Motivation	Incidents	Rail traffic	Empirics	Summary

Analyzing the Risk of Transporting Crude Oil by Rail

Charles F. Mason

H.A. True Chair in Petroleum and Natural Gas Economics Department of Economics & Finance University of Wyoming Laramie, Wyoming

10 March, 2017

Motivation	Incidents	Rail traffic	Empirics	Summary
•0000000000				

Tight oil production boom: time frame

- some impact from fracking in 2008
- fracking boom really shows up in 2010

Motivation	Incidents	Rail traffic	Empirics	Summary
0000000000	00000	000	000000	

Infrastructure issues: oil pipeline siting

Motivation	Incidents	Rail traffic	Empirics	Summary
0000000000				

Infrastructure issues: rail siting

 Motivation
 Incidents
 Rail traffic
 Empirics
 Summary

 000000000
 00000
 000000
 000000
 0

Infrastructure issues: rail vs. pipeline siting

with crude oil pipelines.png

SDU: Past Energy Transitions (C. Mason)

Notivation	Incidents	Rail traffic	Empirics	Summary
0000000000				

July 6, 2013: Lac-Mégantic, Quebec

Motivation	Incidents	Rail traffic	Empirics	Summary
0000000000				

December 30, 2013: Casselton, North Dakota

April 30, 2014: Lynchburg, Virginia

February 16, 2015: Mount Carbon, West Virginia

Motivation	Incidents	Rail traffic	Empirics	Summary
000000000000				

March 5, 2015: Galena, IL

Motivation	Incidents	Rail traffic	Empirics	Summary
000000000000	00000		000000	O
Pushba	ck			

Motivation	Incidents	Rail traffic	Empirics	Summary
000000000000				
	والمرم والمالين			

More pushback

Motivation	Incidents	Rail traffic	Empirics	Summary
0000000000				

Regulatory pushback

PHMSA Pipeline and Hazardous I Safety Administration	Materials		U.S 🗩 ₁ 🖸	5. Dep	artment of Contact Us F	Transporta	tion C	
About PHMSA	Pipeline Safety	Hazardous Materials Safety	Enter Search Term(s):			Search		
lome » Briefing Room								
DOT Announces Final Rul	le to Strengthen	Safe Transportatio	n of Flammable L	iquids	by Rail			
						Rela	ated Links	
May 1, 2015					Chronology of I Transportation Rail	OOT Actions on Sa of Flammable Liqu	ife ids by	I.
Press Office US Department of Transportation					Transport Cana Next Generatio Tank Car	da Media Release n of Stronger, Safe	on or Rail	
1200 New Jersey Ave, SE Washington, DC 20590 United States					Rule Summary: Standards and High-Hazard Fl	Enhanced Tank C Operational Contro ammable Trains	Car ols for	B 14
pressoffice@dot.gov Tel: 202-366-4570					Final Rule for S Flammable Liqu	afer Transportation uids by Rail	n of	Back to

Motivation	Incidents	Rail traffic	Empirics	Summary
	00000			

Serious Incidents: 2009 – 2014

Originating State	Frequency	Percent
Colorado	1	4.35
Delaware	1	4.35
Kansas	1	4.35
Montana	2	8.7
New Mexico	1	4.35
North Dakota	15	65.22
Texas	1	4.35
Wyoming	1	4.35
Total	23	100

 Motivation
 Incidents
 Rail traffic
 Empirics
 Summary

 0000000000
 00000
 00000000
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0
 0</t

Crude Oil Rail Incidents: 2009 – 2014

A. Serious Incidents

Fraction of weeks	Number of weeks between ever				
with an event	Mean Std. Dev. Median Skev				
0.07	13.23 20.34 6.50 3				
	B. Minc	or Incidents			
Fraction of weeks	1	Number of e	vents per v	week	
with an event	<u>Mean</u>	<u>Std. Dev.</u>	<u>Median</u>	Skewness	
0.50	2.27	1.72	2.00	2.08	

Major Incidents: Qty of Oil Spilled, Econ Damages

 Motivation
 Incidents
 Rail traffic
 Empirics
 Summary

 000000000000
 00000
 000000
 0
 0

Minor Incidents and Time Between Major Incidents

Motivation	Incidents	Rail traffic	Empirics	Summary
	00000			

Minor Rail Incidents vs. Rail Oil Traffic

Motivation	Incidents	Rail traffic	Empirics	Summary
		•00		

Rail Oil Traffic: Small Shipping States

Motivation	Incidents	Rail traffic	Empirics	Summary
		000		

Rail Oil Traffic: Large Shipping States

 Motivation
 Incidents
 Rail traffic
 Empirics
 Summary

 00000000000
 00000
 00000
 000000
 0

Annual Rail Shipments Of Crude Oil Originating in US

		rai	cars
year	oil shipments	carrying oil	per shipment
2009	167	942	5.6
2010	294	9554	32.5
2011	665	15818	23.8
2012	1762	74525	42.3
2013	2508	147940	59
2014	2508	186954	74.5
Total	7904	435708	55.1

