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INCENTIVES AND EFFICIENCY IN MATCHING WITH TRANSFERS:
TOWARDS NONQUASILINEAR PACKAGE AUCTIONS

RYAN TIERNEY

University of Southern Denmark, Department of Economics, Campusvej 55, Odense

M, Denmark 5230

Abstract. We study the package assignment model and its consequences for the

model of matching with transfers. We show that on rich domains, strategy-proofness,

joint monotonicity (of Barberà, Berga, and Moreno [American Economic Review,

106 (2016)]), anonymity in welfare, and continuity in welfare together imply con-

ditional efficiency : the allocation cannot be improved by re-allocation of packages,

keeping packages intact. Thus, rules are restricted to choosing, for each problem, a

set of objects to distribute and a partitioning of these.

Labor markets are auctions with unit demand, once anonymity is modified to

account for productivity differences. In this case, conditional efficiency is no blocking

(by matched pairs), the core component of the standard solution concept of stability.

Thus, while it is known that stable outcomes can be strategy-proof, we show that

a component of stability is necessary for incentives.

These results are derived from the following result, also discovered here, on the

restricted quasilinear domain: weak pairwise strategy-proofness, anonymity in wel-

fare, and continuity in welfare imply no-envy.

JEL codes: C78, D44, D47

Key words: Assignment game, Package auctions, Strategy-proofness

In mechanism design and social choice theory, we frequently encounter tension be-

tween incentives and efficiency. In this manuscript, we find that a restricted form of

efficiency is implied by dominant-strategy incentives. We study the package assign-

ment model, wherein each agent is to be given a set of discrete objects and a monetary
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2 INCENTIVES AND PRICES

transfer. We restrict attention to deterministic rules satisfying welfare-anonymity—

ruling out dictatorial rules—and welfare-continuity. We then find several theorems in

which an incentive constraint implies conditional efficiency : taking as given the set

of packages allocated, they are distributed optimally.1 Thus, by dropping efficiency

and considering only incentives, we gain less freedom to design allocation rules than

one might expect; the rule can decide only which sets of packages it will distribute at

a given problem, it cannot decide to whom these are distributed.

We study both general and quasilinear domains of preferences. For the full domain,

the incentive conditions we impose are strategy-proofness and a welfare monotonicity

condition based on, but weaker than, Maskin monotonicity. For the quasilinear do-

main, the incentive condition is weak pairwise strategy-proofness. Most of the work

is in showing the theorem for this restricted domain, as there are fewer manipulations

available to the agents and thus fewer tools available for a uniqueness proof. The

correspondence between the two theorems is then achieved via a strengthening of the

theorem of Barberà, Berga, and Moreno (2016).

Two important applications of these findings are found in package sales in the

presence of wealth effects, and in labor market matching. In the first application,

the literature has seen a burst of interest in wealth effects in recent years. The

results are sometimes surprising. Baisa and Burkett (2019) find that, if in addition

to wealth effects there are also interdependent preferences, then the existence of ex

post implementable and efficient English auctions depends on whether the setting is

a sales auction or a procurement auction.2

Morimoto and Serizawa (2015) provided the first characterization of rules for sell-

ing heterogeneous items to non-quasilinear buyers. They find that the minimal-price

Walrasian rules are the unique efficient and strategy-proof (deterministic) mecha-

nisms that induce voluntary participation and do not provide subsidies. Showing the

difficulty that wealth effects introduce, they restricted attention to the case when each

buyer could obtain at most one item. Without this restriction, it is not guaranteed

that minimal-price Walrasian rules are defined (Gul and Stacchetti (1999); Bikhchan-

dani and Ostroy (2002)), but with it, these rules generalize the Vickrey-Clarke-Groves

1In the standard auction sense for quasilinear preferences or the Morimoto and Serizawa (2015) sense
for general preferences.
2In non-quasilinear preferences, valuations are not well-defined.
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schemes, and so make Morimoto and Serizawa’s work the closest analogue to Holm-

ström’s (1979) characterization on the general domain.3 Unfortunately, Kazumura

and Serizawa (2016a) then showed that if packages are to be sold, there is no rule

that satisfies Morimoto and Serizawa’s desiderata.

Thus, there is still much to be uncovered in this important problem. Our results

yield a structure theorem, without any a priori restriction on the transfers to the

agents or the packages they may buy, that can contribute to the theory of the second-

best. In the meantime, work has continued on related questions such as finding

notions of monotonicity that imply incentive compatibility (Kazumura et al., 2020a)

and seeking desirable rules (Malik and Mishra, 2021).

In classical models of job matching with salaries, we discover a near equivalence

between ex ante dominant strategy incentives and ex post coalitional incentives. In

these models, conditional efficiency is equivalent to the ex post notion of no blocking

(by matched pairs; see footnote), which when combined with non-wastefulness and

individual rationality becomes the familiar solution concept of stability (see Section

3.2).4 Stability and strategy-proofness have a well studied relationship in matching,

both with and without continuous transfers (Shapley and Shubik, 1971; Dubins and

Freedman, 1981; Kelso Jr and Crawford, 1982; Leonard, 1983; Demange and Gale,

1985; Hatfield and Kojima, 2009; Svensson, 2009; Hirata and Kasuya, 2017; Tierney,

2019). To oversimplify: Researchers begin by studying stability, for its inherent

appeal, in their problem. The set of stable allocations is then found to have a nice

structure (that of a welfare lattice, or semi-lattice). This structure allows us to identify

a unique best stable allocation for some side of the market, which when chosen as the

solution, yields a strategy-proof rule. Our results reverse this course and thereby show

an intuitive “if and only if,” though not a formal one. In particular, we require the

ancillary conditions mentioned above. However, we only deduce a part of stability,

and it is easy to see there are many unstable rules that satisfy our desiderata.

It is worth noting here that we do not impose even weak notions of efficiency, such

as efficiency when constrained to the range, total distribution of the objects, or even

non-wastefulness. All of these requirements are natural and have elicited interest in

3For the case of unit-demand for homogenous items, Sakai (2007) and Saitoh and Serizawa (2008)
provide earlier characterizations.
4Depending on the context, non-wastefulness may be part of the definition of no-blocking. We instead
distinguish the cases when an agent is not matched at all versus when it is “wrongly” matched.
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the literature (Andersson et al. (2022); Alva and Manjunath (2019); Adachi (2014);

Mukherjee (2013); Sakai (2012); Ashlagi and Serizawa (2012); Sakai (2007); Kazumura

et al. (2020b)). Thus, we isolate, to a greater extent, the effects of the incentive

constraints.

The foregoing gives an overview of our relative contribution, but since we interact

with several literatures, a full analysis would be cumbersome. We thus make further

connections to existing work in the natural course of the manuscript and via our

corollaries. Therefore, we proceed with the model and solution concepts in Section 1

and the main results in Sections 2.1 (quasilinear preferencs) and 2.2 (general prefer-

ences). In Section 3.2, we formalize the application to labor market matching and in

Section 3.3, the application to the package assignment model. As usual, our results

require some richness of the preference domain, and since our richness requirement

is completely standard, we postpone its formalization to Section 4. We then, finally,

take up an extension in Section 5, wherein we consider the case when items may come

in multiple copies.

1. Primitives

1.1. Model. There is a finite set Ω of indivisible objects and there is money. Agents

are permitted to consume a single item from a set X ⊆ 2Ω \ {∅}; that is, agents may

not have access to every package of objects. They may be permitted to consume a

null item, denoted 0, representing the state of consuming none of the other items. Let

X := X ∪ {0}. Our first salient restriction arises: if x∩ y 6= ∅, then it is infeasible for

one agent to consume x while another consumes y.

The set of agents is N , each of whom has a continuous and monotone preference

relation over the consumption space X × R. A typical preference is denoted R with

asymmetric part P and symmetric part I. Preferences are strictly monotone in money:

for each x ∈ X and m′,m ∈ R with m′ > m, (x,m′) P (x,m). We also make the

standard possibility of compensation assumption: for each (x,m) and each y ∈ X,

there is t ∈ R such that (y, t) I (x,m). The set of preferences is denoted R. For part

of the paper we focus on the subset of quasilinear preferences, denoted V . For each

R ∈ V , there is a vector v ∈ RX such that the function

v(x) +m
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represents R. Note that we use functional notation v (x) to identify the x coor-

dinate of vector v ∈ RX and that v(x) may be negative. Given a bundle (x,m),

denote by U [R, (x,m)] the upper-contour set of R at (x,m). The lower-contour set

is L [R, (x,m)].

For v ∈ RX , denote by R JvK the weak preference relation induced by v. As above,

P JvK and I JvK denote the corresponding strict and indifference relations. For nota-

tional simplicity, we often identify the relation R JvK by the vector v, but we must

be careful with this. We shall not, as is customary, assume that v(0) = 0, as it will

be useful at times to have different representations at our disposal. Let e denote the

constant vector of ones. Given v ∈ RX and λ ∈ R, R Jv + λeK=R JvK; it is easy to see

that this actually characterizes the set of equivalent, additively separable represen-

tations of R JvK. When two vectors u and v represent the same preference, we write

u ' y.

Given a set A ⊆ X × R, denote by C (R,A) ⊆ X × R the maximal (“chosen”)

elements of preference relation R in A. Given a ∈ RX , we abuse notation and denote

by C (R,a) the set of items chosen by R from a choice set where ax is the amount

of money to be consumed together with item x. Formally, C (R,a) is the projection

onto X of C (R, {(y, t) : t = ay}) .
Denote by Z the set of feasible allocations ϕ = (ξ, µ) ∈ XN ×RN . As noted above,

for each ϕ ∈ Z, and each pair i, j ∈ N , ξi ∩ ξj = ∅; however, the set Z might be

further restricted. With abuse of notation, a rule is a function ϕ = (ξ, µ) : RN → Z.

