, does maintain a higher import volume than the tariff regime.

Overall, all three policy tools do reduce welfare – so this paper does not provide a rationale for the imposition of devices limiting market access. On the contrary, it shows that reductions in technical barriers and tariffs, the removal of licensing schemes, and a harmonisation of standards are all welfare-improving policies.
A Appendix

A.1 Free trade utility versus utility with limited market access

Proof. Proof that $U > \hat{U}, \tilde{U}$, \bar{U}. Utility under trade protection is less than utility under free trade.

A.1.1 Proof that $U > \hat{U}$

From (12) it follows that $\hat{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \left(\frac{\alpha + 2\sigma}{\alpha} \right)^{\theta} \right)$. Hence, one has to show that:

$$
\hat{K} = \frac{\alpha}{\alpha + 2\sigma} \left(\frac{\alpha + 2\sigma}{\alpha} \right)^{\theta} < 1 \quad (A.1)
$$

It follows from (A.1) that $\lim_{\sigma \to 0} \hat{K} = 1$. Since

$$
\frac{\partial \hat{K}}{\partial \sigma} = \frac{2\alpha(\theta - 1)(1 + \frac{2\sigma}{\alpha})^{\theta}}{(\alpha + 2\sigma)^2} < 0 \quad (A.2)
$$

\hat{K} is monotonically decreasing in σ, $\forall \sigma > 0$, and thus (A.1) is fulfilled.

A.1.2 Proof that $U > \tilde{U}$

From (13) it follows that $\tilde{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \frac{\alpha + \theta \alpha + 4\sigma}{(1 + \theta)(\alpha + 2\sigma)} \left(\frac{\alpha(1 + \theta) + 4\sigma}{\alpha(1 + \theta)} \right)^{\theta} \right)$. Hence, one has to show that:

$$
\tilde{K} = \frac{\alpha}{\alpha + 2\sigma} \frac{\alpha + \theta \alpha + 4\sigma}{(1 + \theta)(\alpha + 2\sigma)} \left(\frac{\alpha(1 + \theta) + 4\sigma}{\alpha(1 + \theta)} \right)^{\theta} < 1 \quad (A.3)
$$

It follows from (A.3) that $\lim_{\sigma \to 0} \tilde{K} = 1$. Since

$$
\frac{\partial \tilde{K}}{\partial \sigma} = \frac{8\alpha(\theta - 1)\sigma \left(\frac{\alpha + \theta \alpha + 4\sigma}{\alpha + \alpha \theta} \right)^{\theta}}{(1 + \theta)(\alpha + 2\sigma)^3} < 0 \quad (A.4)
$$

\tilde{K} is monotonically decreasing in σ, $\forall \sigma > 0$, and thus (A.3) is fulfilled.

A.1.3 Proof that $U > \bar{U}$

From (14) it follows that $\bar{U} = U + \ln \left(\frac{\alpha}{\alpha + 2\sigma} \frac{\alpha + 4\sigma}{\alpha + 2\sigma} \right)$. Hence, one has to show that:
\[
\hat{K} = \frac{\alpha}{\alpha + 2\bar{\sigma}} \frac{\alpha + 4\bar{\sigma}}{\alpha + 2\bar{\sigma}} < 1 \quad \text{(A.5)}
\]

which is true \(\forall \sigma > 0\).

\[\square\]

A.2 Proof of lemma 3

Proof. Proof that \(\hat{U}(\bar{s}) > \bar{U}(\bar{t})\).

From (13) and (14) it follows that:

\[
\hat{U} - \bar{U} = \ln \left(\frac{\alpha + \theta\alpha + 4\sigma}{(1 + \theta)(\alpha + 2\sigma)} \left(\frac{\alpha(1 + \theta) + 4\sigma}{\alpha(1 + \theta)} \right)^\theta \right) - \ln \left(\frac{\alpha + 4\sigma}{\alpha + 2\sigma} \right) \quad \text{(A.6)}
\]

Hence, one has to show that:

\[
\ln \left(\frac{\alpha + \theta\alpha + 4\sigma}{(1 + \theta)(\alpha + 2\sigma)} \left(\frac{\alpha(1 + \theta) + 4\sigma}{\alpha(1 + \theta)} \right)^\theta \right) \geq \ln \left(\frac{\alpha + 4\sigma}{\alpha + 2\sigma} \right) \forall \sigma \geq 0 \quad \text{(A.7)}
\]

