Adaptive harvest under invasive Induced mortality

Jon Olaf Olaussen* ,Yajie Liu**, Anders Skonhoft ${ }^{* * *}$
*Trondheim Business School
**Sintef Fisheries \& Aquaculture
***Department of Economics, NTNU

Wild salmon: Ecological problems

■ Farmed salmon: Cross breeding (hybrids)
\square Genetic pollution
\square Destroying spawning nests

- Spread of deceases
\square Furunculosis
\square Gyrodactylus salaris
- Farmed salmon: Salmon lice (Lepeophtheirus)

Recent years:

- Salmon lice density
- Increased by aquaculture
\square Heuch et al 2005
- Smolt on out-migration journey
\square Have to pass fish farms
- More than 10 salmon lice per smolt: certain death
\square Revie et al 2009

Invasive?

- Salmon lice
\square Native
- Dominant colonization of habitat
\square Due to human action (fish farming)
\square Disturbing the balance of species

Main solutions:

1. Farming sector: Reduce sea lice density in fish farms?
\square Resistance to treatment
2. Wild sector: Reduce fishing mortality?
3. Wild sector: Change harvesting pattern?

The model

- Three mature age classes:
- 1 Sea-winter (1SW)
$\square<3 k g$
- 2 Sea-winter (2SW)
$\square 3-7 \mathrm{~kg}$
- 3 Sea-winter (3SW)
$\square>7 \mathrm{~kg}$

Why age class model?

- Previous management: Uniform harvest rate across stages ("a salmon is a salmon")
- Recent management trend: Stage specific harvest
\square Catch and release
\square «No take» of 2 and 3 SW
\square Bag limits for 1, 2 and 3SW

Anectodical background

- Salmon anglers want to kill "all" 1SW salmon
- Common view:
$\square 1$ SW salmon does not contribute to spawning (about 80% is male)
\square Should harvest most 1SW, less 2SW and even less 3SW
- Will the model confirm?

The overall aim

- Look at different harvest regimes for wild salmon
- Uniform harvest rate versus stage specific harvest rate
- Stage specific harvest rates versus fixed uniform harvest rates
- Harvest (use) values versus non-use values

Lagrangian

$$
\begin{aligned}
& L=\left[p_{4} w_{4} s_{3} \sigma f_{4}+p_{5} w_{5} s_{3}(1-\sigma) \varphi s_{4} f_{5}+p_{6} w_{6} s_{3}(1-\sigma-\varphi+\varphi \sigma) s_{4} s_{5} f_{6}\right] N_{3} \\
& -\lambda\left[N_{3}-s R(B)\right] \\
& -\mu\left\{B-\left[\gamma_{4} s_{3} \sigma\left(1-f_{4}\right)+\gamma_{5} s_{3}(1-\sigma) \varphi s_{4}\left(1-f_{5}\right)+\gamma_{6} s_{3}(1-\sigma-\varphi+\varphi \sigma) s_{4} s_{5}\left(1-f_{6}\right)\right] N_{3}\right\}
\end{aligned}
$$

FOC:

$$
\begin{array}{ll}
\partial L / \partial f_{4}=N_{3}\left(p_{4} w_{4}-\mu \gamma_{4}\right) \frac{\geq}{<} 0 & 0 \leq f_{4} \leq 1 \\
\partial L / \partial f_{5}=N_{3}\left(p_{5} w_{5}-\mu \gamma_{5}\right) & (1 S W) \tag{2SW}\\
<0 & 0 \leq f_{5} \leq 1
\end{array}
$$

- Biomass-value $\left(p_{i} w_{i}\right)$ - fecundity $\left(y_{i}\right)$ ratio

$$
p_{i} w_{i} / \gamma_{i}
$$

$$
i=4,5,6
$$

Norwegian salmon data give:

$$
p_{4} w_{4} / \gamma_{4}>p_{6} w_{6} / \gamma_{6}>p_{5} w_{5} / \gamma_{5}
$$

Possible harvest patterns:

vi) $f_{4}=1, f_{6}=1,0<f_{5}<1$
vii) $f_{4}=1, f_{6}=1, f_{5}=0$
viii) $f_{4}=1,0<f_{6}<1, f_{5}=0$
ix) $f_{4}=1, f_{6}=0, f_{5}=0$
x) $0<f_{4}<1, f_{6}=0, f_{5}=0$

