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Abstract

Ecosystem Management requires models that can link the ecosystem level to the op-
eration level. This link can be created by an ecosystem production model. Because
the function of the individual fish in the marine ecosystem, seen in trophic context, is
closely related to its size, the model groups fish according to size. The model sum-
marises individual predation events into ecosystem level properties, and thereby uses
the law of conservation of mass as a framework. This paper provides the background,
the conceptual model, basic assumptions, integration of fishing activities, mathemat-
ical completion, and a numeric implementation. Using two experiments, the model’s
ability to act as tool for economic production analysis and regulation design testing
is demonstrated. The presented model is the simplest possible and is built on the
principles of (i) size, as the attribute that determines the predator–prey interaction, (ii)
mass balance in the predator–prey allocation, and (iii) mortality and somatic growth as
a consequence of the predator–prey allocation. By incorporating additional assump-
tions, the model can be extended to other dimensions of the ecosystem, for example,
space or species. The formulation and description of the present model can serve as a
reference for future work.

Keywords: Ecosystem-model, side-based-model, trophic-model, numeric, fishery,
economic.
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1 Introduction

In response to the over-exploitation of the marine ecosystems and the collateral con-
sequences of fishing—habitat destruction, incidental mortality of non target species,
evolutionary shifts in population demographics, and changes in the function and struc-
ture of ecosystems (Pikitch et al., 2004)—there are increasing calls for a management
of the marine ecosystem with a broader perspective. There are many terms that de-
scribe this same idea (Arkema et al., 2006). This paper uses the term “Ecosystem Man-
agement,” for this management of the ecosystem in a broad perspective, and interprets
Ecosystem Management as a management theory that merges the ideas of an organi-
sation hierarchy in nature and strategic planning based on a planning hierarchy—with
ecosystem as the strategic planning level.1

Many papers on ecosystem management emphasise the need for ecological models
(e.g. Christensen et al., 1996; Garcia et al., 2003). In addition, the ability to create a
quantifiable link from the strategic level—the ecosystem—to the operational level—
fish at an aggregated level not larger than a shoal—will, from a management planning
view, be a prerequisite for a successful Ecosystem Management. This link can be
created by an ecosystem production model where operation can be summarized to the
scale of the ecosystem.1

With the analysis of Gordon (1954) and Schaefer (1954), the use of popula-
tion stock models as the basic assumption, when analysing the production of fishing
grounds, was introduced. Since then, the bulk of bioeconomic literature (Clark, 1985,
1990; Clark and Munro, 1975, and many others) has assumed some kind of popula-
tion model where the basic assumption is that production is a function of the stock.
Stock models treat the interaction of the stock with other parts of the ecosystem as
exogenous. That is, the population is regarded as an autonomous system with only the
fishing as an external influence.

Many economists have recognised one-species models as inadequate and thus have
analysed two species (Clark, 1985, 1990) or three species stock models (May et al.,
1979). Even though these approaches give valuable insight, they still consider other
parts of the ecosystem as exogenous. This, however, has not been ignored. For exam-
ple, Clark (1985) writes:

“The two-species differential-equation [stock models] . . . are little more
than caricature of the real complexity of marine foodwebs. At a somewhat

1This particular view of Ecosystem Management, and arguments in the following that refer to this
footnote, is the result of a more comprehensive analysis and discussion found in Ravn-Jonsen (2009) which
will be supplied by the author on request.
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Figure 1: Diagrammatic representation of the principal energy flow to the fish species.
From Jones (1982).

more realistic level, [a reference to the figure of Jones (1982), figure 1]
is a representation of the principal energy flows among fish species in
the North Sea. But this model is also obviously a drastic simplification”
(Clark, 1985, p. 202)

The approach of Jones (1982) is totally different from the population stock models
normally used in bioeconomic analysis. This model attempts to model production as
a consequence of the flow of energy and matter in the ecosystem. Polovina (1984)
followed the same approach in his “Ecopath” model, later further developed into an
integrated software package “Ecopath with Ecosim” (Christensen and Walters, 2004).

Production models for economic analysis will normally be expected to have at
least two properties: i) The flow and use of resources must obey the physical law of
mass conservation, and ii) the model has to identify a restriction on input or output to
create scarcity within in the system of interest.1 Even though Ecopath type models,
which internalise energy and mass flows, are ecosystem production models, they are
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limited in viewing the ecosystem as an interaction of species. Models of this type
cannot be expected to give the long term predictability needed for strategic planning,
whereas an ecosystem production model structured around functional components can
be expected to give a relatively well defined attractor for the system.1 Additionally,
models like Jones (1982) and Ecopath are simulation models and very complex. Even
though these models may be good at evaluating how environment and fishing impact
the ecosystem, as Clark (2006) notes regarding complex simulation models, the rea-
sons underlying the model’s prediction may be obscured.

Recently, ecosystem models with properties other than species have developed into
a state suited for economic analysis. This model type builds on a long tradition for re-
search in the distribution of biomass in the marine ecosystem with respect to body
size, first presented by Sheldon et al. (1972) and Sheldon et al. (1973). The origin
of this research was a search for a holistic description of biota with properties at the
ecosystem level. The distribution of biomass with respect to the size of the organisms
seemed, across ecosystems, to show predictable properties for small particles in the
pelagic waters. Sheldon et al. (1977) included larger fish in a theory that relates fish
production with primary production in the sea. This theory interprets the observed
distribution of organisms with respect to size as a consequence of the trophic system.
That is, primary production is performed by small particles in the sea. Secondary pro-
ducers are found in a wide range of sizes, and in the sea, predation is characterised
by the predator being larger than what it consumes. In this way, energy captured by
small primary producers pass through a food chain of successively larger consumers,
thereby creating a specific distribution of numbers or biomass with respect to organism
size. Benoît and Rochet (2004) formulated the theory into a time dependent contin-
uous model where the dynamic of the system is driven by predation and subsequent
somatic growth of the predator. The Andersen and Beyer (2006) formulation of this
model excels in providing a formulation that allows for an analytic solution for equi-
librium without a fishing. The model presented in this paper is basically analogous to
Benoît and Rochet (2004), with some minor additions inspired by Andersen and Beyer
(2006) which allow for analytical solutions for equilibrium without fishing.

The intention of the present paper is first to direct resource economic attention to
a specific type of model where the dynamic in the system is driven by predation and
subsequent somatic growth. The Benoît and Rochet (2004) model is therefore for-
mulated as an ecosystem production model that allows for economic analysis of the
exploitation of the marine ecosystem by a fishing. That is, it is an example of the
production model required for Ecosystem Management to link from the ecosystem to
the operational level. Second, because the model is meant to be an ecosystem man-
agement tool, it must be transparent in how the results in the economic analysis are
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consequences of the assumptions. Additionally, results must be able to be duplicated.
Therefore, in order to make the results transparent, reproducible, and extendable to
other aspects important to the management of fishing, the model will be thoroughly
described. This article therefore provides the underlying assumptions, a description of
the implementation, a discussion of choices in the model, and possibilities for exten-
sion.

Section 2 gives a thorough description of the model and numerical implementa-
tion and parameterisation. Section 3 provides two simple experiments to establish
the maximum rent point and open access point for the system. Section 4 discusses
different choices made in the implementation of the model and the possibilities for
extension to other dimensions. Some technical details are laid out in the appendix.
These details are important for a fully comprehension of the implementation of the
model, but not to understand its general structure.

2 The model

In this section, the model and numeric implementation and parameterisation are spec-
ified. The elements of the model will first be introduced in a conceptual manner,
without explicit discussion of assumptions and functions. In following paragraphs,
assumptions will be specified at different levels—first at a conceptual level and then at
the specific functional level. Behind the model is a theory of distribution with respect
to the size of the organism which follows specific rules. These rules are used to param-
eterise at a primary level in paragraph 2.6. In paragraph 2.7, numeric implementation
is described, followed by a parameterisation of the system.

2.1 The concept

The purpose of the present model is to model a marine ecosystem based on a trophic
system, with special focus on secondary production in the system. In other words,
higher trophic levels are emphasised, while the input of primary producers is taken
as external. The atomic production unit of this marine ecosystem is the individual
fish,2 and production is the somatic growth of the fish. In order to produce, the fish
has to consume other fish. The fish is then also a product, a product that can be
caught by humans or be internally distributed between production units. Thus, the
atomic product of the marine ecosystem is the individual fish, and this product may

2The model does not make distinctions according to phylogeny. Accordingly, “fish” refers to merely
an organism.
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be internally allocated by a predation interaction, or may be caught by humans as an
outlet from the ecosystem.

In a production model for economic analysis, mass conservation will normally be
modelled into two distinct features: i) mass conservation in the allocation between
production units, and ii) production as a consequence of allocated resources.1 Mass
conservation in allocation means that a resource used by a production unit must be
supplied either externally or internally. That is, a consumed fish must correspond to
an eaten prey if it is not supplied from external sources. Production as a consequence
of allocated resources means that, in the marine ecosystem, the predator will grow
only as a result of the consumed prey. Modelling every single organism in an ecosys-
tem is impossible, so fish must be stratified appropriately. When fish are stratified,
internal allocation between production units can be described as an input–output ma-
trix with strata as both rows and columns. An ecosystem production model can then
be constructed by letting the change of a group i with mass of si be modelled as:

∂si
∂t

= Fi(wi, z1,i, z2,i, . . . , si)−
∑
u

zi,u − yi (1)

where wi represents a resource that is restricted to w• at the system level, and the
elements zu,i are elements of an input–output matrix z representing internal allocation
as a consequence of predation. zu,i thus represents the quantity individuals in unit i
consume from a unit u per time unit. The input–output matrix itself will be a function
of s: z = z(s). The element yi represents human extraction from the resource, and
the production function Fi must include the maintenance, respiration and reproduction
cost of the units in the group.

