

## Mads Clausen Institute Technology Areas and Offers to Industry

## Cyber-Physical Lab

| Contact:                   | M. Hossein Ramezani<br>Assistant Professor in Control Engineering<br>Mechatronics, The Mads Clausen Institute<br>Phone: +45 65 50 92 17<br>ramezani@mci.sdu.dk<br>University of Southern Denmark                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|----------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Description:               | Alsion 2, DK-6400 Sønderborg<br>The cyber-physical lab is a laboratory containing a set of physical apparatus<br>(mostly electro-mechanical systems) or experiments equipped with a set of<br>actuators and sensors, all linked to computers so that machine intelligence<br>algorithms can be tested and evaluated. The implementation of these<br>algorithms, whether they are targeted towards control, monitoring or fault<br>diagnosis, can be done with current tools for rapid prototyping such as<br>Matlab/Simulink. It is also possible to control some of the experiments using<br>low cost embedded boards like Arduino, Raspberry pi and Beaglebone.<br>Design and implementation of the controller can be done in<br>Matlab/Simulink as well.<br>Recently, we have been working on the implementation and challenges of<br>Networked Control Systems (NCSs). NCSs have attracted intense attention<br>from both academia and industry due to the multidisciplinary nature among<br>the areas of communication networks, computer science and control. Other<br>than the NCSs where feedback control loops are closed via communication<br>networks, the more advanced case of distributed NCSs where many control<br>loops are in contact is implemented in the lab. In this regard, we have<br>developed a distributed networked control system where all nodes are<br>raspberry pi boards communicating with each other and the server over the<br>Internet. All code generation is done in Matlab/Simulink and then deployed |
| Services for Companies     | to the boards over the Internet.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Services for Companies:    | <ul> <li>Test of different classes of algorithms (control, estimation, fault-<br/>diagnosis, system identification, motion planning, reinforcement<br/>learning) and their comparison in terms of performance.</li> <li>Continuing education and training throughout tailored courses of<br/>advanced techniques and hands-on experiments using Matlab/Simulink.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Technical specification of | The set of experiments includes:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| equipment:                 | <ul> <li>Multidimensional system for torsional dynamics. Experiment to test control algorithms reducing oscillatory behaviors on motor systems with important inertia and elasticity (loop shaping).</li> <li>Rotary flexible link. Used for advanced motion planning, feedforward and estimation, and networked control systems.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |



| • | Combination of 2-3 Rotary flexible links: Used for networked control, distributed control and application of IoT principles.                                         |
|---|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| • | Coupled process control experiment. Ideal experiment to test/learn nonlinear control, nonlinear identification and fault diagnosis through the generation of faults. |
| • | Heat flow experiment. Test of active machine learning algorithms in the area of ventilation and HVAC systems.                                                        |
| • | 3D crane and tower crane. Experiment to test motion planning and accurate position in motion control systems.                                                        |
| • | 6 degreed-of-freedom joint compliant control robot. Fully accessible robot to implement different control algorithms, including compliant ones.                      |