Table 2: Optimal fishing mortalities under different sea lice induced mortality levels

	f_{4}	\boldsymbol{f}_{5}	f_{6}	N_{3}	\mathbf{B}	$\mathbf{H}_{\mathbf{4}}$	$\mathbf{H}_{\mathbf{5}}$	\mathbf{H}_{6}	$\boldsymbol{\pi}$
Baseline	1	0.52	1	1663	494	358	68	53	$\mathbf{5 , 5 1 7}$
$\mathbf{s = 0 . 0 4}$	1	0.46	1	1299	431	279	47	41	$\mathbf{4 , 2 0 6}$
$\mathbf{s}=\mathbf{0 . 0 3}$	1	0.38	1	933	359	202	28	30	$\mathbf{2 , 9 3 2}$
$\mathbf{s}=\mathbf{0 . 0 2}$	1	0.24	1	587	275	126	11	19	$\mathbf{1 , 7 1 8}$
$\mathbf{s}=\mathbf{0 . 0 1}$	1	0	0.98	240	151	52	0	8	$\mathbf{6 1 7}$
$\mathbf{s = 0 . 0 0 5}$	1	0	0.30	90	79	19	0	1	$\mathbf{1 7 0}$
$\mathbf{s = 0 . 1}$	$\mathbf{1}$	$\mathbf{0 . 6 6}$	$\mathbf{1}$	$\mathbf{3 5 2 4}$	$\mathbf{7 4 0}$	$\mathbf{7 5 8}$	$\mathbf{1 8 2}$	$\mathbf{1 1 3}$	$\mathbf{1 2 , 3 8 0}$

Note: f_{4}, f_{5} and f_{6} are harvest rates for the $1 \mathrm{SW}, 2 \mathrm{SW}$ and 3 SW class, respectively. N_{3} is the potentially harvestable population while B is the spawning population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the $1 \mathrm{SW}, 2 \mathrm{SW}$, and 3 SW , respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Table 3: Optimal uniform fishing mortality under different sea lice induced mortality levels

	f_{4}	\boldsymbol{f}_{5}	$\boldsymbol{f}_{\mathbf{6}}$	$N_{\mathbf{3}}$	\mathbf{B}	$\mathbf{H}_{\mathbf{4}}$	$\mathbf{H}_{\mathbf{5}}$	$\mathbf{H}_{\mathbf{6}}$	$\boldsymbol{\pi}$
Baseline	0.80	0.80	0.80	1593	391	273	99	41	$\mathbf{5 , 0 5 8}$
$\mathbf{s = 0 . 0 4}$	0.77	0.77	0.77	1236	339	205	75	31	$\mathbf{3 , 8 0 6}$
$\mathbf{s = 0 . 0 3}$	0.74	0.74	0.74	884	280	140	51	21	$\mathbf{2 , 6 0 0}$
$\mathbf{s = 0 . 0 2}$	0.68	0.68	0.68	542	210	79	29	12	$\mathbf{1 , 4 6 7}$
$\mathbf{s = 0 . 0 1}$	0.54	0.54	0.54	218	120	26	9	4	$\mathbf{4 7 4}$
$\mathbf{s = 0 . 0 0 5}$	0.36	0.36	0.36	71	55	10	28	17	$\mathbf{1 0 1}$
$\mathbf{s = 0 . 1}$	$\mathbf{0 . 8 6}$	$\mathbf{0 . 8 6}$	$\mathbf{0 . 8 6}$	$\mathbf{3 4 2 4}$	$\mathbf{5 9 4}$	$\mathbf{6 3 0}$	$\mathbf{2 2 9}$	$\mathbf{9 4}$	$\mathbf{1 1 , 6 9 0}$

Note: f_{4}, f_{5} and f_{6} are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_{3} is the potentially harvestable population while B is the spawning population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the $1 \mathrm{SW}, 2 \mathrm{SW}$, and 3 SW , respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Table 4: Fixed uniform fishing mortality under different sea lice induced mortality levels