Motivation	Incidents 00000	Rail traffic	Empirics •00000	Summary O
Data				

- Incidents
 - PHMSA reports
 - any (self-reported) "incident" (restrict to crude oil)
 - can be minor (common) or serious (infrequent)
 - observations collected for 1 Jan 2009 31 Dec 2014
 - info on amount oil released, total econ. damage, originating state
- Rail Traffic
 - DOT waybill sample
 - most large carrier shipments
 - detailed information on every shipment, 2009 2014
 - retained all shipments carrying oil, originating in US
- merged these sets
 - aggregated to monthly observations
 - "obs.": number of oil cars shipped in month t from a state k
 - no. incidents (0 8)
 - no. serious incidents (0/1)
 - amt. oil spilled; total costs

Motivation	Incidents	Rail traffic	Empirics	Summary
			00000	

Time Between Serious Incidents

Regression model

regressor	Cox	Exponential	Weibull
Cumulative number	-0.025***	-0.019*	-0.019*
of minor incidents	(0.009)	(0.011)	(0.010)
constant		-2.255***	-1.956***
		(0.504)	(0.272)
p			0.905
			(0.146)
χ^2 statistic	7.644***	3.101*	3.599*
Ctandard arrara in narant	haaaa		

Standard errors in parentheses

*: significant at 10%; **: significant at 5%; ***: significant at 1%

Motivation	Incidents	Rail traffic	Empirics	Summary
			000000	

Logit Analysis of Serious Incidents

	(1)	(2)	(3)	(4)
# minor incidents, past 3 mos.	0.363**	0.363**	0.305*	0.310***
	(0.168)	(0.165)	(0.166)	(0.052)
# minor incidents, past 6 mos.	-0.218	-0.219	0.003	
	(0.197)	(0.192)	(0.092)	
# minor incidents, past 9 mos.	0.134	0.141		
	(0.204)	(0.104)		
# minor incidents, past 12 mos.	0.005			
	(0.133)			
constant	-4.190***	-4.190***	-4.117***	-4.116***
	(0.318)	(0.314)	(0.296)	(0.296)
χ^2	37.390	36.512	35.834	35.731

Motivation	Incidents	Rail traffic	Empirics	Summary
			000000	

Rail Car Shipments and Minor Incidents

	Poisson		Neg. Binomial	
	(1)	(2)	(3)	(4)
Thousand cars	0.205***	0.136***	0.236***	0.154***
	(0.014)	(0.006)	(0.018)	(0.024)
constant	-1.333***		-1.378***	-0.387
	(0.104)		(0.104)	(0.257)
State-level FE?	no	yes	no	yes
Ν	681	562	681	562
χ^2	229.0	442.7	167.1	42.7

Standard errors in parentheses

*: significant at 10%; **: significant at 5%; ***: significant at 1%

Motivation 0000000000	Incidents	Rail traffic	Em 00	pirics Sumr 00●0 0	nary
Rail Shi	pments a	and (a) Oil Sp	oilled, (b) [·]	Total Damage	S
Dep. Vbl.:	(a) Quant	ity of Oil Spilled	(b) Total Ed	conomic Damages	;
	Poisson (1)	Neg. Binomial (2)	Poisson (3)	Neg. Binomial (4)	
Thousand cars	0.026 ^{***} (0.007)	0.137*** (0.021)	0.215 ^{***} (0.004)	0.227*** (0.022)	
constant		-2.333*** (0.126)		-4.183*** (0.122)	
State-level FE?	yes	yes	yes	yes	
N	562	562	539	539	_
χ ²	16.03	42.80	2587	102.3	

Standard errors in parentheses

*: significant at 10%; **: significant at 5%; ***: significant at 1%

Motivation	Incidents	Rail traffic	Empirics	Summary
00000000000	00000		000000	O

Impact on expected damages

- above results can be used to infer the expected impact of a one unit increase in rail traffic
- ▶ in Poisson model:

$$\mathcal{E}(D) = \exp(\hat{\beta} \ \overline{x}),$$

- \triangleright one unit = 1,000 rail cars
- $\beta = 0.215$ is the estimated coefficient on rail traffic in Poisson model
- ▷ the average value of dollar damages is \$3,375
- thus, the expected value of total economic damages is

$$0.215\times\$3,375\approx\$725$$

Motivation	Incidents	Rail traffic	Empirics	Summary
00000000000	00000		000000	•
Conclusion				

- statistically important, negative relation b/w accumulated minor incidents and time between serious events
- statistically important, positive rel'n b/w rail traffic and pdf over minor incidents
 - $\,\triangleright\,\,$ adding 10,000 rail cars shipping oil \Rightarrow .4 add'n'l incidents / week
 - \triangleright each add'n'l 3 minor incidents (past 3 mos.) \Rightarrow one add'n'l serious event
- fixed effects largest for states with significant tight oil production
 - OK, ND, TX, NM, WY
- statistically important positive rel'n b/w rail traffic and pdf over costs
 - implies impact on expected costs: marginal impact of one-unit increase in rail shipments = \$725
 - costs reported in database include
 - lost product and damaged capital (private costs)
 - costs from response, closure of main transportation arteries (social costs)
 - costs do not include
 - social costs associated with environmental damages from oil spills
 - property damages resulting from serious events (*e.g.*, spill-induced fires)
 - value of lost life