1.2. Desiderata. As is clear from the model, the profile R ∈ RN
fully determines the

state of the economy. We regard each component Ri, as private information. Thus,

to elicit the state of the economy from the agents, we require a notion of incentive

compatibility. In the interest of robustness, we study

Strategy-proofness (StP): For each R ∈ RN
, each i ∈ N , and each R′i ∈ R,

ϕi (R) Ri ϕi (R
′
i,R−i).

5

A rule is strategy-proof if and only if its induced manipulation game has a dominant-

strategy equilibrium. Such rules require minimal rationality of participants.

We shall also study pairwise incentives that are similarly robust. In particular, we

shall want to rule out the possibility that a pair of agents should collude and both

5Here, (R′i,R−i) is, as usual, the profile derived from R by replacing component Ri with R′i and
changing nothing else.
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improve their outcome, independent of any side payments or other compensation they

might give each other. Such considerations are important in practice. The majority of

people display some level of others-oriented preference and the desire for cooperation

(Andreoni and Miller (2002); Van Lange (1999)). Moreover, even a small fraction of

others-oriented players can induce fully selfish players to show others-orientation if

they know it will reinforce a cooperative outcome in which they benefit (McKelvey

and Palfrey (1992)). Thus, if a pair of players can benefit from a joint misreport to

the rule, without generating any side payments that could incriminate them, then the

only barrier to doing so is coordination. While coordination in auctions is necessarily

hidden, for legal concerns, it was open at least in the old Boston mechanism for

school choice (Abdulkadiroglu et al. (2006)). This is an environment in which no

money is involved, and in which parents could defend their collusion on the ground

of ensuring a better outcome for their children. Finally, it is worth noting that Li’s

(2017) empirically successful notion of obvious strategy-proofness implies our notion

of pairwise incentive compatibility.

Weak Pairwise Strategy-proofness (2StP): For each R ∈ RN
, each subset N ′ ⊆ N

with |N ′| ≤ 2, and each partial profile R′N ′ ∈ R
N ′

, there is at least one agent k ∈ N ′

for whom ϕk (R) Rk ϕk (R′N ′ ,R−N ′).

Weak pairwise strategy-proofness nests StP by allowing N ′ to be a singleton as well.

Obviously, weak group strategy-proofness, which is simply the above definition ab-

sent the restriction that |N ′| ≤ 2, implies 2StP.

The sets of strategy-proof and weak pairwise strategy-proof rules are immense

and diverse. In particular, they contain priority-based rules that maximally favor one

agent over another based only on their index. To eliminate such rules from consider-

ation, both because they are unfair and impractical (such discrimination might invite

a lawsuit), we impose

Anonymity in Welfare (WAnon): Let R and R′ ∈ RN
be such that there is a

bijection σ : N → N with R′j = Ri when j = σ(i). Then ϕj(R
′) Ii ϕi(R).

We limit our attention to rules that satisfy continuity in welfare space. We view

continuity as a regularity condition, but there are several reasons why it is indepen-

dently appealing. The first is ease of calculation. This is relevant even if the rule in

question admits a closed form, as most practical procedures for implementing a social



INCENTIVES AND PRICES 7

choice rule involve some dynamic convergence of messages (think of the ascending

auction). The second reason is the avoidance of disputes: while a discontinuity may

be easily justified to experts, who understand the problem deeply, to the layman it

may appear capricious.

To define continuity of a rule, we first require a topology on the space of problems.

Given R ∈ R, with corresponding indifference relation I, and x ∈ X, for any (y,m) ∈
X × R, let Ux

(
y,m

∣∣R) be the quantity of money satisfying6(
x, Ux

(
y,m

∣∣R)) Ii (y,m).

This is well-defined given the possibility of compensation axiom. Since preferences

are continuous, then for any x, the function (y,m) 7→ Ux
(
y,m

∣∣R) is a continuous

utility function representation for R. We say that a sequence Rn converges to R if

and only if, for each x ∈ X, Ux
(
·
∣∣Rn
)

compact-converges to Ux
(
·
∣∣R).7

Welfare Continuity: For each i ∈ N , and each x ∈ X, the function Ux
(
ϕi(·)

∣∣·) is

continuous.

1.3. Solution Concepts. The main contribution of the paper is to show that rules

satisfying our desiderata must be price-based. If an allocation is supported by prices,

we call it a quasi-equilibrium. As there is no feasibility constraint on the consumption

of money, our notion of quasi-equilibrium has nothing to say about this. Finally,

package prices need not be linear.

Vector p ∈ RX is a quasi-equilibrium price vector for economy R ∈ RN
if there is

an allocation ϕ = (ξ, µ) ∈ Z such that, for each agent i ∈ N ,

ξi ∈ C (Ri,−p) and µi = −pξi .

Allocation ϕ is called a quasi-equilibrium. The price of the null item may be non-zero;

the notion of quasi-equilibrium does not inherently respect the outside option (getting

the null and paying zero) or forbid subsidy. There may be several quasi-equilibria for

each quasi-equilibrium price vector, but these will all be welfare equivalent, as each

agent’s maximal welfare is uniquely determined by the price vector.

6The technique here is the same as used by Demange and Gale (1985).
7A sequence of functions fn compact-converge to f if the converge uniformly on each compact set.
This induces the topology of closed convergence on R.
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For quasilinear preferences, additive separability gives us the classical notion of

an optimal object assignment as one that maximizes
∑

i∈N vi (ξi) when each vi has

vi(0) = 0. Quasi-equilibrium allocations need not be optimal, but are better, in

this sense, than any other allocation with the same set of distributed items. This is

because, fixing the set of distributed items, we are left with a classical assignment

game as in Shapley and Shubik (1971). Thus, we conclude that each quasi-equilibrium

yields an assignment that is

Conditionally optimal: A feasible item assignment ξ ∈ XN
is conditionally optimal

for a profile of quasilinear preferences v ∈ VN if, lettingA =
{
x ∈ X : ∃i ∈ N, ξi = x

}
,

it maximizes the sum
∑

i∈N vi (ξ
′
i)− vi(0) among feasible allocations ξ′ ∈ AN .

For general preferences, we cannot separate the analysis of the item and money

distributions, so we consider a kind of Pareto efficiency. The set of Pareto-efficient

allocations, in the standard sense, is empty as we have not put an upper bound on the

consumption of money. Rather than imposing any such bounds, we follow Morimoto

and Serizawa (2015) in imagining that the money distributed by the rule comes from

an administrator with simple preferences: distributing less money is better. Thus, an

allocation is deemed inefficient if there is another feasible allocation that all agents,

including the administrator, would unanimously vote to adopt instead; i.e., if a better

distribution of objects and money can be found without increasing the administrator’s

contribution. It is then easy to see that each quasi-equilibrium is

Conditionally efficient: An allocation (ξ, µ) ∈ Z is conditionally efficient for R ∈ RN

if, letting A =
{
x ∈ X : ∃i ∈ N, ξi = x

}
, it is Pareto efficient relative to feasible

allocations (ξ′, µ′) ∈ AN × RN with
∑

i∈N µ
′
i ≤

∑
i∈N µi.

In addition to the foregoing optimality properties, quasi-equilibrium is in fact equiv-

alent to the following well-studied fairness condition. Since each agent has access to

the same choice set, each agent finds their own bundle at least as good as everyone

else’s. Suppose, on the other hand that, at ϕ, we have

No Envy: For each {i, j} ⊆ N , ϕi Ri ϕj.

Then we can construct a price vector to support ϕ as follows: for each x ∈ X that

is consumed by some agent i, set px = −µi. If x ∈ X is not consumed by any agent,

then set px sufficiently high. In sum, an allocation is a quasi-equilibrium if and only

if it satisfies no-envy.
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2. Main Results

Our theorems hold true only on domains that contain enough preference relations.

For our purposes, such a domain is convex and contains enough Maskin-monotonic

transforms of its members. As our requirements are simultaneously tedious to formal-

ize and completely standard, we postpone discussion of them to Section 4. However,

we summarize them now.

We study quasilinear and general domains. For a quasilinear domain to be rich,

it must first be convex. Then, given two preferences on the interior of the domain

and any bundle in the consumption space, there must be a strict Maskin monotonic

transform of both preferences through that bundle. Additive preferences are rich.

We demonstrate, in Section 3.3.2, a rich domain of preferences satisfying the gross

substitutes condition and that contains the additive domain. For a general domain

to be rich, it must contain a rich quasilinear domain, and satisfy the conditions

of Barberà, Berga, and Moreno (2016). We formalize these notions in Section 4

and discuss, informally, how a rich general domain may be constructed from a rich

quasilinear domain via convex interpolation operations.

2.1. Quasilinear Domains. Our main theorem states that a rule satisfying our con-

ditions can be, essentially, reduced to a pricing function taking values in RX ; after

that there remains only the selection of the precise allocation, which is irrelevant for

welfare.

Theorem 1. Let V ⊆ V be rich. If a rule ϕ : VN → Z satisfies weak pairwise strategy-

proofness, anonymity in welfare, and welfare continuity, then for each v ∈ VN , ϕ(v)

is a quasi-equilibrium.

We cannot say, at present, if welfare continuity is essential for this result, however,

the other two conditions are. For anonymity in welfare, consider the virtual valua-

tion second-price auctions of Myerson (1981). For weak pairwise strategy-proofness,

consider the first-price auction.

Given the properties of quasi-equilibrium, it is worth re-stating the theorem in

different terminology:

Theorem 1a. On any rich quasilinear domain, weak pairwise strategy-proofness,

anonymity in welfare, and welfare continuity together imply conditional optimality.
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Theorem 1b. On any rich quasilinear domain, weak pairwise strategy-proofness,

anonymity in welfare, and welfare continuity together imply no-envy.