As mentioned previously, the fish in the model (1) are expected to be stratified
appropriately. Stratified appropriately means that fish are stratified in a manner so
the predator–prey interaction matrix z(s) is predictable. This predictability can be
expected if the fish are stratified according to their function in the trophic system.1 In
the marine ecosystem, the function of the individual fish, seen in a trophic context,
is closely related to its size. For example, two fish of the same size, but of different
species, have much more in common with respect to food preference and predator risk,
than, for example, two fish of the same species but of different sizes (Jennings et al.,
2001; Scharf et al., 2000). Furthermore, predators in the marine ecosystem are gener-
ally considerably larger than their prey, and therefore body size is a rough indicator
of trophic level (Borgmann, 1987). In other words, the distribution of individuals with
respect to size can be seen as mapping the trophic system.

As a result, organisms in the sea in the model are stratified according to body mass
m, referred to as size. The strata, or bins, are made infinitely small, transmuting strata
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Figure 2: The elements of the model. See the text for explanation.

into a continuum of m. The models’ state variable is concerned with the number of
fish in the sea at a given size. The state variable N(t,m) gives the density of fish of
sizem at time t and is referred to as the spectrum. Strictly speaking, density is defined
both with respect to volume and mass. The density with respect to volume merely
signifies that the model is representative of one cubic meter of water, and units are
therefore in per cubic meter of sea. Density with respect to weight signifies that, in
order to know the number of fish in an interval of size, for example, between m1 and
m2, the density must be integrated:

´m2

m1
N dm.

In figure 2, the processes in the model are illustrated. The diagram illustrates
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the population spectrum with size as the abscissa and density as ordinate. The black
line thus illustrates N(m) and the pink illustrates that N is a density. To know the
distribution of the fish, N must be integrated and hence, the area under the curve
must be calculated. The N is drawn as a line. If the two axes are both logarithmic, a
pristine ecosystem without fishing is expected to form a straight line with a slope of
approximately -2 (Andersen and Beyer, 2006).

In the figure, two black curved arrows go from top to bottom, marked by µN at
the top and EN at the bottom. These arrows represent the driver of the dynamic in
ecosystem production: the predation interaction. This interaction creates a mortality
of µN for the prey and leads to the consumption of EN for the predator. To be a
production model there must be conservation of mass in every predation event. This is
in the discrete model (1) secured by the input–output matrix z. As the strata becomes
into a continuum of m, the predator–prey interaction matrix becomes, as a result, a
two-dimensional interaction density. This approach preserves the principle of conser-
vation of mass in the system—that is, for every consumed fish there is a corresponding
demise.

Consumption leads to somatic growth g of the predator. Because a fish’s only
attribute in this model is its size, a fish is a point in the m-dimension. When a fish
grows, and therefore increases in size, its equivalent point moves up the m-dimension
with speed g. The total effect of all fish with somatic growth is a flux—a number
of particles passing a given point—of gN . This is in the figure 2 illustrated by the
dark red points and arrows marked gN . In the model, growth is a consequence of
consumed prey g = g(E). Somatic growth is always smaller than consumed food,
and the difference represents defecation, respiration, and reproduction.

In the top of the figure, green arrows marked νN represent mortality due to fishing,
the same principle of conservation of mass applies to this interaction. What is caught
has to equal what leaves the ecosystem.

From the predator–prey interaction and fishing interaction, growth and mortality
are derived, and this leads to the dynamic of the spectrum. As growth leads to a flux
gN of particles in the spectrum, the dynamic can be described with a flow equation
controlling the state variable:

∂N

∂t
= −∂gN

∂m
− µN − νN (2)

The partial differential equation (2), known as the Kendrick–von Foerster equation,
is the main engine in the model. To turn the equation into a model, assumptions are
required regarding the predator–prey interaction, growth function, and how fishing
extracts fish from the system. These assumptions follow in the later paragraphs.
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This description and the equation system developed below describe a spectrum
with no ends. To turn this into a numerical model, the spectrum must be limited and
the process related to the spectrum beyond and below the bounds must be supplied as
an external impact. The model contains three external impacts:

1. Organisms in the lower end of the spectrum will have main prey outside the
spectrum. This is addressed by applying fixed extra consumption to the lower
end of the spectrum, represented in figure 2 by the blue arrows.

2. Organisms in the upper end of the spectrum will have main predators outside
the spectrum. This is addressed by applying a fixed extra mortality rate to the
upper end of the spectrum, represented in figure 2 by the red arrows.

3. The first point N1 in the spectrum must be supplied at every iteration cycle as
a boundary condition. It is in the numeric implementation supplied by a fixed
value corresponding to a level without fishing.

In the following paragraphs, this conceptual model will be developed first into
a mathematical description, and will be followed by numerical implementation and
parameterisation. The development of the model is performed in steps from general
conceptual functions towards specific functions.

2.2 The conservation of mass

A central element in the model (1), important for the model to be a production model,
is the physical law of conservation of mass, represented by the input–output matrix
z. This matrix tracks all predation events, and thereby allows for summations of
predation events to produce system level properties. The conservation of mass in the
single predation event is reflected as a mass balance on the system level—that is,
the mass of all consumed prey equals the mass of all predation victims. This mass
balance principle is a very strong concept for modelling, as the principle of mass
conservation is an identity and therefore can be summarised to the system level without
any accumulation of errors.

In the model, organisms in the sea are characterised by one attribute: massm∈R+.
The main function of the trophic system, when secondary production is the focus, is
the predator–prey interaction represented by z in model (1). Because strata have been
transformed into a continuum of m, the predator–prey interaction matrix becomes,
as a result, a two-dimensional interaction density. The distribution of the predator–
prey interaction will thus be described by the two-dimensional interaction density

14



Φ(mp,mr), given the density of the interaction between prey with massmp and preda-
tor with massmr. The density of mortality of prey with massmp, in figure 2 indicated
by µN , can then be found as

´∞
0

Φ(mp,mr) dmr. The density of consumed mass by
predators with massmr, in figure 2 indicated byEN , will be

´∞
0
mpΦ(mp,mr) dmp.

If the mass of predation victims and the consumption of predators are integrated over
prey and predators, respectively, the two-dimensional interaction density produces the
mass balance of the system as
ˆ ∞

0

mp

ˆ ∞
0

Φ(mp,mr) dmr dmp ≡
ˆ ∞

0

ˆ ∞
0

mpΦ(mp,mr) dmp dmr (3)

On the left-hand side, the biomass of all consumed prey is indicated and on the right-
hand side, the biomass of all predators’ consumption is indicated. This mass balance
identity (3), where the mortality and consumption are calculated on their respective
sides, serves as a foundation for the model. It has two concepts: the individuals de-
scribed by their respective mass as a continuum, and the two-dimensional predator–
prey interaction density describing the allocation caused by predation.

2.3 Assumptions

In the mass balance identity (3) of the predation interaction, there are no assumptions
besides the law of conservation of mass. To expand this mass balance identity into
a model, assumptions are required for i) how fish are distributed in the sea, ii) how
the predator–prey interaction can be described, iii) how consumed mass will be con-
verted into somatic growth of the individual, and iv) how mortality not covered by
the predator–prey interaction can be described. These assumptions will be submit-
ted as conceptual functions before specific functions employed in present model are
presented in paragraph 2.4.

1. The distribution in the sea. This model assumes that individuals have been
distributed randomly and independently in the sea as by a Poisson process. The
density of individuals in the sea N , in figure 2 illustrated by the black line, is
thus a function of only time t and mass of the individuals m

N = N(m, t) (4)

but independent of location in the sea. The dimension of N is individuals per
volume per mass, so strictly speaking N is a density both with respect to space
and mass, where the former is a consequence of random distribution assumed
equally throughout the sea.
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2. The predation. The interaction between predator and prey is governed by i)
a predator preference function φ(mp,mr)∈ [0, 1] (with a dimension of indivi-
duals−2) indicating predators with mass mr preference for prey with mass mp,
and ii) the predators search volume v(mr) (dimension volume per time), and iii)
a functional response f . A functional response is the relationship between the
available prey and the consumption of the predator (Holling, 1959). In the for-
mulation of the present model, the functional response f ∈ ]0, 1] with f = 1
for no available food and decreasing with increasing availability of prey, ap-
proaches zero for an infinite amount of prey.3

A predator with a search volume of v will, as trawls the sea, encounter other
fish in its search volume. The density of fish with mass mp within the search
volume of a fish with massmr will beN(mp)v(mr). If the fish has a preference
for the fish it encounters given by φ, there is a density of potential interaction
Φ:

Φ(mp,mr) = v(mr)φ(mp,mr)N(mp)N(mr) (5)

(dimension is per volume per weight per time). The predator is, however, limited
in its consumption by of functional response f(Φ,mr). The realised interaction
density is then:

Φ(mp,mr) = Φ(mp,mr)f(Φ,mr) (6)

The density of mortality for prey with mass mp is determined by:

µ(mp)N(mp) =
ˆ ∞

0

Φ(mp,mr) dmr (7)

where µ is a hazard function or the instant mortality rate with dimension per
time per individual

The density of consumption with respect to predators with mass mr is then
determined by:

E(mr)N(mr) =
ˆ ∞

0

mpΦ(mp,mr) dmp (8)

where E is the expected consumption for a predator with mass mr with dimen-
sion weight per time.

