Topology Optimisation of High Heat Flux Cooling

PhD Student: Principal supervisor: Co-supervisor: Duration: Amirhossein Bayat Joe Alexandersen Hao Li 01-02-2024 - 31-01-2027

Introduction

- Topology optimisation is still a young field when applied to fluid dynamics and heat transfer
- Thermal management is critical for both large industrial
 equipment and microelectronic

Methodology

- Coupling conjugate heat transfer with topology optimisation can be the solution to handle high heat dissipation requirements
- We will use topology optimisation

to design cooling channel layouts and tube inserts for improved heat transfer

SDUT

devices

 The full governing equations for conjugate heat transfer must be solved. The goal is then to optimise the fluid-solid interface

Cooling channel insert design

- Twisted tape inserts in cooling channels can increase heat transfer,
 e.g. in the Wendelstein 7-X stellarator
- Fusion reactors generate heat fluxes up to 5–10 (MW/ m^2)
- Topology optimisation generates a

- Process consists of four main parts:
- 1. Initial design
- 2. Solving equations
- 3. Checking if the design is optimal
- 4. Improve the design
- We will use the finite element method to solve fluid-based and heat transfer partial differential equations

Fig. 4: Flow chart of topology optimisation

• For the definition of solid and liquid domains, we will use the densitybased method

novel design improving thermal energy extraction by 29% at a 11% smaller pressure drop compared to benchmark twisted tape

Fig. 2: Topology-optimised cooling channel insert.

• Simulations of the generated designs can be used to understand how to improve simpler manufacturable designs

Fig. 5: Design evolution from nothing to novel high-performing passive heat sink for electronics cooling. [Alexandersen et al. (2016)]

Objectives

- Apply topology optimisation algorithms to complex fluid and heat transfer problems, such as turbulence and two-phase fluids
- Find more efficient ways to cool the high heat fluxes, which is beneficial to the fusion, industrial and electronics industries
- Mitigate the heat-related obstacles for new emerging technologies

Challenges

• Extreme Temperatures separated only

Fig. 3: Conjugate heat transfer simulations of: (a) reference twisted tape; and (b) topology-optimised design

References:

- Alexandersen (2016), International Journal of Heat and Mass Transfer 100:876-891, doi:10.1016/j.ijheatmasstransfer.2016.05.013
- Hao Li et al. (2023), Advances in Engineering Software180: 103457, doi.10.1016/j.advengsoft.2023.103457
- Høghøj et al. (2020), International Journal of Heat and Mass Transfer 163:120543, doi:10.1016/j.ijheatmasstransfer.2020.120543

by a few centimeters

- Complicate nature of turbulent fluid
- Extreme computational costs optimization
- Need of high-quality meshes for complex geometries
- Deformation of plasma facing surface

Fig. 6: Comparing the mesh adaptation and fixed mesh for simplification of numerical evaluation [Hao Li et al. (2023)]

Pa

Amirhossein Bayat PhD student

University of Southern Denmark abay@sdu.dk

SDU

SDU Mechanical Engineering Department of Mechanical and Electrical Engineering