From (A.7) it follows that one has to show that:

\[
D = -\alpha - 4\sigma + \alpha \left(\frac{\alpha + \alpha\theta + 4\sigma}{\alpha + \alpha\theta} \right)^{1+\theta} \geq 0 \quad \text{(A.8)}
\]

From A.8 we have that \(\lim_{\sigma \to 0} D = 0\). Since

\[
\frac{\partial D}{\partial \sigma} = 4 \left(-1 + \left(1 + \frac{4\sigma}{\alpha + \alpha\sigma} \right)^\theta \right) > 0 \quad \text{(A.9)}
\]

\(D\) is monotonically increasing in \(\sigma, \forall \sigma > 0\), and thus (A.7) is fulfilled.

\[\square\]

A.3 Proof of proposition 1

Proof. Proof that there exists a unique protection level \(\bar{n}_M^* > 0\) (corresponding to a unique technical barrier \(\bar{\sigma}_c^* > 0\) and tariff \(\bar{c}_t^* > 0\) through (6) and (10)) such that:

\[
\hat{U}|_{\bar{n}_M^*} = \bar{U}|_{\bar{n}_M^*} \quad \text{(A.10)}
\]

From (12) and (14) it follows that (A.10) implies that:
\[
\left(\frac{\alpha + 2\sigma}{\alpha} \right)^\theta = \frac{\alpha + 4\sigma}{\alpha + 2\sigma}
\]

(A.11)

An analytical solution to (A.11) cannot be expected due to the fact that the left-hand side is taken in power \(\theta \). However, it can be shown that there exists a unique positive solution to (A.11), i.e. \(\bar{\sigma}^c > 0 \) (and hence a corresponding and unique \(\bar{n}_M^c > 0 \) and \(\bar{\ell}^c > 0 \)).

Define \(\rho = \frac{2\sigma}{\alpha} \) and (A.11) becomes:

\[
(1 + \rho)^{\theta+1} = 1 + 2\rho
\]

(A.12)

Define next \(\upsilon = 1 + \rho \) and (A.12) becomes

\[
\upsilon^{\theta+1} = 2\upsilon - 1
\]

(A.13)

Next define the two functions \(\phi(\upsilon) = 2\upsilon - 1 \) and \(\psi(\upsilon) = \upsilon^{\theta+1} \). \(\phi(\upsilon) \) and \(\psi(\upsilon) \) cut twice at \(\upsilon = 1 \) and at \(\tilde{\upsilon} > 1 \). For small \(\upsilon \) (i.e. \(\upsilon < 1 \)), \(\phi(\upsilon) < \psi(\upsilon) \) and again for large \(\upsilon \) (i.e. \(\upsilon > \tilde{\upsilon} \)) we have \(\phi(\upsilon) < \psi(\upsilon) \) as \(\upsilon \) is lifted in a higher power in \(\psi(\upsilon) \) than in \(\phi(\upsilon) \). For \(1 < \upsilon < \tilde{\upsilon} \) we have \(\phi(\upsilon) > \psi(\upsilon) \). By backward substitution we have:

\[
\upsilon = 1 \Rightarrow \rho = 0 \Rightarrow \sigma = 0
\]

(A.14)

\[
\upsilon = \tilde{\upsilon} > 1 \Rightarrow \rho > 0 \Rightarrow \sigma > 0
\]

(A.15)

Hence, (A.14) shows that \(\hat{U} = \hat{\bar{U}} \) with free trade (i.e. with \(n_M \), whereas (A.15) gives \(\bar{\sigma}^c \) (and thus also \(\bar{n}_M^c \) and \(\bar{\ell}^c \)) where \(\hat{U} = \hat{\bar{U}} \). For \(0 < \sigma < \bar{\sigma}^c \) (i.e. \(\bar{n}_M^c < \bar{n}_M < n_M \)) we have \(\hat{U} > \bar{U} \) and for \(\sigma > \bar{\sigma}^c \) (i.e. \(\bar{n}_M < \bar{n}_M^c \)) we have \(\hat{U} > \bar{U} \).
References

Maskus, K.E. and Wilson, J.S (eds.) (2001), *Quantifying the Impact of Technical Barriers to Trade: Can It Be Done?*, The University of Michigan Press.