3Functional response is, in economic terms, an expression of the declining marginal production-
capacity of the predator with respect to prey.
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3. Somatic growth. Ingested food used by the fish ultimately results in defecation,
respiration, reproduction, and growth. The expected growth of the individual is
assumed to be described by a function of expected consumption:

Expected
(

dm
dt

)
= g(E) (9)

When a fish increases its weight, it will move up in this system’s mass dimension
with speed dm

dt . The flow of individual fish up through the mass dimension will,
at a specific point on the mass dimension, be expressed as a flux, or the number
of individuals passing the point per time. So, somatic growth prompts, as a
result of (9), a flux of gN , which is illustrated in figure 2 by dark red arrows
marked gN .

4. Other mortality. The only mortality besides predation considered in the present
model is the mortality caused by fishing. Even though it in assumption 1 is
assumed that the distribution of fish is independent, fish in reality are clustered
and fishermen target a specific size. This is modelled by assuming that fishing
vessels trawl the sea with a fishing selection function of θ(m,mf ), indicating
the gear and fisher “preference” for fish of mass m when vessels have target
mf . Fishing vessels distribute effort, so the density of effort of all vessels in
combination can be described by Υ = Υ(mf , t). Fishing can then be described
as a density of fishing interaction Θ:

Θ(m,mf ) = θ(m,mf )N(m)Υ(mf ) (10)

In the population, the impact is a fishing mortality hazard ν determined by:

ν(m)N(m) =
ˆ ∞

0

Θ(m,mf ) dmf (11)

and the resulting harvest density H with respect to target size mf :

H(mf ) =
ˆ ∞

0

mΘ(m,mf ) dm (12)

By integrating (11) over fish size m and (12) over vessel target mf the mass
balance identity in the fishing interaction are produced:
ˆ ∞

0

m

ˆ ∞
0

Θ(m,mf ) dmf dm ≡
ˆ ∞

0

ˆ ∞
0

mΘ(m,mf ) dmdmf (13)
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with the total mass of victims of fishing on the left-hand side and the total mass
of the harvest on the right-hand side.

Recall that a consequence of the approach describing the population as a density
on a continuous mass dimension is that the individual fish is a point in the mass di-
mension. When the individual fish exhibits somatic growth, it will move up the mass
dimension. The somatic growth of all the individual fish will therefore be equivalent
to a flow of particles in the mass dimension. Therefore, the McKendrick-von Foer-
ster equation (2) can be employed to model the dynamic of the system in numeric
implementation.

2.4 Functions for modelling

To construct a mathematical model out of the concepts and assumptions of para-
graphs 2.2 and 2.3, this section supplies the specific functions applied in the present
model. These functions are inspired by Andersen and Beyer (2006), and chosen be-
cause they allow for analytic solutions to a system without fishing. Table 1 gives an
overview of all symbols used. The mathematical model consists of the following parts:

• The preference function, which determines the preference of predators for prey,
corresponds to a log normal probability density:

φ(mr,mp) =
1

σ
√

2π
exp

−1
2

 log
(
mr

mpβ

)
σ

2
 (14)

where β is the characteristic predator prey mass ratio and σ is a measure of the
breadth in the search pattern.4

• For the search volume function is used:

v(mr) = γmq
r (15)

where γ, the search volume prefactor, and q, the search volume exponent, are
parameters.5

4The parameter σ corresponds to the breadth parameter σ′ in the erratum to Andersen and Beyer (2006)
as σ =

√
2σ′

5The prefactor γ must to correspond to the prefactor γ′ in Andersen and Beyer (2006) be σ
√

2π times
bigger i.e., γ = σ

√
2πγ′
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Table 1: Symbols used in the model

Symbol Description Unit Type

m Mass of fish g Variable
t Time s Variable
N Density of fish m−3g−1 Dependent
φ Preference – Function
Φ Interaction density m−3g−2s−1 Function
v Search volume m−3s−1 Function
f Functional response – Function
µ Mortality hazard s−1 Function
E Consumption g s−1 Function
g Growth g s−1 Function
θ Fishing selection – Function
Θ Fishing interaction density m−3g−2s−1 Function
ν Fishing mortality hazard s−1 Function
ς Breadth of fishing selection – Control
Υ Effort density m−3g−1 Control
H Harvest density m−3s−1 Output
R Revenue density $ m−3s−1g−1 Output
C Cost density $ m−3s−1 g−1 Output
P Price $ g−1 External
c Cost per. effort $ s−1 External
σ Food preference breadth – Parameter
β Characteristic predator prey ratio – Parameter
γ Search volume prefactor m3s−1g−q Parameter
q Search volume exponent – Parameter
h Maximum food intake prefactor gn−1s−1 Parameter
n Maximum food intake exponent – Parameter
ε Food conversion factor – Parameter
κ Spectrum density prefactor gλ−1m−3 Parameter
λ Slope of equilibrium spectrum – Parameter

19



• For the functional response a Holing type II functional response is used:

f
(
Φ, N,mr

)
=

(
1 +

´∞
0
mpΦ(mp,mr) dmp

hmn
rN(mr)

)−1

(16)

where h and n are parameters. As(
1 +

Φ
hmn

rN

)−1

−−−−→
Φ
N→∞

hmn
r

hmn
r can be interpreted as the individual’s maximum food intake under infinite

food supply. h is then the maximum food intake prefactor and n is the maxi-
mum food intake exponent.

Note that the integral in equation (16) equals the total consumption if there
were no functional response. This will be proportional with N(mr), which can
be cancelled out of the fraction. The fraction is therefore the expected consump-
tion of the individual if there were no functional response divided by maximum
food intake. f is then decreasing and a strictly concave function of the density
of any prey size and has a value between zero and one.

• For the growth function a simple conversion of food into growth by a conversion
factor ε is used:

g = εE (17)

In the presence of an assumption of a power law for the biomass size spectrum,
the conversion parameter ε, as it follows from appendix 2.6, is determined from
the other parameters.

• The fishing selection function, which determines the “preference” for fish of size
m when the target of the vessel is mf , corresponds to a log normal probability
density:

θ(m,mf ) =
1

ς
√

2π
exp

−1
2

 log
(
m
mf

)
ς

2
 (18)

where ς is a measure of the breadth of the fishing pattern of the vessel. Both ς
and the effort density Υ are control parameters.
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2.5 The economic model

Fishing vessels are exploiting the resource with a target of mf , a breadth of ς and a
density of effort Υ. The total effort V (proportional to the number of fishing vessels
per day) in the interval Ω can be calculated as:

V =
ˆ

Ω

Υ(mf ) dmf (19)

The fishing fleet will have a density of revenue and cost of:

R(mf ,Υ) =
ˆ ∞

0

P mΘ(m,mf ) dm (20)

C (mf ,Υ) = cΥ (21)

where P = P (m) is the value per weight of landed fish, and c is the cost of applying
a unit of effort. The total revenue and cost in monetary value per volume per time is,
respectively,

TR(Υ) =
ˆ ∞

0

R(mf ,Υ) dmf (22)

TC (Υ) = c

ˆ ∞
0

Υ(mf ) dmf (23)

2.6 The equilibrium spectrum

Behind the formulation of this model, based on many years of observation following
Sheldon et al. (1972) and Sheldon et al. (1973), is an expectation that the spectrum, in
the absence of fishing, has a steady state solution where the spectrum can be described
by a power law. In other words, an equilibrium population density exists:

?

N = κm−λ (24)

where κ is a prefactor describing the magnitude of the spectrum and the exponent λ is
the “slope” of the spectrum. This steady state solution without fishing will be referred
to as the equilibrium spectrum. Andersen and Beyer (2006) found that the exponent λ,
with formulation of functions as in paragraph 2.4 and with the additional assumption
of all individuals in an equilibrium spectrum having the same functional response f

?
,

can be described by the physiological parameters of the individual fish by:

λ = 2 + q − n (25)
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As can be seen in appendix A, where the equilibrium spectrum is analysed, the pa-
rameters in the model are interlinked. If n and q are given, the model additionally has
seven other parameters: σ, β, ε, γ, h, κ and f

?
. If five of these are given, the rest fol-

low. In addition, as can be seen in appendix A, some constants can be calculated both
analytically and numerically, and thereby validates the numerical implementation.

2.7 Numerical implementation

In this section, the numeric implementation of the equation system, as set up in pre-
vious paragraphs, is described. The purpose is to make a simulation model where the
model system can be used as an experimental ecosystem where fishing is the treatment
or control. The output will be the harvest and its revenue and the resulting state of the
ecosystem represented by the density spectrum.

