Passive components

Due to the continuing growth of automotive, industrial and IoT Industries the request for electronics and therefore also for passive components is still increasing. Especially the new Wide bandgap devices are requiring “new” passive components with extended temperature and frequency range.

New capacitors and supercapacitors with new electrolytes, dielectric materials or inductors with new magnetic materials are required. Further on the reliability of the components must be improved.

Research scope

We have a strong interest in developing the next generation passive components matching the performance levels of new semiconductors. We focus on new electrolytic capacitor systems with low ESR behaviour (Polymer electrolytes), film capacitors with new dielectric materials for high temperature application > 150 °C and magnetic materials with low losses. Another focus is on thermal, lifetime and electrical simulation based on the acquisition of physical chemical data.

Accordingly, our research goals are:

  • to reduce the ESR behaviour of electrolytic capacitors (by factor 10),
  • to develop new dielectric materials for film capacitors for temperature applications above 150 °C,
  • to reduce the losses of magnetic materials.

Thereby the impact of our research is

  • Increased current and power density and efficiency to be used in automotive and industrial drives and
  • Increased device reliability and lifetime.

Research topics

Aluminium electrolytic capacitors

  • Materials for Aluminium electrolytic capacitors
    • Electrolyte development
    • Conducting polymer electrolytes
    • Chemistry of aluminium electrolytic capacitors
    • Anodes and cathode materials / Anodic oxides
    • Separators / Papers
  • Design of Aluminium electrolytic capacitors
    • Construction / housing, terminals and insulation
    • Thermal models
    • Lifetime models
  • Application of Aluminium electrolytic capacitors
    • Design-in
    • Cost and material consulting

Metalized film capacitors

  • High Dk materials
  • High voltage applications > 3kV
  • High temperature dielectrics > 125 °C

Super capacitors

Battery materials and chemistry

Research group


Find selected projects here:


Find latest publications here:

  • Kapino, G., Ebel, T., & Franke, T. (2019). Comparison of Three-Phase Voltage Source Converter Topologies for Electric High-Speed Drives Application. In Proceedings of the 21st European Conference on Power Electronics and Applications (EPE'19 ECCE Europe) IEEE., Read more