

Adaptive harvest under invasive Induced mortality

Jon Olaf Olaussen* ,Yajie Liu**, Anders Skonhoft*** *Trondheim Business School **Sintef Fisheries & Aquaculture

***Department of Economics, NTNU

Wild salmon: Ecological problems

Farmed salmon: Cross breeding (hybrids)

- Genetic pollution
- Destroying spawning nests
- Spread of deceases
 - Furunculosis
 - □ Gyrodactylus salaris

Farmed salmon: Salmon lice (Lepeophtheirus)

Recent years:

- Salmon lice density
- Increased by aquaculture
 Heuch et al 2005
- Smolt on out-migration journey
 - □ Have to pass fish farms
- More than 10 salmon lice per smolt: certain death
 - □ Revie et al 2009

Invasive?

- Salmon liceNative
- Dominant colonization of habitat
 Due to human action (fish farming)
 Disturbing the balance of species

Main solutions:

- 1. Farming sector: Reduce sea lice density in fish farms?
 - Resistance to treatment
- 2. Wild sector: Reduce fishing mortality?
- 3. Wild sector: Change harvesting pattern?

The model

- Three mature age classes:
- 1 Sea-winter (1SW)
 - □<3kg
- 2 Sea-winter (2SW)
 - □ 3-7kg
- 3 Sea-winter (3SW)
 - □>7kg

Why age class model?

- Previous management: Uniform harvest rate across stages ("a salmon is a salmon")
- Recent management trend: Stage specific harvest
 - □ Catch and release
 - □ «No take» of 2 and 3 SW
 - □ Bag limits for 1, 2 and 3SW

Anectodical background

- Salmon anglers want to kill "all" 1SW salmon
- Common view:
 - ISW salmon does not contribute to spawning (about 80% is male)
 - Should harvest most 1SW, less 2SW and even less 3SW
- Will the model confirm?

The overall aim

- Look at different harvest regimes for wild salmon
- Uniform harvest rate versus stage specific harvest rate
- Stage specific harvest rates versus fixed uniform harvest rates
- Harvest (use) values versus non-use values

Lagrangian

$$L = [p_4 w_4 s_3 \sigma f_4 + p_5 w_5 s_3 (1 - \sigma) \varphi s_4 f_5 + p_6 w_6 s_3 (1 - \sigma - \varphi + \varphi \sigma) s_4 s_5 f_6] N_3$$

- $\lambda [N_3 - sR(B)]$

 $-\mu\{B - [\gamma_4 s_3 \sigma (1 - f_4) + \gamma_5 s_3 (1 - \sigma) \varphi s_4 (1 - f_5) + \gamma_6 s_3 (1 - \sigma - \varphi + \varphi \sigma) s_4 s_5 (1 - f_6)]N_3\}$

FOC:

$$\partial L / \partial f_4 = N_3 (p_4 w_4 - \mu \gamma_4) \stackrel{\geq}{=} 0 \quad 0 \le f_4 \le 1 \quad (1SW)$$

$$\partial L / \partial f_5 = N_3 (p_5 w_5 - \mu \gamma_5) \stackrel{\geq}{=} 0 \qquad 0 \le f_5 \le 1 \qquad (2SW)$$

$$\partial L / \partial f_6 = N_3 (p_6 w_6 - \mu \gamma_6) \stackrel{\geq}{=} 0 \qquad 0 \le f_6 \le 1 \qquad (3SW)$$

Biomass-value $(p_i w_i)$ – fecundity (γ_i) ratio

 $p_i W_i / \gamma_i$

i = 4, 5, 6

Norwegian salmon data give:

$p_4 w_4 / \gamma_4 > p_6 w_6 / \gamma_6 > p_5 w_5 / \gamma_5$

Possible harvest patterns:

vi)
$$f_4 = 1$$
, $f_6 = 1$, $0 < f_5 < 1$
vii) $f_4 = 1$, $f_6 = 1$, $f_5 = 0$
viii) $f_4 = 1$, $0 < f_6 < 1$, $f_5 = 0$
ix) $f_4 = 1$, $f_6 = 0$, $f_5 = 0$
x) $0 < f_4 < 1$, $f_6 = 0$, $f_5 = 0$