2.2. General Domains. Thanks to the results of Barberà, Berga, and Moreno (2016)

(henceforth BBM), our theorem can take a different form when preferences exhibit

wealth effects. In particular, pairwise incentives can be replaced by individual in-

centives and the following monotonicity condition: Suppose an allocation has been

determined for an economy, and then the economy changes such that all agents ap-

praise the determined allocation better than they did before. The rule must pick

something that all agents find at least as good as the original allocation, as judged

by their new preferences.

Preference R′ is a Maskin monotonic transform of R at (x,m) if (y, t) R′ (x,m)

implies (y, t) R (x,m), in which case we write R′ ∈ T (R, (x,m)).

Pairwise Weak Monotonicity: If for each i ∈ N ′ ⊆ N with |N ′| = 2, R′i ∈
T (Ri, ϕi(R)), and otherwise R′i = Ri, then for each i ∈ N ′, ϕi (R′) R′i ϕi (R).

Theorem 2. Let R ⊆ R be rich. If a rule ϕ : RN → Z satisfies strategy-proofness,

pairwise weak monotonicity, anonymity in welfare, and welfare continuity, then for

each R∈ RN , ϕ(R) is a quasi-equilibrium.

As with the quasilinear domain, we restate the theorem as an implication between

normative desiderata.

Theorem 2a. On a rich general domain, strategy-proofness, pairwise weak monotonic-

ity, anonymity in welfare and welfare continuity together imply conditional efficiency.

Theorem 2b. On a rich general domain, strategy-proofness, pairwise weak mono-

tonicity, anonymity in welfare, and welfare continuity together imply no-envy.

This last result is reminiscent of that of Fleurbaey and Maniquet (1997), namely,

that in the classical problem of consumption in Rk, Maskin monotonicity and the

following equal treatment of equals condition imply no-envy.

Equal Treatment of Equals (ETE): If Ri = Rj then ϕi(R) Ij ϕj(R).

Recall that Maskin monotonicity requires that, if the hypotheses of pairwise weak

monotonicity hold, then ϕ(R′) = ϕ(R). Thus, pairwise weak monotonicity is a

strictly weaker requirement. We can, in addition, demonstrate a rule in our problem
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that fails no-envy and yet satisfies strategy-proofness, pairwise weak monotonicity,

equal treatment of equals, and welfare continuity.

Example. Suppose there is a single real item and two agents. Agent 1 always gets

(0, 0), the null item and no money. Define function τ so that, given R1, (1, τ(R1)) I1

(0, 0), where (1,m) is the bundle including the single real item and m units of money.

This is well-defined because of the possibility of compensation assumption. Agent

2 then gets (1, τ(R1)). Neither agent can influence their bundle, hence strategy-

proofness. If R′1 ∈ T (R1, (0, 0)), then τ(R′1) ≥ τ(R1), so 2’s welfare is isotone with 1’s

Maskin monotonic transforms, and 2’s welfare is clearly continuous in 1’s preferences

more generally. Finally, if R2 = R1, then by construction, ϕ1(R) Ii ϕ2(R) for each

i ∈ {1, 2}, so we have equal treatment of equals.

This rule demonstrates simultaneously the relative weakness of our monotonicity

condition as well as the importance of the permutation condition in welfare anonymity.

That said, many of the steps in our proof can be achieved with equal treatment of

equals alone, and so we invoke this weaker requirement when it suffices. Because of

this, we can consider an alternative set of conditions that imply quasi-equilibrium. In

particular, when the rule is bounded relative to the preference domain, and when all

the agents who consume the null get the same bundle of money, then ETE suffices.

Theorem 3. Let V ⊆ V be rich and suppose ϕ = (ξ, µ) : VN → Z satisfies weak

pairwise strategy-proofness, equal treatment of equals, and welfare continuity. As-

sume further that 1) there is m ∈ R such that, for each v ∈ VN , and each i ∈ N ,

µi(v) ≤ m, and that 2) ξi(v) = ξj(v) = 0 implies µi(v) = µj(v). Finally, assume

that 3) for each v ∈ int
(
VN
)

and each i ∈ N , there is ui ∈ T (vi, ϕi(v)) with ϕi(v)

P JuiK (y,m) for all y 6= ξi(v). Then for each v ∈ VN , ϕ(v) is a quasi-equilibrium.

The first and third conditions jointly say that agents can distinguish different items

with higher intensity than the rule can compensate for. It is worth emphasizing here

that we did not have this assumption before.

3. Applications

In this section we discuss applications of our results to labor markets and package

auctions, the main distinction between these two being that labor markets are a case of
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one-to-one matching while package auctions match one agent to many objects. First,

we review a few standard solution concepts related to the notion of quasi-equilibrium.

3.1. Familiar Solution Concepts. A Vickrey-Clarke-Groves (VCG) scheme is a rule

ϕ = (ξ, µ) : VN ⊆ VN → Z such that ξ is optimal and, for each i ∈ N , there is

hi : VN\{i} → R such that

µi(v) =
∑

j∈N\{i}

vj (ξj(v))− max
ξ∈Z,ξi=0

∑
j∈N\{i}

vj (ξj) + hi(v−i).

It is well-known that every VCG scheme is strategy-proof. A VCG pivot rule is a VCG

scheme with hi ≡ 0 for all agents. Note that these rules award money consumption

of 0 to those who consume item 0. By the way the VCG schemes are calculated, it is

easy to see that any pivot rule satisfies anonymity in welfare (as the maximum value

function is symmetric) and welfare continuity (by Berge’s maximum theorem).

The calculation of VCG schemes clearly depends on quasilinearity. Strategy-proofness,

however, does not. Demange and Gale (1985) showed that, at least for the unit de-

mand case, which is when an agent can consume at most one object, the minimal

price Walrasian rules (defined below) are strategy-proof even on non-quasilinear do-

mains. Morimoto and Serizawa (2015) show that, when there are more agents than

items, such rules are the only efficient and strategy-proof rules that, like the pivot

rules, give money consumption 0 to the agents who consume item 0. Unfortunately,

Kazumura and Serizawa (2016b) find that no rule can satisfy those conditions when

packages of objects are available. We hope the results herein can provide some help-

ful structure to this space, so that even if an ideal rule cannot be found, we may

nonetheless optimize within what is possible.

Given an economy R ∈ RN
, let P(R) denote its quasi-equilibrium price vectors. In

the unit-demand case, P(R) is a lattice under the supremum and infimum operations

induced by the usual vector order ≤ (Shapley and Shubik (1971); Demange and

Gale (1985)). This implies that for each pair {p, p′} ⊆ P(R), the point p ∧ p′ :=

(min{px, p′x})x∈X also belongs to P(R). It further implies that for each point b ∈ RX ,

there is a unique minimal p ∈ P(R) satisfying p ≥ b. Denote this element p∗ (R; b).

Recall that prices may be negative, so in fact the agents may be offered payment to

take an object. The vector p∗(R; b) is the buyer-optimal quasi-equilibrium price that

respects the bounds given by b.
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Given a vector b ∈ RX
as a parameter, we may construct a rule wb as follows: For

each R ∈ RN
, calculate p∗ (R; b). Now let wb(R) be an equilibrium generated by

prices p∗ (R; b). We have thus defined an
∣∣X∣∣-dimensional family of rules, which are

called the minimal price Walrasian rules.

3.2. Application: Job Matching. For this section, we imagine that X is a set of tasks.

Each agent is to be given at most one task and agents cannot share a task. Thus, X

is the set of singleton subsets of Ω. For notational continuity, we use X nonetheless.

When i ∈ N is given task x ∈ X, a publicly observable quantity πix ∈ R of money

is generated. The firm overseeing task x then pays a salary to i. We shall consider

this the primitive model for job matching and call it the worker-firm model, but

we will map it into our model above, which we call the bidder-seller model. In the

worker-firm model, workers have worker preferences, which are marked with a star,

as in R?
i .

To map the worker-firm model into the bidder-seller model, imagine that πix ac-

crues first to i who then returns some profit to the firm. This induces an auction of

heterogeneous objects with buyers having unit-demand preferences. Formally, sup-

pose i consumes (x,wi) in the worker-firm model; she does task x and gets paid wage

wi. If we view πix as first accruing to i, then this means she pays πix − wi to the

firm. Note that i’s welfare is decreasing in this quantity. Since we assume welfare is

increasing in money, we say she consumes µi = wi − πix money in the bidder-seller

model, which is negative for normal applications (and fits the bidder-seller model, as

payments are usually negative consumption). Thus, (x,wi) maps to (x,wi− πix) and

money consumption is simply computed net of productivity. It follows that we map

worker preference R?
i of agent i to bidder preference Ri of agent i via

(x,wi) R
?
i (y, w

′
i)⇐⇒ (x,wi − πix) Ri (y, w′i − πiy).

We shall now explore the consequences of our prior results, found in the bidder-seller

model, in the worker-firm model.

We first examine what anonymity in welfare means in this context. In the bidder-

seller model, if R is permuted to R′, with R′j = Ri, then we have (ξ′j, µ
′
j) Ii (ξi, µi),

where (ξ′j, µ
′
j) = ϕj(R

′) and (ξi, µi) = ϕi(R). If we substitute µi = wi − πiξi and
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µ′j = wj − πjξ′j , and then map the result to worker preferences of i, we get

(ξ′j, w
′
j − πjξ′j + πiξ′j) I

?
i (ξi, wi).

So if πjξ′j > πiξ′j , i might prefer j’s job and wage bundle after permutation. This may

be true even if Rj = Ri. However, this is reasonable for the application as it reflects

the differential productivity of the two workers. Anonymity in welfare thus becomes

No Discrimination: Let ϕ? be a rule on the worker-firm model. Let R? and R′? be

preference profiles such that there is a permutation σ : N → N with R′?j = R?
i when

j = σ(i). Then, letting (ξ,w) = ϕ?(R?) and (ξ′,w′) = ϕ?(R′?),

(ξ′j, w
′
j − (πjξj − πiξj)) I?i (ξi, wi).