Representing results from analysis of the biomass or number spectrum in double
logarithmic diagrams is common because this gives an easily visualised interpretation.
For example the equilibrium population N

?
, if it follows equation (24), will show up

as a straight line. The view of mass and number spectra are generally the most mean-
ingful if, at least, the scale of mass is equidistant in the logarithm to the mass. Setting
a grid equidistant in the logarithm to the mass, if measured in the mass dimension,
means that the grid distance ∆m will change throughout the grid, making numeric
calculus operations awkward. Therefore, in agreement with the approach of Benoît
and Rochet (2004), the whole equation system given above is transformed into func-
tions of x where m = exp(x). Thus, the grid distance ∆x will be fixed and numerical
calculus operations are straightforward. At the same time, the dimension xwill impute
a trophic view onto the system. Because the predator–prey ratio b is constant through
the system, the x dimension can approximately be linear transformed into trophic level
τ by

τ(x) ≈ a+
x

log(b)

where b is the predator–prey ratio and a is a constant:

a = 1− log(m1)
log(b)

where m1 is the typical mass of primary producers.
The transformation from mapping against mass m into mapping against x where

m = exp(x) will, at the same time, transform the target of vessels from mf to ξ on
the same scale as x, where mf = exp(ξ). The dimension of ξ and x is, of course, the
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same, but it is kept separate because fishing is not performed all over the spectrum.
The grid of ξ does therefore not need to encompass the entire grid of x. By keeping x
and ξ separated, computation can therefore be eased. Table 2 gives an overview of the
transformed equations.

The fish community is represented by J data points (xj , Nj) , j = 1, 2, . . . , J in
the log-mass × population-density space. The points in the log-mass dimension are
fixed and equally spaced with a distance of ∆x. The fishing fleet is represented by
L data points (ξl,Υl) , l = 1, 2, . . . , L in the log-target-mass × effort-density space.
Points in the ξ dimension are fixed and equally spaced with a distance of ∆ξ.

The main engine of the numeric implementation is the transformed flow equation:

∂N

∂t
= −∂gN

∂x
e−x − µN − νN (26)

This partial differential equation is transformed into a discrete approximation:

∆Nj
∆t

= −∆ (gjNj)
∆x

e−xj − µjNj − νjNj (27)

and an iteration routine calculates the value ofN in the population density dimension
with time steps of ∆t.

To secure stability in the system, an upwind scheme (Press et al., 2007) is used.
In an upwind implementation gjNj − gj−1Nj−1 is used as ∆(gjNj). However, the
system can be further stabilised by the additional use of an implicit formulation.6 In
an upwind implicit formulation gj,tNj,t+∆t−gj−1,tNj−1,t+∆t is applied as ∆(gjNj)
(implicit only in N ). The flow equation in the upwind implicit formulation appears
similar to:

Nj,t+∆t −Nj,t
∆t

=− gj,tNj,t+∆t − gj−1,tNj−1,t+∆t

∆xj
e−xj

− µj,tNj,t+∆t − νj,tNj,t+∆t

(28)

This equation is rearranged so that terms ofN are collected:

Nj,t =Nj−1,t+∆t

(
−gj−1,t∆t

∆x

)
︸ ︷︷ ︸

Aj

+Nj,t+∆t

(
1 +

gj,t∆t
∆xj

+ µj,t∆t+ νj,t∆t
)

︸ ︷︷ ︸
Bj

(29)

6K. H. Andersen, personal communication

23



Table 2: Equations with x as variable

Mass m(x) = ex

Equilibrium density
?

N(x) = κe−λx

Search volume v(x) = γeqx

Predator preference φ(xp, xr) =
1

σ
√

2π
exp

(
−1

2

(
xr − xp − log β

σ

)2
)

Potential interaction Φ(xp, xr) = v(xr)φ(xp, xr)N(xp)N(xr)

Functional response f(Φ, N, xr) =

(
1 +

´∞
−∞0

Φ(xp, xr) (exp)2 dxp
hNenx

)−1

Realised interaction Φ(xp, xr) = Φ(xp, xr)f(Φ, xr)

Expected mortality µ(xp)N(xp) =
ˆ ∞
−∞

Φ(xp, xr)exr dxr

Expected consumption E(xr)N(xr) =
ˆ ∞
−∞

Φ(xp, xr) (exp)2 dxp

Fishing selection θ(x, ξ) =
1

ς
√

2π
exp

(
−1

2

(
x− ξ
ς

)2
)

Fishery interaction Θ(x, ξ) = θ(x, ξ)N(x)Υ(ξ)

Fishing mortality N(x)ν(x) =
ˆ ∞
−∞

Θ(x, ξ)eξ dξ

Harvest density H(ξ) =
ˆ ∞
−∞

Θ(x, ξ) (ex)2 dx

Revenue density R(ξ,Υ) =
ˆ ∞
−∞

pΘ(x, ξ) (ex)2 dx

Cost density C (ξ,Υ) = cΥ

Total revenue TR(Υ) =
ˆ ∞
−∞

R(ξ,Υ)eξ dξ

Total cost TC (Υ) = c

ˆ ∞
−∞

Υ(ξ)eξ dξ

The flow equation
∂N

∂t
= −∂gN

∂x
e−x − µN − νN
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Then, by first calculating vectorsA andB and supplying N1,t+∆t, the rest ofN t+∆t

can be calculated as:

Nj,t+∆t =
Nj,t −Nj−1,t+∆tAj

Bj
(30)

where vectorsA andB are

Aj = −gj−1,t∆t
∆x

(31)

Bj = 1 +
(
gj,t
∆xj

+ µj,t + νj,t

)
∆t (32)

Details related to the values of N1,t+∆t and A1 are given in appendix B.
At every iteration step, the interaction densities Φ and Θ are calculated for all grid

points expanded to two dimensions (prey×predator and fish×fishing, respectively) by
the functions given in table 2. The vectors of gN , µN and νN are calculated by
approximating integrals using summation over the grid point. Corrections for moving
from infinite to finite intervals are treated bellow.

2.8 Boundary and initial values

The model needs to be supplied with a set of initial values forN for t = 0. AnyN will
work, but if nothing else is stated, the model begins from the equilibrium spectrum:

N t=0 =
?

N (33)

In the model description, there is no consideration of how and where the spectrum
starts and ends. The model only gives the trophic system for secondary producers
with both prey and predators. The model will then simulate an interval of an infinite
spectrum. In appendix B.2, details related to incorporating the part of the spectrum that
is outside the model as an external influence are described. It consists, as mentioned
in paragraph 2.1, of three parts.

1. Organisms in the lower end of the spectrum will have main prey outside the
spectrum. This is addressed by applying fixed extra consumption to the lower
end of the spectrum, represented in figure 2 by the blue arrows. When the input
to the model system is fixed, different levels of fishing will not affect the input.
Therefore, the economic inference relates solely to the dynamic caused by the
predator–prey interaction and not from changes in external input.
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2. Organisms in the upper end of the spectrum will have main predators outside
the spectrum. This is addressed by applying a fixed extra mortality rate to the
upper end of the spectrum, represented in figure 2 by the red arrows. Applying
a fixed rate of mortality, not just a fixed level of mortality, ensures that when the
population density drops, so does the external mortality.

3. The first point N1 in the spectrum must be supplied at every iteration cycle as a
boundary condition, and is supplied as the equilibrium level without fishing.

Additionally, in the appendix B.1 correction of errors related to the implicit upwind
scheme is considered.

2.9 Setting the parameters

The model contains several parameters related to the theoretical model and numeric
implementation. Some parameters in the theoretical model are related to observable
properties in nature and can, therefore be empirically parameterised. Included in this
group are the parameters of the equilibrium spectrum, i.e., magnitude κ and slope
λ. The present model builds on a theory where the macroscopic observation, the
spectrum, is explained by a behavioural and physiological theory of the individual
fish. There is little hope for empirical parameterisation of specific parameters in the
behavioural model. However, the consequences of the behaviour in the form of the
total interaction density Φ is, in principle, observable. If the equilibrium spectrum
is assumed to be observed with the interaction density, there is still some margin left
where the parameters must be selected based on the preferred behaviour of the model
system, at least until a better approach is available. In appendix C, this is performed,
along with the parameters related to numeric implementation. An overview of the
values assigned to the parameters in the implementation of the model is given in table 3
and 4.

Regarding the parameters of the numerical implementation, the ideal would be
that the numerical implementation do not add anything to the behaviour of the model
system. This is not possible. However, what can be achieved is, through proper param-
eterisation of the numeric model, minimising the numeric implementation’s influence
on the system. There will, however, always be a trade-off between computation time
and reduction in the numeric implementation’s influence. Thus, the goal is to achieve
a proper balance.
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Table 3: Parameters in the biological model

Symbol Description Unit

σ Food preference breadth 1.8 – a)
β Characteristic predator prey ratio 100 – b)
q Search volume exponent 0.8 – b)
f
?
γ Characteristic search volume prefactor 2000 m3year−1g−q c)
f
?

Equilibrium functional response 0.5 – a)
n Maximum food intake exponent 0.75 – b)
κ Spectrum density prefactor 0.005 g1+q−nm−3 c)
γ Search volume prefactor 4000 m3year−1g−q d)
h Maximum food intake prefactor 25.3 gn−1year−1 d)
ε Food conversion factor 0.213 – d)
λ Slope of equilibrium spectrum 2.05 – d)

a) Tested in appendix C
b) After Andersen and Beyer (2006)
c) Set to resemble the North Sea (K. H. Andersen, personal communication)
d) Derived as explained in appendix

Table 4: Properties of the grid

Symbol Description

∆t Time step 1/6 year a)
J Number of grid points, biological 141 – a)
x1 Smallest grid point, biological 0 +log(g)
xJ Largest grid point, biological 14 +log(g)

L Number of grid points, fishery variably –
ξ1 Smallest grid point, fishery variably + log(g)
ξL Largest grid point, fishery variably + log(g)

a) Tested in appendix C
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Figure 3: The price function used in the experiment

3 Experiments

3.1 Methods

To illustrate and evaluate the model, two experiments are performed: A) An experi-
ment to find the sustainable production and sustainable rent level, and B) an experi-
ment to find the open access solution using adaptive fishing agents.