Table 2: Optimal fishing mortalities under different sea lice induced mortality levels

	f_4	f_5	f_6	N_3	В	H₄	H ₅	H ₆	π
Baseline	1	0.52	1	1663	494	358	68	53	5,517
s=0.04	1	0.46	1	1299	431	279	47	41	4,206
s=0.03	1	0.38	1	933	359	202	28	30	2,932
s=0.02	1	0.24	1	587	275	126	11	19	1,718
s=0.01	1	0	0.98	240	151	52	0	8	617
s=0.005	1	0	0.30	90	79	19	0	1	170
s=0.1	1	0.66	1	3524	740	758	182	113	12,380

Note: f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population while *B* is the spawning population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Table 3: Optimal uniform fishing mortality under different sea lice induced mortalitylevels

	f_4	f_5	f_6	N_3	В	H ₄	H ₅	H ₆	${\cal T}$
Baseline	0.80	0.80	0.80	1593	391	273	99	41	5,058
s=0.04	0.77	0.77	0.77	1236	339	205	75	31	3,806
s=0.03	0.74	0.74	0.74	884	280	140	51	21	2,600
s=0.02	0.68	0.68	0.68	542	210	79	29	12	1,467
s=0.01	0.54	0.54	0.54	218	120	26	9	4	474
s=0.005	0.36	0.36	0.36	71	55	10	28	17	101
s=0.1	0.86	0.86	0.86	3424	594	630	229	94	11,690

Note: f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population while *B* is the spawning population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Table 4: Fixed uniform fishing mortality under different sea lice induced mortality levels

	f_4	f_5	f_6	N_3	В	H_4	H_5	H ₆	π
Baseline	0.80	0.80	0.80	1593	391	273	99	41	5,058
s=0.04	0.80	0.80	0.80	1193	294	204	74	30	3,788
s=0.03	0.80	0.80	0.80	793	195	136	50	20	2,520
s=0.02	0.80	0.80	0.80	393	97	67	25	10	1,249
s=0.01	0.80	0.80	0.80	0	0	0	0	0	0
s=0.005	0.80	0.80	0.80	0	0	0	0	0	0
s=0.1	0.80	0.80	0.80	3593	884	615	224	92	11,410

Note: f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population while *B* is the spawning population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively while π is the yearly profit in NOK 1000. s is the lumped survival rate from the juvenile to the smolt stage.

Conclusion 1:

- Stage specific versus optimal uniform harvest rate
 - □ Profits increases by 9-70%
- Stage specific versus fixed uniform harvest rate
 - □ Fixed may lead to exctinction

Management:

- Harvest 1SW, then 3SW and eventually 2SW
- Hence, general angler opinion:
 - □ Correct with respect to 1SW
 - □ Wrong with respect to 2SW versus 3SW

Extension: Adding non-use values

Maximizing social sustainable value: W
 Harvest value (Y) + Non-use value (Q)

$$W = \alpha U(Y) + (1 - \alpha)V(Q)$$

- U(Y) and V(Q) both concave with α as the weighting factor
- Above results: α=1

$$L = \alpha [U((z_4 w_4 s_3 \sigma f_4 + z_5 w_5 s_3 (1 - \sigma) \varphi s_4 f_5 + z_6 w_6 s_3 (1 - \sigma - \varphi + \varphi \sigma) s_4 s_5 f_6) N_3)] + (1 - \alpha) [V((w_4 s_3 \sigma (1 - f_4) + w_5 s_3 (1 - \sigma) \varphi s_4 (1 - f_5) + w_6 s_3 (1 - \sigma - \varphi + \varphi \sigma) s_4 s_5 (1 - f_6)) N_3)] - \lambda [N_3 - sR(B)]$$

$$-\mu\{B - [\gamma_4 s_3 \sigma (1 - f_4) + \gamma_5 s_3 (1 - \sigma) \varphi s_4 (1 - f_5) + \gamma_6 s_3 (1 - \sigma - \varphi + \varphi \sigma) s_4 s_5 (1 - f_6)]N_3\},$$