Consider an allocation (ξ, µ) ∈ X×R that is not a quasi-equilibrium in the bidder-

seller model. There are i, j ∈ N such that (ξj, µj) Pi (ξi, µi). In worker preferences,

(ξj, µj + πiξj) P
?
i (ξi, wi).

For ε > 0, sufficiently small, i could propose wage

w′i = µj + πiξj − ε

to task ξj and would still prefer (ξj, w
′
i) to her current allotment. The firm managing

the task would then be receiving an offer to earn profit

πiξj − w′i = −µj + ε > −µj = πjξj − wj.

We assume the firm would take such an offer, and thus i and ξj would form a blocking

pair. It follows, therefore, that quasi-equilibrium, when applied to the job matching

model, is equivalent to

No-blocking: An allocation (ξ,w) is blocked if there are i, j ∈ N and w′ ∈ R such

that πiξj − w′ > πjξj − wj and (ξj, w
′) P ?

i (ξi, wi).

No blocking is the heart of the solution concept of stability, the other two ingre-

dients being non-wastefulness and voluntary participation. The intimate relationship

between stability and incentives is well-known, with several characterizations in the

literature (Leonard, 1983; Morimoto and Serizawa, 2015; Svensson, 2009), but, to

the author’s knowledge, the corollary below is the first to show the necessity of an

ingredient of stability without assuming either of the other two ingredients.
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Corollary 1. If a rule for the job matching model, defined on a rich quasilinear domain

V ⊆ V, satisfies weak pairwise strategy-proofness, no discrimination and welfare

continuity, then it satisfies no-blocking.

Corollary 2. If a rule for the job matching model, defined on a rich general domain

R ⊆ R, satisfies strategy-proofness, pairwise weak monotonicity, no discrimination

and welfare continuity, then it satisfies no-blocking.

3.2.1. Novel Characterizations of Min-price Rules. The previous section demonstrated

how the job matching model and the auction model with unit-demand map between

each other: one only need to reinterpret anonymity in welfare and quasi-equilibrium.

As the auction model is more parsimonious—doing away with productivities—we pro-

ceed with this approach. We show here some corollaries of our main results, arriving

at three novel characterizations via synthesis with existing results.

Completing the synthesis requires some additional concepts. Non-wastefulness is

the idea that any unconsumed item should be available for free. We have not given

the quantity 0 of money any particular meaning thus far, so getting something for

free has no significance. We therefore first introduce the concept of

No Subsidies: In allocation ϕ = (ξ, µ), each i ∈ N with ξi ∈ X has µi ≤ 0.

With this, it is meaningful to also require

Non-Wastefulness: In allocation ϕ = (ξ, µ), suppose there are i ∈ N and x ∈ X

such that (x, 0) Pi ϕi. Then there is j with ξj = x.

Lemma 1. A non-wasteful quasi-equilibrium that gives no subsidies is efficient.

Proof. Let p ∈ RX be a price vector supporting ϕ = (ξ, µ). Let ϕ′ = (ξ′, µ′) be

an allocation that might welfare dominate ϕ. Note that since quasi-equilibria are

conditionally efficient, ϕ′ can only welfare dominate ϕ by allocating a different set

of items or distributing more money. Thus, consider a sequence {1, 2, . . . , n} ⊆ N ,

relabeled for convenience, such that for 1 ≤ i < n, ξ′i = ξi+1, and such that ξ1 is not

consumed under ξ′ and ξ′n is not consumed under ξ. The sequence of agents forms a

trading path. Define q ∈ Rn so that for each i ∈ {1, . . . , n}, (ξ′i,−qξ′i) Ii ϕi. Since ϕ

is a quasi-equilibrium, for 1 ≤ i < n, qξ′i ≤ pξ′i . By non-wastefulness, qξ′n ≤ 0 and by
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no-subsidies, pξ1 ≥ 0. Altogether, we have

n∑
i=1

qξ′n ≤
n−1∑
i=1

qξ′i ≤
n∑
i=2

pξi ≤
n∑
i=1

pξi .

If ϕ′ indeed welfare dominates ϕ, then for each i, µ′i ≥ −qξ′i and for some i this is

strict. Then
∑n

i=1 µ
′
i > −

∑n
i=1 pξi , so any such sequence of agents receives strictly

more money from the rule. It is easy to verify that the same holds for cycles. In sum,

the only way for ϕ′ to welfare dominate ϕ is via the distribution of more money. �

Now we can leverage Holmström’s Theorem (1979) for our first corollary:

Corollary 3. Assume V ⊆ V is rich. If a non-wasteful rule ϕ : VN → Z satisfies

no-subsidies, weak pairwise strategy-proofness, anonymity in welfare, and welfare

continuity, then it is a Vickrey-Clarke-Groves scheme with hi independent of index.

To extend this to the general domain we leverage the theorem of Morimoto and

Serizawa (2015). This, however, requires two more restrictions. First, they show their

theorem on the domain

RC =
{
R ∈ R : ∀x ∈ X, ∀m ∈ R, (x,m) P (0,m)

}
.

Proposition 1 below shows that quasilinear preferences with positive valuations are

rich. We leave it to the reader to verify that RC is rich, using this fact. Second, they

further impose that the rule be

Voluntary: For each R ∈ R and each i ∈ N , ϕi(R) Ri (0, 0).

We can now state

Corollary 4. Assume |N | ≥
∣∣X∣∣. Let ϕ :

(
RC
)N → Z be a non-wasteful, voluntary

rule that gives no subsidies. Assume further that ϕ satisfies strategy-proofness, pair-

wise weak monotonicity, anonymity in welfare and welfare continuity. Then ϕ is a

minimum price Walrasian rule with b = 0.

Our Theorem 3, combined with the result of Svensson (2009), yields a corollary for

the case when matching must be one-to-one. That is, assume now that the null is not

available and |X| = |N |. To apply Svensson’s result, we need
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Regularity: A rule ϕ = (ξ, µ) is regular if there is some v ∈ VN such that∑
i∈N

µi(v) = sup
v′∈VN

∑
i∈N

µi(v
′) ∈ R.

Corollary 5. Assume the null item is not available and that |N | = |X|. If a regular

rule ϕ : VN → Z satisfies weak group strategy-proofness, equal treatment of equals,

and welfare continuity, then there is a vector m ∈ RX such that, for each v ∈ VN ,

ϕ(v) is an equilibrium with respect to price p∗ (v;m).

3.3. Application: Package Assignment. Theorem 2 contributes to the nascent study

of package auctions in the presence of wealth effects (Kazumura and Serizawa (2016b);

Baisa (2020); Kazumura et al. (2020a)). Our guidance in this direction (or any di-

rection, for that matter) is of course conditional on the usefulness of rich domains, a

topic we address in Section 3.3.2. We begin, however, with another corollary.

3.3.1. A novel observation on collusion in VCG schemes. Our result implies that if

the VCG pivot rule is weakly pairwise strategy-proof, then it is envy-free. Pápai

(2003) showed that, in general, VCG schemes cannot be made envy-free, and thus we

arrive at the following result.

Corollary 6. No rule ϕ : VN → Z assigns items optimally, awards 0 money to agents

who get the null item, and satisfies weak pairwise strategy-proofness.

Proof. Optimal assignment and strategy-proofness (as a consequence of weak pairwise

strategy-proofness) yield VCG schemes. Since V contains (0,−1, · · · − 1), each i ∈ N
has a report guaranteeing them the null item, regardless of the reports of the other.

Thus, to award such an agent 0 money, it must be that hi ≡ 0; ϕ is the pivot rule. As

mentioned, this is welfare anonymous and welfare continuous, so Theorem 1 implies

envy-freeness, which is impossible given the result of Pápai (2003). �

3.3.2. Rich Domains for Package Assignment. Since Kelso & Crawford (1982), the

domain of quasilinear preferences satisfying their gross substitutes condition has been

of central interest. Unfortunately, Bikhchandani and Ostroy (2002) provide an exam-

ple of a problem satisfying this condition for which the Vickrey pivot rule cannot be

expressed as a quasi-equlibrium. Nonetheless, given the importance of the property,

and the likely necessity of sacrificing optimal allocation in many contexts, we study
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whether it is a rich domain. Unfortunately, it is not convex. However, it has useful

sub- and superdomains that are rich.

Gross-substitutability is a property of a demand function in the face of linear pric-

ing: when the prices of some objects increase, previously demanded packages, with

the newly expensive objects removed, should be contained in newly demanded pack-

ages. Fujishige and Yang (2003) showed that demand exhibits gross-substitutability

if and only if the the preference can be represented by v ∈ RX that is M \-concave.8

This latter condition was introduced by Murota and Shioura (1999) and is somewhat

complex. Of primary importance for our purposes is that the set of M \-concave func-

tions is not convex (Murota, 2003). However, we shall demonstrate here a subdomain

of M \-concave functions that is rich.

Every M \-concave function is submodular but the converse is not true (Murota

(2003), example 6.20). We leave it to the reader to verify that submodular functions

also form a rich domain.

A function f : Z → R is univariate discrete concave if, for each t ∈ Z, f(t + 1) +

f(t − 1) ≤ 2f(t). A function v : 2Ω → R is concave quasi-separable if there is a

non-decreasing univariate discrete concave function f such that, for each x ∈ X,

v(x) = f (|x|) +
∑
ω∈x

v({ω}).

Murota (2003) showed that concave quasi-separable functions are M \ concave.

As we have postponed the definition of richness, so we postpone the proof of the

following proposition to Section 4.