	\boldsymbol{f}_{4}	f_{5}	f_{6}	N_{3}	\mathbf{B}	\mathbf{H}_{4}	$\mathbf{H}_{\mathbf{5}}$	$\mathbf{H}_{\mathbf{6}}$	$\boldsymbol{\pi}$
Baseline	0.80	0.80	0.80	1593	391	273	99	41	$\mathbf{5 , 0 5 8}$
$\mathbf{s = 0 . 0 4}$	0.80	0.80	0.80	1193	294	204	74	30	$\mathbf{3 , 7 8 8}$
$\mathbf{s = 0 . 0 3}$	0.80	0.80	0.80	793	195	136	50	20	$\mathbf{2 , 5 2 0}$
$\mathbf{s = 0 . 0 2}$	0.80	0.80	0.80	393	97	67	25	10	$\mathbf{1 , 2 4 9}$
$\mathbf{s = 0 . 0 1}$	0.80	0.80	0.80	0	0	0	0	0	$\mathbf{0}$
$\mathbf{s = 0 . 0 0 5}$	0.80	0.80	0.80	0	0	0	0	0	$\mathbf{0}$
$\mathbf{s = 0 . 1}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 8 0}$	$\mathbf{0 . 8 0}$	$\mathbf{3 5 9 3}$	$\mathbf{8 8 4}$	$\mathbf{6 1 5}$	$\mathbf{2 2 4}$	$\mathbf{9 2}$	$\mathbf{1 1 , 4 1 0}$

Note: f_{4}, f_{5} and f_{6} are harvest rates for the $1 \mathrm{SW}, 2 \mathrm{SW}$ and 3 SW class, respectively. N_{3} is the potentially harvestable population while B is the spawning population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the $1 \mathrm{SW}, 2 \mathrm{SW}$, and 3 SW , respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Conclusion 1:

- Stage specific versus optimal uniform harvest rate
\square Profits increases by 9-70\%
- Stage specific versus fixed uniform harvest rate
\square Fixed may lead to exctinction

Management:

- Harvest 1SW, then 3SW and eventually 2SW
- Hence, general angler opinion:
\square Correct with respect to 1SW
\square Wrong with respect to 2 SW versus 3SW

Extension: Adding non-use

 values- Maximizing social sustainable value: W
\square Harvest value (Y) + Non-use value (Q)

$$
W=\alpha U(Y)+(1-\alpha) V(Q)
$$

- $U(Y)$ and $V(Q)$ both concave with α as the weighting factor
- Above results: $\alpha=1$

$$
\begin{aligned}
& L=\alpha\left[U\left(\left(z_{4} w_{4} s_{3} \sigma f_{4}+z_{3} w_{j} s_{3} s_{3}(1-\sigma) \varphi \varphi_{4} f_{5}+z_{6} w_{6} s_{3}(1-\sigma-\varphi+\varphi \sigma) s_{4} s_{5} f_{6}\right) N_{3}\right)\right] \\
& +(1-\alpha)\left[V\left(\left(w_{4} s_{3} \sigma\left(1-f_{4}\right)+w_{5} s_{3}(1-\sigma) \varphi s_{4}\left(1-f_{5}\right)+w_{6} s_{3}(1-\sigma-\varphi+\varphi \sigma) s_{4} s_{j}\left(1-f_{6}\right) N_{3}\right)\right]\right. \\
& -\lambda\left[N_{3}-s R(B)\right] \\
& -\mu\left\{B-\left[\gamma_{4} s_{j} \sigma\left(1-f_{4}\right)+\gamma_{5} s_{3}(1-\sigma) \varphi s_{4}\left(1-f_{5}\right)+\gamma_{6} s_{3}(1-\sigma-\varphi+\varphi \sigma) s_{4} s_{5}\left(1-f_{6}\right)\right] N_{3}\right\},
\end{aligned}
$$

(9') $\quad w_{4} / \gamma_{4} \frac{\geq}{<} \mu /\left[\alpha U^{\prime}(.) z_{4}-(1-\alpha) V^{\prime}().\right]$
$\left(10^{\prime}\right) w_{5} / \gamma_{5} \underset{<}{\underset{<}{2}} \mu /\left[\alpha U^{\prime}(.) z_{5}-(1-\alpha) V^{\prime}().\right]$
$\left(11^{\prime}\right) w_{6} / \gamma_{6} \frac{\geq}{<} \mu /\left[\alpha U^{\prime}(.) z_{6}-(1-\alpha) V^{\prime}().\right]$

Table 2: Managing for harvest value only $(\alpha=1)$. Optimal fishing mortalities under different sea lice-induced mortality levels.