(9')
$$w_4 / \gamma_4 \stackrel{\geq}{=} \mu / [\alpha U'(.)z_4 - (1 - \alpha)V'(.)]$$

Ŋ8

(10')
$$w_5 / \gamma_5 \stackrel{\geq}{<} \mu / [\alpha U'(.)z_5 - (1 - \alpha)V'(.)]$$

(11')
$$w_6 / \gamma_6 \stackrel{\geq}{<} \mu / [\alpha U'(.)z_6 - (1 - \alpha)V'(.)]$$

Table 2: Managing for harvest value only ($\alpha = 1$). Optimal fishing mortalities under different sea lice-induced mortality levels.

	f_4	f_5	f_6	N ₃	H_4	H_5	H_6	U	V	W
s=0.05	1	0.52	1	1,663	358	68	53	3.808	1.884	3.808
s=0.04	1	0.46	1	1,299	279	47	42	3.535	1.755	3.535
s=0.03	1	0.38	1	933	202	28	30	3.175	1.568	3.175
s=0.02	1	0.24	1	587	126	11	19	2.641	1.301	2.641
s=0.01	1	0	0.98	240	51	0	8	1.618	0.698	1.618
s=0.005	1	0	0.30	90	19	0	1	0.282	0.088	0.282

Note: s is the lumped survival rate from the juvenile to the smolt stage where s=0.05 is the survival rate in absence of sea lice. f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare (U,V and W all measured in 100 000 NOK). 1NOK=0.17USD (Aug. 21 2013)

Table 3: Managing for harvest and non-consumptive values ($\alpha = 0.5$). Optimal fishing mortalities under different sea lice-induced mortality levels.

	f_4	f_5	f_6	<i>N</i> ₃	H_4	H_5	H_{6}	U	V	W
s=0.05	1	0	0.31	1,886	405	0	19	3.372	3.148	3.260
s=0.04	1	0	0.29	1,287	320	0	14	3.124	2.920	3.022
s=0.03	1	0	0.25	1089	234	0	9	2.791	2.627	2.709
s=0.02	1	0	0.17	692	149	0	4	2.292	2.211	2.252
s=0.01	1	0	0	299	64	0	0	1.350	1.445	1.398
s=0.005	0.94	0	0	100	20	0	0	0.195	0.391	0.293

Note: f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare. s is the lumped survival rate from the juvenile to the smolt stage where s=0.05 is the survival rate in absence of sea lice.

 H_{4} H_{5} H_6 V f_{4} f_5 f_6 N_3 U W s=0.05 0.46 0.46 0.46 1,846 183 67 27 3.322 3.152 3.237 s=0.04 0.45 0.45 21 0.45 1,448 141 51 3.062 2.924 2.993 s=0.03 0.44 0.74 1,052 99 15 2.711 2.630 2.670 0.44 36 9 58 2.179 s=0.02 0.41 0.41 0.41 659 21 2.209 2.194 s=0.01 0.34 0.34 0.34 274 20 7 3 1.115 1.443 1.279 s=0.005 2 0.004 0.258 0.23 0.23 0.23 92 4 1 0.512

Table 6: Managing for harvest and non-consumptive values ($\alpha = 0.5$). Optimal uniform fishing mortality under different sea lice-induced mortality levels.

Note: f_4 , f_5 and f_6 are harvest rates for the 1SW, 2SW and 3SW class, respectively. N_3 is the potentially harvestable population. H_4 , H_5 , and H_6 are the harvest (in number of salmon) of the 1SW, 2SW, and 3SW, respectively, while U is the utility in the recreational fishery, V is the non-consumptive utility and W is the weighted social welfare. s is the lumped survival rate from the juvenile to the smolt stage where s=0.05 is the survival rate in absence of sea lice.

Conclusion 2:

- Adding non-use values:
 - □ Harvest pattern less aggressive
 - Stage specific versus optimal uniform harvest rate
 - Profits increases by 1-14% (9-70%)
- Stage structured harvest dampens effect of invasive induced mortality
 - □ But less when non-use values are included