Proposition 1. The domain of quasilinear preferences induced by non-negative, con-

cave quasi-separable functions is rich.

4. Rich Preference Domains

We build rich general domains from rich quasilinear domains, so we discuss the

latter first.

4.1. Rich Quasilinear Domains. A rich quasilinear domain is convex and contains

enough Maskin monotonic transforms. Convexity is defined in the obvious way. If

8In this model, where all objects are distinct.
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R and R′ are quasilinear, with representations u and v respectively, then the convex

hull of R and R′ is{
R′′ ∈ V : ∃θ ∈ [0, 1], R′′ =R Jθu+ (1− θ)vK

}
.

This is well defined: if u′ and v′ are alternative representations, then there are λ, γ ∈ R
such that

θu′ + (1− θ)v′ = θu+ (1− θ)v + (θλ+ (1− θ)γ) e ' θu+ (1− θ)v.

If R is quasilinear, then T (R, (x, t)) is independent of t, and we may suppress

notation for money in this case, writing T (R, x). Relation R′ is a strict Maskin

monotonic transform of R at (x,m) if (y, t) R′ (x,m) and y 6= x then (y, t) P (x,m).

In this case we write R′ ∈ T str. (R, (x,m)). A quasilinear relation v is regular in

domain V if, for each x ∈ X, and each open U ⊆ RX containing v, there is u ∈ U
with u ∈ T str. (v, x) and if, in addition, x = 0, then there is δ > 0 such that, for each

y ∈ X, u(y) = v(y)− δ.

Richness (Quasilinear Case): A domain V ⊆ V is rich if

(1) It is convex;

(2) The relative interior of V is non-empty and consists of regular preferences;

(3) For each pair u and v of regular preferences, and each x ∈ X, T str. (u, x) ∩
T str. (v, x) 6= ∅.

We can now prove Proposition 1.

Proof. Let u and v be non-negative, concave quasi-separable. For each ω ∈ Ω, let

uω = u({ω}) and vω = v({ω}), and assume f and g are the discrete concave functions

for u and v respectively. Assume, moreover, that each uω, vω > 0 and that f and g are

both strictly positive and strictly discrete concave. Clearly, these conditions make u

and v interior elements. To show that they are regular, for x ⊆ Ω, and each ω ∈ x,

set u′ω = uω − δ/|x|. For x = 0 (that is x = ∅), set f ′ = f − δ.
Fix x ⊆ Ω, and set α so that for each y ( x,

|x \ y|α > max{f (|Ω|) , g (|Ω|)}+
∑
ω∈x\y

max{vω, uω}.
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Let w ∈ RX be given, for each y ∈ X, by w(y) = α |y ∩ x|. We shall show that

w ∈ T str. (u, x) ∩T str. (v, x). Assume (y, t) R JwK (x,m), with y 6= x. Then

0 ≤ α |x \ y| = α (|x| − |y ∩ x|) ≤ t−m.

If y ) x, then u(y) > u(x) by the positivity of valuations, and so u(x)− u(y) < 0 ≤
t−m. Otherwise, again via non-negativity,

u(x)− u(y) ≤ f (|Ω|) +
∑
ω∈x\y

uω < |x \ y|α ≤ t−m.

In either case, (y, t) P JuK (x,m), and the same calculation holds for v. �

4.2. Rich General Domains. The indifference sets of a quasilinear preference relation

are translates of each other. Thus, each quasilinear preference relation can be identi-

fied with a single indifference set. Viewing these as geometric objects, we can treat

a quasilinear domain as a source of indifference sets from which general preference

relations are constructed. Given R ∈ R , find v ∈ RX such that, for each z ∈ X,

v(z) = −U z
(
x,m

∣∣R). The quasilinear preference v has the same indifference set as R

through the bundle (x,m), and so we say it is the preference induced by R at (x,m).

Domain R induces domain V by repeating this operation for each R ∈ R and each

(x,m) ∈ X × R.

A general domain is rich if it induces a rich quasilinear domain and, additionally,

satisfies the richness condition of Barberà, Berga, and Moreno (2016):

Richness (General Case): The domain R is rich if it (i) induces an open rich

quasilinear domain and (ii) if for each pair R, R′ ∈ R, if (x,m) P (y, t), then there is

R′′ ∈ R such that, for each z ∈ X.

U z
(
x,m

∣∣R′′) ≥ max
{
U z
(
x,m

∣∣R) , U z
(
x,m

∣∣R′)}
and U z

(
y, t
∣∣R′′) = U z

(
y, t
∣∣R) .

We may wonder then if a rich quasilinear domain provides enough indifference sets

to construct a rich general domain. The answer is generically “yes,” and it can be

done as follows: Let v be the quasilinear preference induced by R at (x,m) and v′ the

one induced by R′, also at (x,m). If v and v′ are regular elements of a rich domain,

then there is v∗ ∈ T str. (v, x)∩T str. (v′, x). Similarly, let u be induced by R at (y, t).

Finally, let R′′ be a relation that has an indifference set given by v∗ at (x,m), an
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indifference set given by u at (y, t), and indifferences generated from the convex hull

of v∗ and u in between these two. Then R′′ is the preference required by richness.

5. Extension: Items in Multiple Copies

We have assumed that only the null item can be consumed by more than one

agent. We can replace this assumption by an assumption on how a rule breaks ties.

Any strategy-proof rule can be viewed as a combination of a menu correspondence

and a tie-breaking function. That is, given the preferences R−i of agents not i, the

rule presents agent i with menu Ai(R−i). Agent i then reports her favorite bundles

from this menu. When there is more than one such bundle, the rule must employ

its tie-breaking rule. Of course, all of these reports happen simultaneously, and so

the operation we describe is infeasible in practice. Nonetheless, it shows that every

strategy-proof rule can be viewed as a selection from a correspondence containing all

feasible tie-breaking choices. All of these choices are welfare equivalent: all agents

are indifferent between them. However, not all properties hold across selections. In

particular, if a rule is weakly pairwise strategy-proof, the other selections from the

correspondence are not guaranteed to retain this property, only the individual version.

This motivates the following condition:

Neutral Tie-breaking: Let Φ : RN ⊆ RN
⇒ Z be a correspondence and suppose

{ϕ, ϕ′} ⊆ Φ(R) are distinct. Let ψ ∈ Z be a feasible allocation such that, for each

i ∈ N , ψi ∈ {ϕi, ϕ′i}. Then ψ ∈ Φ(R).

We shall extend our previous conditions from single-valued to set-valued rules as

follows: Say that correspondence Φ satisfies condition P if and only if each of its

selections satisfy P. In keeping with the spirit of our main results, we also require the

rule at least be decisive in welfare space: if {ϕ, ϕ′} ⊆ Φ (R), then for each i ∈ N ,

ϕi (R) Ii ϕ
′
i(R). This requirement is known as essential single-valuedness. Note that,

in this case, our menu correspondence interpretation of strategy-proofness remains

valid. Moreover, we show in the appendix that the menu correspondence associated

with a strategy-proof and welfare continuous rule is continuous.9 It is then easy to see,

via Maskin monotonic transforms, that ties only occur on a negligible set of problems.

In this sense, neutral tie-breaking has bite only on a small part of the domain. It is

nonetheless a required condition of the following results, also shown in the appendix.

9At least, on the domain of problems where it could matter for welfare.
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Theorem 4. Assume real items may come in multiple copies. Let V ⊆ V be rich. If

a rule Φ : VN ⇒ Z satisfies weak pairwise strategy-proofness, anonymity in welfare,

welfare continuity and neutral tie-breaking, then for each v ∈ VN , each ϕ ∈ Φ(v) is

a quasi-equilibrium.

Theorem 5. Assume real items may come in multiple copies. Let R ⊆ R be rich. If a

rule Φ : RN ⇒ Z satisfies strategy-proofness, pairwise weak monotonicity, anonymity

in welfare, welfare continuity, and neutral tie-breaking then for each R∈ RN
, each

ϕ ∈ Φ(R) is a quasi-equilibrium.

Appendix A. Proof of Theorem 1

Throughout this appendix, we assume that ϕ satisfies our conditions and our do-

main V is rich and a subset of V . Denote by V̊ the relative interior of V ; by assumption,

these are regular preferences. The proof is argued on V̊ and extends to V via WCon.

We begin with some preliminary results.

A.1. Preliminaries.

A.1.1. Strategy-proofness and Maskin monotonic transformation. Strategy-proofness

implies that each agent’s report at each problem maximizes their welfare relative to

all other reports they could make. Thus, given the reports of others, if we let Ai(v)

be the set of all ϕi(vi,v−i), as vi varies in V , then

ϕi(vi,v−i) ∈ C (vi, Ai(v)) .

Clearly Ai is invariant to vi, but we often write it as a function of the full profile v

for cleaner exposition. For each x ∈ X, let axi (v) ∈ R be the money allotment such

that (x, axi (v)) ∈ Ai(v). This is well-defined: If {(x,m), (x, t)} ⊆ Ai(v) and m > t

then, letting ϕi(vi,v−i) = (x,m) and ϕi(v
′
i,v−i) = (x, t), preference monotonicity

implies ϕi(vi,v−i) P Jv′iK ϕi(v′i,v−i), contradicting strategy-proofness. Let ai(v) =

(axi (v))x∈X .

The following lemma summarizes some well-known facts of strategy-proof rules.

Lemma (The Invariance Lemma). Let wi ∈ T (vi, ϕi(v)). Then ϕi (wi,v−i) I JvK
ϕi (v) and ϕi (wi,v−i) I JwK ϕi (v). If w ∈ T str. (vi, ϕi(v)), then ϕi (wi,v−i) = ϕi (v).
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Recall the construction of our utility function representation. For x ∈ X and

(y,m) ∈ X × R, (
x, Ux

(
y,m

∣∣v)) I JvK (y,m) .