In both experiments, a sigmoid price function is used:

P (m) = (1.0375 exp(−3.0895268 exp(−0.0001603m))− 0.0375) $ g−1
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illustrated in figure 3 and a fixed cost of

c = 0.0004 $ m−3

where the $ is used as a symbol for an arbitrary currency. The breadth parameter ς is
disregarded in the fishing selection function as a control and kept fixed at ς = 1. See
appendix C.5 for details related to ς .

Experiment A

In the experiment, fishing is limited to target one size. Different treatments are given in
the form of different effort levels and target sizes for fishing. The model system is run
for each treatment until convergence to a steady state where the output in the form of
population density, harvest amount, revenue, and cost is recorded as one observation.
In total, there are 1,320 applied treatments. For details, see below.

Convergence criteria The numerical model is run until a coefficientof variationCV
of any point in theN is smaller than 10−5 for the last twenty-five years

CVj < 10−5 ∀ j; CVj = CV (Xj) |Xj = {Nj,t, Nj,t−1, . . . , Nj,t−24}

This is interpreted as convergence to a steady state solution. After convergence, the
system is run for an additional twenty-five years and the means of population density,
harvest and revenue are recorded together with other relevant observation. If this
convergence is not reached within 1,000 years, the iteration routine is stopped and the
observation is marked as “no convergence”.

Fishing parameters The fishing effort is concentrated to a single point, L = 1, and
the exp(ξ)∆ξ is, for convenience set to one, leaving the density of effort in the only
point Υ1 equal to the total effort V (proportional to the number of vessels).

V = Υ1eξ∆ξ = Υ1

The ξ × V space is examined by testing all combinations of

ξ ∈ {8.0, 8.1, . . . , 11.9, 12.0}, V ∈ {0.001, 0.01, 0.1, 0.2, 0.3, . . . , 2.9, 3.0}

given a total of 1,320 observations.
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Experiment B

The experiment starts from a steady state without fishing. Fishing is added with the
same grid distance as the population grid ∆ξ = ∆x. Fishing is initiated with effort
density Υ set to 10−5 for all points. After each iteration step, the profit density is
evaluated. If the profit is positive at a specific size, effort is increased at that point,
and if it is negative, the effort is decreased. The adaptation routine works on the
ratio between the density of revenue R and the density of cost C, and an adjustment
parameter ϑ. The next period’s effort is calculated as:

Υj,t+∆t =

Υj,t

(
1 + 10ϑRj,t

Cj,t

)
if Rj,t

Cj,t
< 1

Υj,t

(
1 + ϑRj,t

Cj,t

)
if Rj,t

Cj,t
≥ 1

The adjustment is then ten times more powerful for losses compared to profits. This
is an experience-based adjustment. Without this more powerful reaction on losses,
the system often exhibits intense oscillation and pulls fishing. The same behaviour
can be a result of an excessively large value of ϑ. In the experiment ϑ = 0.1 and
the system is run until the system reaches convergence criteria for a steady state. The
parameterisation of this function is totally ad hoc, with the purpose of finding the open
access steady state point. With another parameterisation of the adaptation function, a
steady state may not be reached.

3.2 Results

Experiment A

All treatments of Experiment A have reached criteria for convergence. Each obser-
vation is composed of an input in the form of a target ξ and an effort V . In steady
state, this leads to an output in the form of a harvest with the properties of total harvest
volume H• and a mean size of harvest x. In figure 4, the physical output is shown
as a surface in the control space, ξ × V space. Note that the landed mean size is
smaller than the target size, and that the mean size decreases with an increase in effort
if the target size is fixed. In figure 5, the control parameters are shown as surfaces in
sustainable yield space, x × H• space. The figure illustrates that the set of possible
sustainable yields is curtailed to the lower left part. If a sustainable yield is close to the
upper boundary, a marginal increase in sustainable harvest volume will require a rela-
tively high increase in effort, and at the same time, the target size must be increased if
mean size of harvest must be maintained.
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When harvest and effort are transformed into monetary units, the output is sum-
marised in total cost TC and total revenue TR, resulting in a rent π. Figure 6 shows
the sustainable yield rent surface in the control space. The rent surface is concave with
a well-defined maximum rent point.

Experiment B

In Experiment B, the population reaches convergence after 4,399 years. The effort
density, controlled by adaptive fishermen, does not reach criteria for convergence, but
continuous small adjustments with a coefficient of variation around 0.28. In figure 7,
effort density and population density are presented in black, and for a comparison,
these are shown for the maximum rent scenario in Experiment A. The population den-
sity is plotted relative to the equilibrium spectrum. As seen in the upper diagram, the
population structure changes as a consequence of fishing. Some parts of the spectrum
decrease while others increase. Because this is the consequence of a change in the
availability of prey and predation hazards, this is known as a trophic cascade. The
population density decreases at the target size, while it increases below the target.
This, combined with the slope in the equilibrium spectrum, results in the landed mean
size being smaller than target size. Table 5 contains a comparison of the central output
variables from the maximum rent and the open access scenario.

4 Discussion

The concept

The presented model builds on the physical law of conservation of mass. Conserva-
tion of mass in the single predation event is reflected as a mass balance on the system
level. In other words, the mass of all consumed prey equals the mass of all predators’
consumption. Because the principle of mass conservation is an identity, and therefore
can be summarised to the system level without any accumulation of errors, the mass
balance principle is a very strong concept for modelling. In a discrete model, the mass
balance is ensured by an input–output matrix. In a model with a continuous size di-
mension, like the present model, the input–output matrix becomes a two-dimensional
density of input and output: a predator–prey interaction density.

When predation is described with the two-dimensional interaction density where
the two dimensions are mass of predator and mass of prey, the conservation of mass
in the individual predation event has the consequence of mass balance on the system
level as shown in equation (3). Organising predation in this way then ensures the
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maximum rent in Experiment A. In the upper diagram, the population density relative
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Table 5: Compare of the output from open access and maximum rent for a single
owner. Target size for the open access case is given as the mean of the effort density
Υ. Target size and mean size of harvest are both given on the logarithm scale of the
model and converted into kg. The $ is a symbol for an arbitrary currency.

Variable Open Access Max Rent Unit

Target size ξ
8.50
4.92

10.71
44.73

+ log(g)
kg

Total effort V 2.05 1.35 year−1

Mean size x
7.19
1.32

9.29
10.85

+ log(g)
kg

Harvest H• 5.990 2.912 10−3g m−3 year−1

Total cost TC 8.213 5.419 10−4$ m−3 year−1

Total Revenue TR 8.213 21.809 10−4$ m−3 year−1

Rent π 0.000 16.390 10−4$ m−3 year−1

conservation of mass and allows for a continuum in the mass-dimension. By building
the model on this principle, the energy and nutrition flow of the trophic system are
internalised and drive the dynamic of the model. The model is then a trophic-dynamic
model, and size, according to which individuals are grouped, can be seen as a proxy
for the trophic level. The concept, where predation is described as a two-dimensional
interaction density, can then work as a framework for ecosystem production models
for economic analyses.

The assumptions that extend the framework set by the two-dimensional interac-
tion density was presented in two steps: the conceptual assumptions and the specific
applied functions. The conceptual assumptions are the simplest possible and they can
easily be extended. Below, the four conceptual assumptions are discussed, along with
the functions used in the present model. A discussion of details in implementation and
results of the experiments follows.

Distribution

In this model, the simplest approach is taken with respect to distribution of fish. The
individuals are assumed to be distributed randomly in the sea. This allows for a simple
description of the distribution of fish: a density in mass and time. However, this is a
simplification because fish, in reality, have a clustered distribution in the sea.
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Adding dimensions to the distribution of individuals that will be both meaningfully
with respect to economic and ecologic interpretation is easy. From an economic view,
space has been recognised as important in the management of fishing for a long time
(Gordon, 1954; Warming, 1911), and marine protected areas are high on the agenda
as ecosystem management tools. While space may be the most obvious dimension to
add to the model, dimension in the functional space of the fish can also be added. The
model of Andersen and Beyer (2006) operates with life story as an extra functional
dimension. This adds an extra dimension to the distributions of individuals; in this
case, the asymptotic maximum size in a von Bertalanffy growth equation is added.
As species can be mapped onto life history (but not the reverse), including life his-
tory can bring the model closer in a dimension other than size that is important in
human appreciation and valuation of fish: the species. While extending the model
to more dimensions in space will lead to more dimensions in the interacting distribu-
tion, including more functional dimensions, if the predation functionality is still only
a function of size, does not necessarily lead to more dimensions in the interacting
distribution.

The predation

The conceptual idea that predation is a consequence of the aggregated hunt of individ-
ual predators is a cornerstone in the theory of Benoît and Rochet (2004) for explaining
the empirical observation of the distribution of individuals with respect to size in the
sea. The use of power functions have a close link to studies of body-size functional
relationships (Huxley, 1932; Peters, 1983), and the use of the Gaussian function as a
preference function facilitates the analytic solution of the equilibrium without fishing
activity (Andersen and Beyer, 2006).