	f_{4}	f_{5}	f_{6}	N_{3}	H_{4}	H_{5}	H_{6}	U	V	W
$\mathrm{~s}=0.05$	1	0.52	1	1,663	358	68	53	3.808	1.884	3.808
$\mathrm{~s}=0.04$	1	0.46	1	1,299	279	47	42	3.535	1.755	3.535
$\mathrm{~s}=0.03$	1	0.38	1	933	202	28	30	3.175	1.568	3.175
$\mathrm{~s}=0.02$	1	0.24	1	587	126	11	19	2.641	1.301	2.641
$\mathrm{~s}=0.01$	1	0	0.98	240	51	0	8	1.618	0.698	1.618
$\mathrm{~s}=0.005$	1	0	0.30	90	19	0	1	0.282	0.088	0.282

Note: s is the lumped survival rate from the juvenile to the smolt stage where $s=0.05$ is the survival rate in absence of sea lice. f_{4}, f_{5} and f_{6} are harvest rates for the $1 \mathrm{SW}, 2 \mathrm{SW}$ and 3 SW class, respectively. N_{3} is the potentially harvestable population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the 1 SW , 2 SW , and 3 SW , respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare (U, V and W all measured in 100000 NOK). $1 \mathrm{NOK}=0.17 \mathrm{USD}$ (Aug. 21 2013)

Table 3: Managing for harvest and non-consumptive values ($\alpha=0.5$). Optimal fishing mortalities under different sea lice-induced mortality levels.

	f_{4}	f_{5}	f_{6}	N_{3}	H_{4}	H_{5}	H_{6}	U	V	W
$\mathrm{~s}=0.05$	1	0	0.31	1,886	405	0	19	3.372	3.148	3.260
$\mathrm{~s}=0.04$	1	0	0.29	1,287	320	0	14	3.124	2.920	3.022
$\mathrm{~s}=0.03$	1	0	0.25	1089	234	0	9	2.791	2.627	2.709
$\mathrm{~s}=0.02$	1	0	0.17	692	149	0	4	2.292	2.211	2.252
$\mathrm{~s}=0.01$	1	0	0	299	64	0	0	1.350	1.445	1.398
$\mathrm{~s}=0.005$	0.94	0	0	100	20	0	0	0.195	0.391	0.293

Note: f_{4}, f_{5} and f_{6} are harvest rates for the $1 \mathrm{SW}, 2 \mathrm{SW}$ and 3 SW class, respectively. N_{3} is the potentially harvestable population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the 1 SW , 2 SW , and 3 SW , respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare. s is the lumped survival rate from the juvenile to the smolt stage where $s=0.05$ is the survival rate in absence of sea lice.

Table 6: Managing for harvest and non-consumptive values ($\alpha=0.5$). Optimal uniform fishing mortality under different sea lice-induced mortality levels.

	f_{4}	f_{5}	f_{6}	N_{3}	H_{4}	H_{5}	H_{6}	U	V	W
$\mathrm{~s}=0.05$	0.46	0.46	0.46	1,846	183	67	27	3.322	3.152	3.237
$\mathrm{~s}=0.04$	0.45	0.45	0.45	1,448	141	51	21	3.062	2.924	2.993
$\mathrm{~s}=0.03$	0.44	0.44	0.74	1,052	99	36	15	2.711	2.630	2.670
$\mathrm{~s}=0.02$	0.41	0.41	0.41	659	58	21	9	2.179	2.209	2.194
$\mathrm{~s}=0.01$	0.34	0.34	0.34	274	20	7	3	1.115	1.443	1.279
$\mathrm{~s}=0.005$	0.23	0.23	0.23	92	4	2	1	0.004	0.512	0.258

Note: f_{4}, f_{5} and f_{6} are harvest rates for the $1 \mathrm{SW}, 2 \mathrm{SW}$ and 3 SW class, respectively. N_{3} is the potentially harvestable population. H_{4}, H_{5}, and H_{6} are the harvest (in number of salmon) of the 1SW, 2SW, and $3 S W$, respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare. s is the lumped survival rate from the juvenile to the smolt stage where $s=0.05$ is the survival rate in absence of sea lice.

Conclusion 2:

- Adding non-use values:
\square Harvest pattern less aggressive
\square Stage specific versus optimal uniform harvest rate
- Profits increases by 1-14\% (9-70\%)
- Stage structured harvest dampens effect of invasive induced mortality
\square But less when non-use values are included