As such, the points
{(
x, Ux

(
y,m

∣∣v)) : x ∈ X
}

form the indifference set of v through

(y,m) and, in particular, Uy
(
y,m

∣∣v) = m. The reader may also verify that the

following conversions hold for our utility representation when preferences are quasi-

linear:

Uy
(
x,m

∣∣u) = Uy
(
x,m

∣∣v)+ v(y)− u(y) + u(x)− v(x)

Uy
(
x,m

∣∣u) = U z
(
x,m

∣∣u)+ u(z)− u(y).
(A.1)

This in hand, we can prove a few simple but useful lemmas. The first provides some

characterizations of Maskin monotonic transforms in terms of their representations.

Lemma 2. The following are equivalent:

(1) u ∈ T (v, x) [u ∈ T str. (v, x)].

(2) There are u′ ' u and v′ ' v such that u′ ≤ v′, with equality [only] at x.

(3) For each y ∈ X, and each m ∈ R,

Uy
(
x,m

∣∣u) ≥ Uy
(
x,m

∣∣v) ,
with equality [only] for y = x.

Proof. By quasilinearity, we are free to choose a money allotment to go with x, so

consider the full bundle (x,m).

We first show equivalence of the first two. Assume 1. Let u′ ' u and v′ ' v

have u′(x) = v′(x) = 0. Choose (y, t) with u′(y) + t = u′(x) + m. This implies

v′(y) + t ≥ v′(x) +m, conclude

v′(y) ≥ m− t = u′(y).

If u ∈ T str. (v, x) , then y 6= x implies v′(y) + t > v′(x) +m and we get equality only

at x.

Now Assume 2. Let u′′ = u′ − u′(x)e and v′′ = v′ − u′(x)e. Clearly u′′ ' u′ and

v′′ ' v′ and u′′ ≤ v′′ with equality [only] at x. Furthermore, u′′(x) = v′′(x) = 0. Then

if u′′(y) + t ≥ m, clearly v′′(y) + t ≥ m, and so u′′ ∈ T (v′′, x). Since u′′ ' u and

v′′ ' v, u ∈ T (v, x).
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Next we show equivalence of 2 and 3. Our conversion formulae (line A.1) yield

Uy
(
x,m

∣∣u′) = Uy
(
x,m

∣∣v′)+ v′(y)− u′(y) + u′(x)− v′(x).

As above, we may assume u′(x) = v′(x) = 0. We then immediately conclude that

Uy
(
x,m

∣∣u′) ≥ [>]Uy
(
x,m

∣∣v′) if and only if v′(y) ≥ [>]u′(y). �

Now we show that our utility function representation preserves convexity.

Lemma 3. For θ ∈ [0, 1], let w = θu+ (1− θ)v. Then

Uy
(
x,m

∣∣w) = θUy
(
x,m

∣∣u)+ (1− θ)Uy
(
x,m

∣∣v) .
Proof. Note that

Uy
(
x,m

∣∣u) = Uy
(
x,m

∣∣w)+ w(y)− u(y) + u(x)− w(x)

Uy
(
x,m

∣∣v) = Uy
(
x,m

∣∣w)+ w(y)− v(y) + v(x)− w(x).

Taking the convex combination of these two equations yields the claimed equation. �

Lemma 4. T (v, (x,m)) is convex in V, and T str. (v, (x,m)) is the relative interior

of T (v, (x,m)).

Proof. By Lemma 2, u ∈ T str. (v, x) if and only if Uy
(
x,m

∣∣u) > Uy
(
x,m

∣∣v) for

y 6= x. If u′ ∈ T str. (v, x) as well, then by Lemma 3 the required convex combination

will preserve this inequality. �

Finally we show that if a preference is a Maskin monotonic transform of several

distinct preferences, then it is also a Maskin monotonic transform of every preference

in their convex hull.

Lemma 5. Let w ∈ co {v, v′}. Then

T (v, (x,m)) ∩T (v′, (x,m)) ⊆ T (w, (x,m)) .

Proof. Let u ∈ T (v, (x,m)) ∩ T (v′, (x,m)). Note that by construction (y, t) R JuK
(x,m) implies that

v(y)− v(x) ≥ m− t

v′(y)− v′(x) ≥ m− t.

The result then follows from taking a convex combination of these two lines. �
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We are now equipped to show a continuity and anonymity property of a. Restric-

tions on V may result in there being certain options in Ai(v) that are not chosen for

any preference relation. For such options, the value of axi (v) is not relevant to the

rule. Say that axi (v) is in the relevant domain of choice for i if there is u ∈ V̊ such

that x ∈ C (u,ai(u,v−i)).

Lemma 6. For each x ∈ X, axi (v) is continuous and anonymous in the relevant

domain.

Proof. Let v′ ∈ V̊N be such that there is a bijection σ : N → N with v′j = vi for each

j = σ(i). Suppose that axi (v) > axj (v
′). Assume axj (v

′) is in the relevant domain for

j. Let u ∈ V have x ∈ C (u,aj(v)). By WAnon,

Ux
(
ϕi(u,v−i)

∣∣u) = Ux
(
ϕj(u,v

′
−j)
∣∣u) < axi (v) = axi (u,v−i),

violating StP. Now assume axi (v) is in the relevant domain for i and let u have

x ∈ C (u,ai(v)). Since u ∈ V̊ , there is u′ ∈ T str. (u, x). By WAnon,

axi (u,v−i) = Ux
(
ϕi(u,v−i)

∣∣u) = Ux
(
ϕj(u,v

′
−j)
∣∣u) > axj (u,v

′
−j) = axj (v).

By The Invariance Lemma, ϕi (u
′,v−i) = ϕi (u,v−i). For u′ close enough to u, it

remains that x /∈ C
(
u′, axj (v

′)
)
, and so letting y = ξj

(
u,v′−j

)
, we have

Ux
(
ϕj(u

′,v′−j)
∣∣u′) = Uy

(
ϕj
(
u′,v′−j

) ∣∣u′)+ u′(y)− u′(x)

= Uy
(
ϕj(u,v

′
−j)
∣∣u′)+ u′(y)− u′(x)

= Uy
(
ϕj
(
u,v′−j

) ∣∣u)+ u′(y)− u′(x)

= Ux
(
ϕj(u,v

′
−j
∣∣u)+ u(x)− u′(x)− (u(y)− u′(y))

< axi (u,v−i),

where the second line is again by The Invariance Lemma and the inequality is because

u′ ∈ T str. (u, x). This contradicts WAnon. It follows that the relevant domain is

independent of identity and so a is anonymous. Continuity then follows immediately

from WCon and the fact that elements of V̊ admit strict Maskin monotonic transforms

at each bundle. �

A.1.2. Some useful isomorphisms. A model is a listM = (A,Z,R, ϕ) consisting of a

consumption space A, a feasibility constraint Z ⊆ AN , preference space R and a rule
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ϕ : RN → Z. We shall induce mappings between models via transformations of the

consumption space. Thus, given a bijection f : A → A′, we shall define the induced

model M′ = (A′,Z ′,R′, ϕ′) in a fairly obvious way. Allocation (z1, . . . , zn) ∈ Z ′ if

and only if there is an allocation (a1, . . . , an) ∈ Z with zi = f(ai) for each i ∈ N .

Preference relation R′i ∈ R′ if and only if there is Ri ∈ R such that a R b if and only if

f(a) R′ f(b).10 With abuse of notation, we write R′ = f(R). And finally, ϕ′ is defined

so that it makes the above operations commute: letting ϕ (R) = z, ϕ′ (f(R)) = f(z).

As is customary, we shall be interested in the structures and operations that are

preserved under these mappings. It is clear that preference information is preserved,

so that upper contour sets map to upper contour sets, and R′ ∈ T (R, (x,m)) if and

only if f(R′) ∈ T (f(R), f(x,m)). Thus, we say that any bijection f induces an

ordinal isomorphism between models.

If f also preserves quasilinearity and convex combinations, then we shall call it a

linear isomorphism. The simplest of these is permuting the names of the items. Since

this can destroy the underlying lattice order on X, it may not preserve submodularity.

Consider the model
(
X × R, Z,V , ϕ

)
that we have been studying. Let (x∗,m∗) ∈

X × R and v0 ∈ V . Consider f : X × R→ X × R given by

f(x, s) = (x, s+ v0(x)) .

First, note that for (x, s′) = f(x, s) and (x, t′) = f(x, t), s′− t′ = s− t, and so we say

that f is isometric. Given v ∈ V let R = f(v). Then

(x, s) I (y, t) ⇐⇒

v(x) + s− v0(x) = v(y) + t− v0(y)

u(x) + s = u(y) + t,

where u(z) = v(z) − v0(z). Thus, u is a representation of R and so f preserves

quasilinearity. Moreover, the resulting preference space f (V) is simply V with v0

viewed as the origin of the space. That is, f operated on V is simply a translation,

and so maps convex sets to convex sets. The salient feature of this f is that it maps

v0 to the zero vector. This will be very useful.

10Viewing Ri as a subset of A × A, we note that (f, f) : A × A → A′ × A′ provides the necessary
bijection between preferences.



INCENTIVES AND PRICES 27

A.2. No nested upper contour sets. In this section we show that a rule satisfying our

conditions cannot admit an allocation at which the upper-contour set of one agent

is nested completely within the upper contour set of another. That is, the section is

dedicated to proving the following result:

Lemma 7 (The Anti-nesting Lemma). Assume the rule satisfies 2StP, ETE, and

WCon. For each v ∈ V̊N , and each pair of agents {i, j} ⊆ N ,

U [vi, ϕi(v)]
⋂

L [vj, ϕj(v)] 6= ∅.