With respect to economic results, a change of the preference function will probably
not change much. However, a change of a combination of the functional response and
the preference function towards a more agent-based approach might result in changes
in the resulting population density, and thereby the cost of fishing and rent. The em-
ployed functional response is a Holling type II. The reasoning behind the Holling
type II functional response is the division of the predator’s time into search time and
handling time. If, to be more realistic, handling time is a function of the size of
the prey, the preference function could be set to optimise the predator’s consumption
(with some noise added). If, then, the density of prey increases, the proper functional
response will not be to eat more or less with the same preference, but the response will
be to change the preference in order to optimise consumption under the new density.
Incorporating this kind of response might change the resulting trophic cascade and
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thereby the economic interpretation.

Growth

The expected growth of the individual is assumed to be able to be described using a
function of expected consumption. The assumption, as written in (9), may seem trivial,
but there are two reasons why it is written explicitly as an assumption. First, the reason
is mathematical. When stochastic entries are transformed, the existence of a simple
transformation of the expected values is not given, but it depends on the distribution
of the entries and the transformation. There is then a potential for systematic errors
when scaling from the individual level to the system level. The second reason, more
importantly, is that this assumption is as central as the law of conservation of mass.
For a production model, the conversion of mass in the allocation between production
units is central, along with the concept of production as a consequence of allocated
resources. The consequence of a predator eating a prey is the somatic growth of the
predator, therefore this assumption of somatic growth as a function of consumption is
a central concept of the model.

The present growth function, with simple conversion efficiency, can be extended
to account for both respiration and reproduction allocation of consumed food. If the
model is extended with a functional dimension, this must be reflected in the growth
function given a density of growth with respect to that dimension. The model of
Andersen and Beyer (2006) incorporates this with the von Bertalanffy growth function.

Fishing

The representation of fishing and harvesting by the two-dimensional fishing interac-
tion density, because it ensures mass balance, is as fundamental for the conceptual
model as the predator–prey interaction density. The fishing selection preference func-
tion, which indicates the preference of gear and the fisherman in combination, is a
Gaussian function in this paper. As discussed in appendix C.5, there is ample room
for improvement in the understanding of the trade-off between narrowing the selec-
tion and the corresponding cost of a reduced harvest. Nevertheless, in the formulation,
there is a clear link to the real world, as effort has the unit of volume per time. How-
ever, this measure is only based on the assumption of randomly distributed fish. If
the fish are clustered and the fisherman has knowledge of where these clusters are,
the amount of water trawled will be less for the same fishing interaction. Therefore,
currently, without empirical data, the model of how the fisherman interacts with the
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ecosystem must be viewed as an as if approach where control parameters are not ob-
servable in the real world.

Parameters

Parameters in the biological model are set according to the theory of a equilibrium
density spectrum in an ecosystem with no fishing have properties ofN

?
= κm−λ. The

parameters of this equation is observable in nature. Other parameters in the biological
model are more speculative, but the result in the form of the density of interaction
is also an observable property. Appendix C discusses which parameters are set ac-
cording to the behaviour of the model system. In future developments of the model,
getting as many of the parameters established based on empirical observations will be
challenging.

Numerical implementation

There are details in the numerical implementation that affect the output of the model.
The most important detail is how consumption enters the system. In the present model,
a fixed amount of mass per time is supplied. An alternative is to allow the model to be
supplied via a fixed background spectrum that extends the spectrum below the model.
In that case, the individuals in the lower end of the model spectrum will feed partially
on the background spectrum. The input to the model system will then be dependent
on the density. For comparison of results from different treatments, comprehending
what drives the difference is important. Because the focus for this model is the trophic
interaction and the economical trade-off between targeting small or large fish, an input
dependent on the form of the trophic cascade in the system would be inappropriate.
Therefore, the fixed input is employed in the present model.

In the first grid point, the population density must be supplied at each step of the
iteration routine. In the model, this is done by setting the population density for the
first point equal to the equilibrium value, N1,t =N

?
1. Because the change in density

at the second grid point is determined by the gradient of flux gN , because the flux is
proportional to total input EN , and because this is supplied externally and fixed in
each step, the actual value of N1,t does not influences the flux. Therefore, the density
at the second grid point is also not influenced. The only influence the density at the
first point has in the system is through its loss as prey in the predator–prey interaction.
Here, the value of N1,t will have an impact, but the impact is small and a fixed N1 can
be viewed as part of the fixed input.
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Including recruitment would be a natural extension of the model; that is, to let
the input of individuals in the lower end, N1,t, be a function of density in the upper
end. This is, however, not an option with the present modelling of external input. As
discussed above, the N1,t influence on the system is almost negligible. Additionally,
the concept of species, as a prerequisite for dealing with recruitment, is not easily
incorporated in the model. One approach for dealing with species in an ecosystem will
be to link a species model to size-based model; let the size-based model determine
the predation and somatic growth in the species model; and let the species model
determine the genetic composition of the population in the size-based model.

Correcting for systemic overestimation

In the numeric implementation of the model, there is, due to the upwind scheme, a
systemic overestimation of ∆N . This is corrected in the present implementation by
an extra mortality rate. This correction is only accurate when the system is in the
equilibrium state without fishing. There seems, however, according to appendix C.1,
not to be any notable errors caused by the correction when there is a trophic cascade
in the system. There is, to my knowledge, no other report of a problem related to
systematic overestimation when this kind of model is implemented numerically. It
would seem to be good practice to report the details of how this problem is handled in
future work with this type of model.

Price and costs

In the present work, price and cost are without any empirical basis. It might seem to
be a problem to ascribe price to a given size. There are many different species, each
with a different price. This is, however, not a problem. All that needs to be known
is the expected distribution of species at a given size, an assortment. If the average
price of the species with respect to weight is multiplied with the assortment, the result
is the expected price with respect to size. In the model, the cost is closely linked
to the fishing selection function. Empirical data on gear selection and fisherman’s
knowledge of fish clustering, combined with detailed knowledge on prices on factor
input in fishing can produce an empirically based cost function.

Fisherman’s adaptation

The fisherman’s adaption in Experiment B describes quiet, simple behaviour. The
behavioural model must be considered as ad hoc because the parameters are chosen
with the aim of finding a steady state solution. There is no empirical data supporting
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these specific parameters. However, having this tool and refining it is important. For
example, if a restriction on maximum total harvest is placed on fishing, whether the
expected improvement in rent will occur in the system can actually be tested. In that
case, the adaptation function has to be extended to a market where the rights for harvest
are allocated to those with highest shadow prices on an extra unit. Other restrictions
may require other types of adaptation.

The experiments

The simple experiments performed in this paper illustrate two of several possible uses
of the model: 1) To investigate production of the ecosystem as a production unit given
a specific control, as in Experiment A, and 2) to predict the input control and the output
harvest from the ecosystem given a specific set of adaptive agents, as in Experiment
B. As illustrated in table 5, the rent in Experiment B under open access is inferior to
the rent in Experiment A under single owner control. Even though the model is not
parameterised to a specific ecosystem and market, and the values in the table therefore
must be seen as illustrative only, the inefficiency of the use of a common pool resource
where multiple agents make decisions on control input is illustrated once again. As
summarised in table 5, the present model shows that agents under open access, in
addition to supplying excessive effort, target fish of an inferior size. The resulting
output in the open access scenario compared with the maximum rent scenario has a
bigger harvest volume, but the size of landed fish are smaller and yield a lower price.
A contribution of the present model is thus the ability, in an economic analysis, to
incorporate the dimension of size in a production model, which is a dimension that is
important in the functionality of the ecosystem and in the demand function of landed
fish.

Experiments like Experiment A can investigate the production economics of the
ecosystem. The economic analysis will, nevertheless, not be complete before the anal-
ysis is performed in a capital theoretic setting where inter-temporal balancing can be
addressed. This is left for future work. Experiment B can easily be extended to in-
clude agents adapting to a specific type of regulation regime. This will move control
of the system to the institution of regulation. It will then be possible to test the poten-
tial of regulations in mitigating the inefficiency created by multiple agents use of the
resource as a common pool.

In this article, all results are presented from systems close to steady states. Steady
state situations are probably not found in nature, so here, dynamic systems under
constant change must be expected. The aim of the model is, however, to create an
ecosystem model suitable for long-term, strategic planning in the context of ecosys-
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tem management of marine ecosystems. Thus, the analysis of a steady state system is
vital because it enables long-term prediction of consequences of specific management
actions and can serve for setting strategic goals for the ecosystem. Steady state anal-
ysis can also be seen as the first step in research. When behaviour in steady states is
understood, a dynamic system can be investigated as a next step.

Conclusion

The presented model is a production model for a marine ecosystem where the dynamic
is caused by modelling the predation and subsequent somatic growth. The model is
formulated as an ecosystem production model that allows for economic analysis of
the exploitation of the marine ecosystem by fishing activity. The model is then an
example of the production model required for ecosystem management to create a link
from the ecosystem to the operational level. The model is the simplest production
model possible, built on the principles of (i) size, which is the attribute that determines
the predator–prey interaction, (ii) mass balance in the predator–prey allocation, and
(iii) mortality and somatic growth as consequences of the predator–prey allocation.
Other aspects important for the ecosystem management can, as discussed above, be
added, or other functions can be applied to the conceptual model. The formulation and
description of the present model can therefore serve as a reference for future work.
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A The equilibrium spectrum

Behind the formulation of this model is an expectation that the spectrum, in the ab-
sence of fishing, has a steady state solution where the spectrum can be described by a
power law. That is, there exists an equilibrium population density:

?