Our proof is by contradiction, so throughout this subsection, we make the following

assumption: there is an economy v ∈ VN such that

U [v1, ϕ1(v)]
⋂

L [v2, ϕ2(v)] = ∅. (Contradiction Hypothesis)

If a condition such as this holds for a given problem, we say that agent 1 nests agent

2 and that the allocation has nested upper contour sets. Choosing agents 1 and 2 is

without loss of generality for the purposes of our proof and we suppress notation for

the other agents for the rest of this section. Note that this relieves us from having to

use the ·−i operator, and it is unambiguous that when we write ϕ(v2, v1), it means that

agent 1 is reporting v2 and agent 2 is reporting v1; such arguments will be important.

It will be useful to note that (Contradiction Hypothesis) has the following, equivalent

formulation:

∀z ∈ X,U z
(
ϕ1(v)

∣∣v1

)
> U z

(
ϕ2(v)

∣∣v2

)
. (A.2)

If there are nested upper-contour sets for a non-regular problem, then by welfare

continuity and since regular problems are dense, there are nested upper-contour sets

for a regular problem. Thus, for our contradiction argument, it is sufficient to assume

v is regular, that is, v ∈ V̊N .

We limit our arguments to operations preserved by linear isomorphisms, and thus

we are free to make any of these transformations that suits our purposes. Thus,

assume that v2 = 0, and choose a representation for v1 that is non-negative. Moreover,

note that regular preferences map to regular preferences.

Let ϕ1 = (ξ1, µ1) = ϕ1(v). Since v2 = 0, the indifference set of v2 through any

bundle (z, s) is {(y, t) : t = s}. Thus, line A.2 implies

∀z ∈ X,U z
(
ϕ1(v)

∣∣v1

)
> µ2, (A.3)
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and in particular, for z = ξ1, µ1 > µ2. Note that strategy-proofness implies that, for

each y ∈ X, Uy
(
ϕi(v)

∣∣vi) ≥ ayi (v), and so

max
y∈X

ay2(v1) ≤ µ2. (A.4)

Lemma 8. There is a problem u ∈ V̊N such that agent 1 nests agent 2 at u, and

u1 ∈ T (u2, ϕ1(u)).

Proof. Suppose not. Let u1 ∈ T str. (v1, ξ1)∩T (v2, ξ1) be regular. By The Invariance

Lemma,

ϕ1(u1, v2) = ϕ1. (A.5)

If µ2(u1, v2) < µ1, then L [v2, ϕ2(u1, v2)] = {(y, t) : t ≤ µ2(u1, v2)} has an empty in-

tersection with U [u1, ϕ1(u1, v2)] and so, since u1 and v2 are both regular, (u1, v2) is

the problem required for the lemma. Assume, therefore, that

µ2(u1, v2) ≥ µ1. (A.6)

For each θ ∈ [0, 1], let vθ2 = θv1 + (1− θ)v2. As v1, v2 ∈ V̊ and this is a convex set,

vθ2 ∈ V̊ . Given δ < µ1 − µ2, there is θ > 0 sufficiently small so that, for each z ∈ X,

U z
(
ϕ2(v1, v

θ
2)
∣∣vθ2) ≤ U z

(
ϕ2(v)

∣∣v2

)
+ δ = µ2 + δ < µ1. (A.7)

Claim. U ξ1
(
ϕ1

(
v1, v

θ
2

) ∣∣v1

)
= µ1

Proof. Let (y, t) = ϕ1(v1, v
θ
2). Lines A.6 and A.7 imply that 2 prefers the joint ma-

nipulation from (v1, v
θ
2) to (u1, v2). If U z

(
y, t
∣∣v1

)
< U z

(
ϕ1

∣∣v1

)
, then 1 also prefers

the joint manipulation, by line A.5.

Suppose instead that U z
(
y, t
∣∣v1

)
> U z

(
ϕ1

∣∣v1

)
. Then, line A.3 yields

∀z ∈ X,U z
(
y, t
∣∣v1

)
> U z

(
ϕ1

∣∣v1

)
> µ2. (A.8)

Now let wθ1 ∈ T str. (v1, (y, t)) ∩ T
(
vθ2, (y, t)

)
be regular (recalling that v1 and v2 are

regular, so this intersection is non-empty). By strategy-proofness, ϕ1

(
wθ1, v

θ
2

)
= (y, t).

If there are nested upper contour sets at (wθ1, v
θ
2) then the lemma is shown.

Otherwise, there is an item x where 2’s indifference crosses above 1’s. Then

Uy
(
ϕ2(wθ1, v

θ
2)
∣∣vθ2)− Uy

(
y, t
∣∣wθ1) = Ux

(
ϕ2(wθ1, v

θ
2)
∣∣vθ2)− Ux

(
y, t
∣∣wθ1)

+ vθ2(x)− vθ2(y)−
(
wθ1(x)− wθ1(y)

)
≥ wθ1(y)− wθ1(x)−

(
vθ2(y)− vθ2(x)

)
≥ 0,
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where the last inequality is by our characterization of Maskin monotonic transforms

(Lemma 2). Thus,

Uy
(
ϕ2

(
wθ1, v

θ
2

) ∣∣vθ2) ≥ Uy
(
y, t
∣∣wθ1) = t = Uy

(
y, t
∣∣vθ2) .

Now for any z ∈ X,

U z
(
ϕ2

(
wθ1, v

θ
2

) ∣∣vθ2) ≥ U z
(
y, t
∣∣vθ2)

by Lemma 3 = θU z
(
y, t
∣∣v1

)
+ (1− θ)U z

(
y, t
∣∣v2

)
≥ min

{
U z
(
y, t
∣∣v1

)
, U z

(
y, t
∣∣v2

)}
.

Note that U z
(
y, t
∣∣v2

)
= t because v2 = 0. If we use y = z in line A.8 we get t > µ2.

Line A.8 also directly gives U z
(
y, t
∣∣v1

)
> µ2 and so these observations allow us to

continue the above string of inequalities as

> µ2 = U z
(
ϕ2(v1, v2)

∣∣v2

)
.

In sum, for each z ∈ X, U z
(
ϕ2

(
wθ1, v

θ
2

) ∣∣vθ2) > U z
(
ϕ2(v1, v2)

∣∣v2

)
. With z =

ξ2

(
wθ1, v

θ
2

)
, we conclude that

U z
(
ϕ2(wθ1, v

θ
2)
∣∣v2

)
= µ2

(
wθ1, v

θ
2

)
= U z

(
ϕ2

(
wθ1, v

θ
2

) ∣∣vθ2) > U z
(
ϕ2(v1, v2)

∣∣v2

)
and so agent 2, at v, prefers joint deviation (wθ1, v

θ
2). Recalling ϕ1

(
wθ1, v

θ
2

)
= (y, t),

line A.8 implies that agent 1 also prefers this joint deviation, violating 2StP. �

Claim. aξ11 (vθ2) ≥ µ1.

Proof. Suppose aξ11 (vθ2) < µ1. Since v1 and u1 are regular, and the domain is convex,

given ε, we may find v′1 ∈ T str. (v1, ϕ1) with ‖v1 − v′1‖ < ε and u′1 ∈ T str. (u1, ϕ1)

with ‖u1 − u′1‖ < ε. Since ϕ1(u1, v2) = ϕ1 (see the first paragraph), ϕ1(u′1, v2) = ϕ1.

Since U ξ1
(
ϕ1(v1, v

θ
2)
∣∣v1

)
= µ1, ξ1 /∈ C(v1,a(vθ2)) and so by The Invariance Lemma,

for ε sufficiently small,

U ξ1
(
ϕ1(v′1, v

θ
2)
∣∣v′1) < µ1.

By lines A.6 and A.7, and welfare continuity, we can choose ε small enough that

max
y∈X

Uy
(
ϕ2(v′1, v

θ
2)
∣∣vθ2) < µ1 − δ ≤ µ1(u′1, v2).

Thus we find a joint manipulation from
(
v′1, v

θ
2

)
to (u′1, v2). �
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Thus, the two claims yield

aξ11 (vθ2) = U ξ1
(
ϕ1

(
v1, v

θ
2

) ∣∣v1

)
= µ1.

If there are nested upper contour sets at (u1, v
θ
2), then, recalling that u1 ∈ T str. (v1, ξ1)∩

T (v2, ξ1), The Invariance Lemma and Lemma 5, yield what is desired.

Let

θ∗ = max
{
θ ∈ [0, 1] : U ξ1

(
ϕ1(v1, v

θ
2)
∣∣v1

)
= aξ11 = µ1

}
.

Our previous arguments imply the above set is non-empty, and welfare continuity

ensures that it is closed, and so the maximum is well-defined and θ∗ > 0. There

remain nested upper contour sets at (v1, v
θ∗
2 ). To see why, letting y ∈ X have v1(y) =

maxx∈X v1(x), if there were z ∈ X with

0 ≤ U z
(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 )− U z

(
ϕ1(v1, v

θ∗

2 )
∣∣v1

)
= Uy

(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 )− Uy

(
ϕ1(v1, v

θ∗

2 )
∣∣v1

)
+ θ∗ (v1(y)− v1(z)) + (1− θ∗)(��

��*0
v2(y)−��

��*0
v2(z))− (v1(y)− v1(z))

= Uy
(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 )− Uy

(
ϕ1(v1, v

θ∗

2 )
∣∣v1

)
− (1− θ∗) (v1(y)− v1(z)) ,

then Uy
(
ϕ2(v1, v

θ∗
2 )
∣∣vθ∗2 ) ≥ Uy

(
ϕ1(v1, v

θ∗
2 )
∣∣v1

)
. Since v2 = 0, y is also a maximal

item for vθ
∗

2 , so letting z = ξ2(v1, v
θ∗
2 ), line A.4 yields

µ2 ≥ U z
(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 )

= Uy
(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 )+ vθ

∗

2 (y)− vθ∗2 (z)

≥ Uy
(
ϕ2(v1, v

θ∗

2 )
∣∣vθ∗2 ) .