N = κm−λ (34)

The exponent λ is under the assumption that all individuals have the same equilibrium
functional response f

?
:

λ = 2 + q − n (35)

With the formulation of functions in paragraph 2.4, the integrals in the model can in
equilibrium be calculated analytically.7 There will, in equilibrium, be an equilibrium
potential interaction distribution Φ

?
, and there will thus be an equilibrium of consumed

food E
?

with properties of:

?

E
?

N =
ˆ ∞

0

mp

?

f
?

Φ(mp,mr)dmp

=
?

fα1m
2n−q−2 (36)

where

α1 = κ2γβq−n exp

(
σ2 (q − n)2

2

)
(37)

7Andersen and Beyer (2006) show in their appendix how the integrals are solved.
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The equilibrium functional response is then:8

?

f =

(
1 +

α1m
2n−q−2

hmn
?

N

)−1

=
(

1 +
α1

κh

)−1

(38)

Additionally, there will be an equilibrium mortality rate
?
µ with properties of:

?
µ
?

N =
ˆ ∞

0

?

f
?

Φ(mp,mr) dmr

=
?

fα2m
2n−q−3 (39)

where

α2 = κ2γβn−1 exp

(
σ2 (1− n)2

2

)
(40)

In the steady state scenario, and in the absence of fishing, the flow equation (2) be-
comes:

∂
?

N
?
g

∂m
= −?µ

?

N (41)

The conversion efficiency ε can therefore be determined by:

−?µ
?

N =
∂
?

Nε
?

E

∂m
⇐⇒

−
?

fα2m
2n−q−3 =

∂

∂m

(
ε
?

fα1m
2n−q−2

)
⇐⇒ (42)

−α2m
2n−q−3 = (2n− q − 2) εα1m

2n−q−3 ⇐⇒
ε =

α2

(2 + q − 2n)α1

= (2 + q − 2n)−1
β2n−q−1 exp

(
σ2 (1− q) (1 + q − 2n)

2

)
(43)

8This does not prove that the f
?

is independent of m because this is the assumption for equation (35)
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In the calibration of the model, if n and q are given, there will be a link between β, σ
and ε: If two are given, the third is determined by (43). If these four parameters are
given and the fifth is calculated, there is a link between κ, γ, h and f

?
given by (38). If

three are given, the fourth can be calculated. Furthermore, the constants α1, f
?

, α2 and
ε can be calculated from the analytic results in equations (37), (38), (40) and (43), and
can be compared with a numerical calculation using the equations (36), (16), (39) and
(42), thereby confirming the validity of numerical integration and differentiation. The
numerical implementation uses the numerical method (equations (36), (16), (39) and
(42)) to calculate the constants, and thereby is flexible to a change in specific functions
that do not allow for analytical solutions to the equilibrium spectrum.

B The numerical implementation

The first point in the numeric implementation (x1, N1) cannot be calculated from
equation (30) as N0 is not known, and likewise, equation (31) the A1 cannot be cal-
culated as g0 is unknown. The first point therefore must be supplied at each iteration
step. This is done by setting the first point equal to the equilibrium value in each time
step

N1,t+∆t =
?

N1 (44)

The rest ofN can then be calculated by (30). As the first elements ofA are not needed
in the calculation, it is just assigned the value of zero

A1 = 0 (45)

B.1 Systematic overestimation

The purpose of the numeric implementation of the model is to produce a model ca-
pable of giving proper estimates of production in the system. There is, however, a
systemic overestimation when moving from the continuous formulation (26) to the
discrete upwind version of (27). In an equilibrium without fishing, the biomass flux is
in the continuous version

?
g
?

N = εα1

?

f ex(2n−q−2)

where α1 and f
?

are constant in the system as defined in appendix A. The first part of
the right-hand side of (26) is then

∂
?
g
?

N

∂x
e−x = (2n− q − 2) εα1

?

fe
x(2n−q−3)
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This is in the upwind numeric method estimated by

∆
?
gj

?

N j

∆x
e−xj =

εα1

?

f
(

e
xj(2n−q−2) − e

(xj−∆x)(2n−q−2)
)

e−xj

∆x

this prompts a systemic overestimation of ∂gN∂x e−x of the magnitude of

εα1

?

fe
xj(2n−q−3)

(
2n− q − 2 +

e
−∆x(2n−q−2) − 1

∆x

)

This overestimation can be rectified by an extra mortality rate of

µ̌j = κ−1εα1

?

f

(
2n− q − 2 +

e
−∆x(2n−q−2) − 1

∆x

)
e(n−1)xj (46)

This extra mortality rate, calculated by (46), is added with µj and νj in (32) and
ensures the mass balance of the system. The numeric implementation is then able to
reproduce the equilibrium spectrum. Notice, as

lim
∆x→0

e
−∆x(2n−q−2) − 1

∆x
= −(2n− q − 2)

the µ̌ in (46) will approach zero as ∆x approaches zero, so the consequences of the
correction can therefore be tested by changing ∆x.

B.2 External predators and prey

Because only an interval of the spectrum is considered in the model, there are predators
and prey beyond and below the population in the model. Because the lower end of the
model spectrum has main prey outside the model and the upper part of the model
spectrum has main predators outside the model, this is an external impact that must be
incorporated.

From appendix A, it is known how large the feeding level and mortality must be
in equilibrium:

?

E
?

jNj =
?

fα1 exp ((2n− q − 2)xj) (47)
?
µ

?

jNj =
?

fα2 exp ((2n− q − 3)xj) (48)

48



where the constants α1, α2 and f
?

are set a acording to appendix A. With the constants
calculated, the two vectors of theoretical feeding and mortality in the numeric model
system are calculated as:

?

EN j =
?

fα1 exp ((2n− q − 2)xj) ∆t (49)
?

µN j =
?

fα2 exp ((2n− q − 3)xj) ∆t (50)

In the numeric model, the interaction density will be represented by a matrix of
interaction densities. The realised interaction in the model system in equilibrium Φ

?
is

calculated as:

?

Φp,r =
?

fv(xr)φ(xp, xr)
?

N(xp)
?

N(xr)∆t

the realised uptake and mortality are in the model without adjustments:

ẼNr =
J∑
p=1

?

Φp,r exp (xp)
2 ∆x (51)

µ̃Np =
J∑
r=1

?

Φp,r exp (xr) ∆x (52)

There is now a difference between what the raw numerical model predicts—(51)
and (52)—and what it must be if the spectrum were complete—(49) and (50). This
difference is caused by external predators and prey and will be corrected by adding an
extra consumptionOEN and mortality rateOµ, illustrated by the blue and red arrows
marked “fixed consumption” and “fixed mortality rate” in figure 2.

OEN j =
?

ENj − ẼN j

Oµ j =

?

µNj − µ̃N j
?

Nj

In this way, the model system is supplied by a fixed amount of external input in the
form of 1) the flux of individuals caused by somatic growth, represented by N1, and
2) the supply of a fixed amount of consumed food represented by OEN . At the other
end of the spectrum, there is an output of 1) the flux of individuals growing out of the
spectrum, and 2) mortality caused byOµ.
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To ensure that the system is only fed from below, all entire upper third ofOEN is
set to zero. To limit the influence from outside to the upper and lower end of the mod-
elled region, all values of OEN and Oµ where the ẼN and µ̃N in the model system
do not diverges from the theoretical EN

?
and µN

?
by less than 0.0001 relatively and

absolutes are set to zero:

OEN j =


0 if j = 2J

3

0 if
∣∣∣∣ ẼNj

?
ENj

− 1
∣∣∣∣ < 0.0001

?

ENj − ẼN j else

Oµ j =


0 if

∣∣∣∣ gµNj
?

µNj

− 1
∣∣∣∣ < 0.0001

?
µNj−gµNj

?
Nj

else

The formulation of external input as consumption and output as a mortality hazard has
the consequence of the external input being fixed while the output is dependent on the
state of the system, i.e., onN .

In addition to the above input, when the functional response is calculated, there is
a need to know to what the external input corresponds as potential external input

OΦ j =
OEN j

?

f

This is the amount of prey that is “invisible” to predators in the model system and
corresponds to supplied foodOEN . TheOΦ j is added to the integral in the calculation
of the functional response (16) in order to produce the right functional responce, and
hence the model to reproduce the equilibrium spectrum.

C Setting the parameters

While there seems general agreement on the slope λ of the spectrum, setting the mag-
nitude of the spectrum κ is rather ad hoc. κ is set to resemble the North Sea,9 but
empirical parameterisation is needed. In the dynamic model, the turnover rate in the
interaction distribution is determined by the product of f and v. Therefore, the impor-
tant parameters in the equilibrium spectrum are f

?
and γ. When testing the effort of a

9K. H. Andersen, personal communication.
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change in f
?

, the product f
?
γ is kept constant, and thereby the realised predation is kept

at what seems to be a proper level for the North Sea. β is the characteristic relative
distance between the predator and the preferred prey and is set according to tradition.

All tests of parameters are performed in the same basic manner. An experiment
is set up with the main parameters as given in table 3 and 4, except for the parameter
being tested. From an equilibrium with no fishing, a sudden and vigorous fishing is
initiated. This introduces an oscillation into the system. In figure 8, the oscillations are
illustrated. In the diagrams, the relative population density for the years 176-200 after
the introducing of fishing is shown. The diagrams show the relative population density,
or, in other words, the population density relative toN

?
. In each diagram, the first year

is plotted with a very light grey, and subsequent years are plotted with increasing
intensity in grey ending with the last years in black. The red line indicates the mean
density for the period. In the diagrams, the oscillation of the model system over some
period clearly forms an attractor. Through tests and experiments, the coefficient of
variance of the population density (CV) at each grid point is used a measure for the
width of the attractor. A steady state convergence is defined as all grid points, for the
last twenty-five years, have CVs of less than 10−5. The system is run either for some
years or until convergence to a steady state. The output from different values of the
parameters is compared, mainly graphically.

C.1 Setting the grid distance

The consequences of the different grid distance ∆x, or the number of grid pointsL, are
tested by varying L ∈ {36, 71, 141, 281, 561}. The model started with a population
in a steady state with hard fishing and a maximum number of grid points. It thereafter
runs for 200 years for each L.

The result is presented in figure 9. In the upper diagram, the mean of the rela-
tive population densities are compared, and in the middle diagram, the mean of the
densities of harvest are compared, and in the lower diagram, the CVs are plotted on a
logarithmic scale. All comparisons are done for the years 181–200. In the lover dia-
gram, the CV for L = 561 is not present because the system is started from a steady
state with this grid distance. Therefore, no oscillation is introduced in this case, and
the CV for L = 561 is much lower than for the others.

As seen in the upper and middle diagrams, the smaller L becomes, the further
from the L = 561 solution. However, the impact does not seem to be extreme before
L ≤ 71. In the lower diagram, there is a clear effect of damping of oscillations when
L is reduced. This is probably a result of the upwind scheme where ∂gN

∂x is estimated
to the left of the grid point, and therefore a point ahead of the grid point in the right-
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Figure 8: Testing parameter σ’s influence on the model system. The figure shows that
the relative population density in year 176–200 for a model with σ = 1.6 in the upper
diagram and for σ = 1.7 in the lower diagram. The first year of the time interval is
plotted with a light grey, and subsequent years are plotted with increasing intensity in
grey ending with the last years in black. The red line indicates the mean density for
the period.
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Figure 9: See page 54 for explanation.
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moving oscillation. This test of different grid distance is also a test of the impact of
the correction for the systematic overestimation of ∂gN∂x as explained in appendix B.1.
The difference in population density with different grid distances comes mainly from
this correction and is only correct if the population is equal to N

?
. There seems to be

no notable impact on the model from the numeric implementation if the number of
grid points is 141 besides some slight damping of the model system.

C.2 Setting the time step

The effect of a change on time steps is tested by running the standard experiment
from N

?
for 120 years after heavy fishing is introduced. The test is performed with

∆t ∈ {1, 1
1 ,

1
2 ,

1
3 ,

1
4 ,

1
5 ,

1
6 ,

1
15 ,

1
25}. The result is presented in figure 10. In the upper

diagram, the relative population densities are compared and in the lower diagram, the
CVs are compared. As seen in the upper diagram, the relative population densities
for year 120 are mostly equal with the differences not distinguishable in the diagram.
There is, however, as shown in the lower diagram, a difference in the CVs of the
population densities for years 101–120. Large time steps damp the system and make
the CVs smaller. In order to have a system that, on the one hand, is not dampened
by the numeric calculation scheme, but on the other hand, can reach a steady state
within a reasonable amount of time, the time step in the model is set at six per year,
∆t = 1/6.

C.3 Test of sigma

The consequences of changing the parameter σ is tested by running the system with
values of σ ∈ {1.0, 1.1, . . . , 1.9, 2.0} and other values as standard. The model sys-
tem is started from N

?
and heavy fishing is initiated, and the population density in

years 176–200 and 376–400 is recorded. Furthermore, a test of when the model sys-
tem meets the criteria of convergence is performed by allowing the system run until

Figure 9: The number of grid points influence on the model. The model starts with a
population in a steady state with fishing and 561 grid points. The model is run for 200
years with 561, 282, 141, 71, and 36 grid points. In the upper figure, the most recent
twenty year mean of relative population densities are shown. In the middle figure, the
resulting densities of harvest are shown (the dimension is g m−3 year−1). In the lower
diagram, the coefficients of variance for the population density over the last twenty
years are shown on a logarithmic scale.
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Figure 10: The time steps influence on the model system. The model is started from
a steady state without fishing, and heavy fishing is applied and the model runs for 120
years with different time steps. In the upper diagram, the relative population densities
for year 120 are shown. The diagram shows eight curves. However, they are almost
equal and not distinguishable. In the lower diagram, the coefficient of variance of the
population density for years 101–120 are shown.
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Table 6: The dampening effort of different σ. The table gives the maximum coefficient
of variance for the population densities in the period 176–200 and the period 376–400.
In the column marked “year” the time elapsed for the model system to meet the con-
vergence criteria of CV<10−5 is given. If the system does not reach the convergence
criteria within 2,000 years a — is given.

σ 176–200 376–400 year

1.0 1.09 1.09 —
1.1 1.38 1.24 —
1.2 1.59 1.51 —
1.3 1.30 1.30 —
1.4 1.26 1.13 —
1.5 1.00 1.01 —
1.6 4.70e-01 4.72e-01 —
1.7 7.80e-02 7.05e-03 1083
1.8 5.93e-03 3.85e-05 511
1.9 3.87e-04 1.43e-07 328
2.0 2.63e-05 4.55e-10 245

CV < 10−5 or 2,000 years has elapsed. In figure 8, an example of the output is pre-
sented in the form of two diagrams. In table 6, the maximum CV for the two periods is
presented for all tests. From the table, the impact of an increase in σ clearly dampens
oscillation in the system, at least when σ ≥ 1.7. In figure 11, the mean population
densities after the convergence criteria have been met are plotted for the σ where the
system converges within 2,000 years. The value of σ has some impact on the mean
population density. The value of σ = 1.8 is chosen because this dampens the sys-
tem so that it will come from a steady state without fishing to a new steady state with
fishing within a reasonable amount of time.

C.4 Functional response

The impact of the parameterisation of the functional response is tested by running the
system with f

? ∈ {0.1, 0.2, . . . , 0.8, 0.9} while keeping the product f
?
γ constant. This

way, the interaction density is unchanged. Additionally, the model is tested with a lin-
ear response, i.e., f(Φ, N,mr) is set to be an arbitrary constant. The model system is
started fromN

?
and a heavy fishing is introduced, and the population densities in years

201–220 are recorded. In figure 12, the mean of the relative population densities for
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Figure 11: Test of σ impact on steady state solutions. The diagram shows the relative
population density when the convergence criteria is met for different σ.

the years 201–220 are shown for all ten tests. Black plots the mean density for linear
response, with yellow for f

?
= 0.9, and the colour changes incrementally until f

?
= 0.1

is red. A change in f
?

seems to not generate a great impact on the densities. The
consequences regarding dampening the system are ambiguous, and for some settings,
the dampening of the system is reinforced with increasing f

?
, and in other settings, the

opposite occurs. For the experiments, a value in the middle f
?

= 0.5 is chosen.
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Figure 12: Test of the equilibrium response value. The diagram shows the mean of the
relative population densities for the years 201–220 . Black plots the mean density for
linear response, yellow f

?
= 0.9, and the colour changes incrementally until f

?
= 0.1 is

red.

C.5 The fishing selection function

To investigate the influence of the breadth of the fishing selection function, the pa-
rameter ς , an experiments where the fishing effort is concentrated in a single point, as
described for Experiment A (see paragraph 3.1), are set up. In each experiment, the
system is run until the system converges to steady state. All parameters are set accord-
ing to table 3, and the prices are the same as in Experiments A and B. The effort is
kept constant at V = 1.4 while the ξ×ς space is examined by testing all combinations
of ξ ∈ {9.9, 10.0, . . . , 11.4, 11.5} and ς ∈ {0.5, 0.6, . . . , 1.9, 2.0}. The result of the
experiment is shown in figure 13. The experiment shows that if the effort is constant,
revenue can be increased by narrowing the selection function.
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Figure 13: Revenue surface. The figure gives yearly revenue with fixed effort at V =
1.4, different target size ξ, and the breadth of fishing selection function ς .

In this model, the selection function is a combination of both the selectiveness of
the gear and the fisherman choosing the spot in the sea where the target fish is. The
trade-off between narrowing the selection function at the cost of a small harvest is
reflected in the manner the area under the selection function changes when ς changes.
In the formulation used in the present model, the normalised Gaussian function (18),
the area is always 1. While this is a reasonable assumption for the part of the selection
coming from fishermen choosing the location to fish, it is probably not correct with
respect to an increase in the selectiveness of the gear. In the latter case, the area might
have to decrease with increasing ς . The present formulation of the gear selection
function is therefore not economically reasonable with respect to parameter ς when
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the selection is narrowed too much. Because an optimisation routine will narrow the
selection function to where it is economically unreasonable, the parameter ς is not
considered to be a control variable, but, in the experiments, it is fixed at ς = 1.
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