Thus, µ2 ≥ Uy
(
ϕ1(v1, v

θ∗
2 )
∣∣v1

)
, implying via line A.3 that Uy

(
ϕ1

∣∣v1

)
> Uy

(
ϕ1(v1, v

θ∗
2 )
∣∣v1

)
.

Switching reference item from y to ξ1, this gives µ1 > U ξ1
(
ϕ1(v1, v

θ∗
2 )
∣∣v1

)
, contradict-

ing welfare continuity.

Thus, at (v1, v
θ∗
2 ), it remains that 1 nests 2. Suppose θ∗ < 1. Consider the trans-

formation given by f(x, s) = (x, s + vθ
∗

2 (x) − vθ
∗

2 (ξ1)). This takes us to a problem

with the same features that we started with and so we can repeat the argument. In

particular, it maps vθ
∗

2 to the constant vector vθ
∗

2 (ξ1)e, which is equivalent to 0, and

f(ξ1, µ1) = (ξ1, µ1). Post transformation, it remains that U ξ1
(
ϕ1

(
v1, v

θ∗
2

) ∣∣v1

)
= µ1,
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and since Lemma 5 implies u1 ∈ T
(
vθ2, ϕ1

)
,

U [u1, ϕ1] ⊆ U
[
vθ2, ϕ1

]
= {(y, t) : t ≥ µ1} .

Since there are not nested upper contour sets at (u1, v
θ∗
2 ) (two paragraphs ago), we

have

U ξ1
(
ϕ1(u1, v

θ∗

2 )
∣∣vθ∗2 ) ≥ µ1.

Therefore, we can apply the foregoing arguments to (v1, v
θ∗
2 ) and find θ > θ∗ with

U ξ1
(
ϕ1(v1, v

θ
2)
∣∣v1

)
= aξ11 (vθ2) = µ1,

in contradiction to the assumption that θ∗ is the maximal such parameter. Conclude

that θ∗ = 1, which together with line A.4, yields a contradiction to equal treatment

of equals. �

The lemma therefore allows us to complete the proof assuming that at v, agent

1 nests agent 2 and v1 ∈ T (v2, ϕ1(v)) . Let ϕ1 = ϕ1(v) and (ξ2, µ2) = ϕ2(v). As

before, we are also free to assume v2 = 0, which then implies that

∀z ∈ X, az2(v1) ≤ U z
(
ξ2, µ2

∣∣v2

)
= µ2, (A.9)

and that, since v1 is a Maskin monotonic transform of v2 at ϕ1,

∀z ∈ X,U z
(
ξ1, µ1

∣∣v1

)
≥ µ1.

For each θ ∈ [0, 1] and each i ∈ {1, 2}, let vθi = θv1 + (1− θ)v2. We shall construct

a net (vλ1 , v
θ
2) with first element v. The first component of the net will then have λ

decreasing from 1 and the second component will have θ increasing from 0. We shall

maintain λ ≥ θ and we shall show that the indifference sets of the two agents remain

bounded away from each other. This will then give a contradiction to equal treatment

of equals, as the net will have limit u with u1 = u2.

Given 1
n
, assume θ > 0 is such that

max
y∈X

Uy
(
ϕ2(v1, v

θ
2)
∣∣vθ2) < µ2 +

1

n
. (A.10)

Suppose that

U z
(
ϕ1(v1, v

θ
2)
∣∣v1

)
< U z

(
ϕ1(v)

∣∣v1

)
. (A.11)

Let

λ1 = inf
{
λ ∈ [0, 1] : C

(
vλ1 ,a1 (v2)

)
⊆ C (v1,a1 (v2))

}
.
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As the set has a non-empty interior, λ1 < 1. Now if there are λ > λ1 and y ∈ X such

that

Uy
(
ϕ2(vλ1 , v2)

∣∣v2

)
≥ µ2 +

1

n
,

then v2 = 0 implies µ2(vλ1 , v2) ≥ µ2 + 1/n. Our assumption on θ then ensures that

agent 2, at (v1, v
θ
2), prefers the joint manipulation (vλ1 , v2). Since λ > λ1, for z =

ξ1(vλ1 , v2) ∈ C
(
vλ1 ,a1 (v2)

)
,

U z
(
ϕ1(vλ1 , v2)

∣∣v1

)
= az1(v2) = U z

(
ϕ1(v)

∣∣v1

)
.

Together with line A.11, we conclude that agent 1 also prefers the joint manipulation.

If for each n sufficiently large, there is θ satisfying lines A.10 and A.11, then we say

that U z
(
ϕ1(v1, v

θ
2)
∣∣v1

)
is locally decreasing in θ at 0. Thus we have shown that, if

U z
(
ϕ1(v1, v

θ
2)
∣∣v1

)
is locally decreasing in θ at 0, then for each λ ≥ λ1,

max
y∈X

Uy
(
ϕ
(
vλ1 , v2

) ∣∣v2

)
≤ µ2,

where the weak inequality in λ ≥ λ1 is by welfare continuity.

Note that vλ
1

1 ∈ T (v2, ϕ1), since this set contains v2 and is convex by Lemma 4.

Suppose that, for θ > 0, small enough

U ξ1
(
ϕ1(vλ

1

1 , v
θ
2)
∣∣vλ11

)
< U ξ1

(
ϕ1(vλ

1

1 , v2)
∣∣vλ11

)
. (A.12)

Then we can repeat the previous argument and construct a sequence λn. Note that

this sequence proceeds from one element to another by changing C
(
vλ

n

1 ,a1 (v2)
)
, so

there are at most n∗ ∈ N elements. Assume λn
∗

= 0. Since 2’s welfare is not increasing

along this sequence,

U ξ1
(
ϕ2(vλ

n∗

1 , v2)
∣∣v2

)
≤ µ2 < µ1 = aξ11 (v2) ≤ U ξ1

(
ϕ1

(
vλ

n∗

1 , v2

) ∣∣vλn∗1

)
,

a contradiction to equal treatment of equals. Thus, our construction reaches some λn

for which U ξ1
(
ϕ1

(
vλ

n

1 , v2

) ∣∣vλn1

)
is not locally decreasing in θ. Let v1

1 = vλ
n

1 .

For θ > 0 sufficiently small,

U ξ1
(
ϕ1

(
v1

1, v
θ
2

) ∣∣v1
1

)
≥ U ξ1

(
ϕ1

(
v1

1, v2

) ∣∣v1
1

)
≥ µ1.

Let (y, t) = ϕ2(v1
1, v

θ
2). Since v1 ∈ T (v2, ϕ1) and v2 = 0, Lemma 2 implies that for

each z ∈ X, v1(ξ1) ≥ v1(z). Since U ξ1
(
ϕ2(v1

1, v2)
∣∣v2

)
≤ µ2, strategy-proofness and
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v2 = 0 imply that a2(v1
1) ≤ µ2e , and so ay2(v1

1) = t ≤ µ2. Thus we calculate

U ξ1
(
y, t
∣∣vθ2) = Uy

(
y, t
∣∣vθ2)+ vθ2(y)− vθ2(x∗)

= t+ θ (v1(y)− v1(x∗))

≤ t ≤ µ2,

We now apply the mapping f(x, s) = (x, s + vθ2(x) − vθ2(ξ1)), which sends vθ2 to the

equivalent of 0 and (ξ1, r) to (ξ1, r) for each r ∈ R. Therefore, post transformation,

U ξ1
(
ϕ2(v1

1, v
θ
2)
∣∣vθ2) = t ≤ µ2 < µ1 ≤ U ξ1

(
ϕ1

(
v1

1, v
θ
2

) ∣∣v1
1

)
. (A.13)

Do this for each θ at which U ξ1
(
ϕ1

(
v1

1, v
θ
2

) ∣∣v1
1

)
is locally non-decreasing in θ. Either

vθ2 gets to v1
1 or we get to θ with U ξ1

(
ϕ1

(
v1

1, v
θ
2

) ∣∣v1
1

)
locally decreasing in θ. In the

former case, line A.13 gives a contradiction to equal treatment of equals and in the

latter we simply repeat the construction of vλ1 to get v2
1.

Thus we have our net (vn1 , v
θ
2), which is monotone in the order

(
vn1 , v

θ
2

)
≺
(
vm1 , v

θ′
2

)
if m > n or θ′ > θ. Only one component of the net advances at a time. The first

component is discrete and tends toward v2, and the second is a continuous path that

tends toward v1. Line A.13 is preserved all along the net. The limit u of this net

has u1 = u2; if not, then by construction it remains that u1 ∈ T (u2, ϕ1) and we can

repeat the arguments above. However, since u1 = u2 but line A.13 remains true, we

have a contradiction to equal treatment of equals.

A.3. Quasi-Equilibrium. In this section, we prove Theorems 1, 3, and 4. As in the

previous section, it suffices to focus on agents 1 and 2, with our default problem being

v = (v1, v2), and the default allocation given by (ξ, µ) = ϕ = ϕ(v).

We first uncover a lemma that will allow us to take care of the case when real items

come in multiple copies.

Lemma 9. Assume real items come in copies and the rule satisfies, 2StP, WAnon,

WCon and neutral tie-breaking. Let w ∈ V have ξ2(w) = ξ1(w) and w2 ∈ T str. (w1, ξ1(w)).

If ϕ1(w) P Jw2K ϕ2(w), then ξ1(w) = 0.

Proof. Suppose ξ1(w) ∈ X. As w2 ∈ T str. (w1, ξ1(w)), C (w2, A1(w2)) = {ϕ1(w)}.
Since ai is anonymous, this holds for agent 2 as well, so for each i ∈ {1, 2}, ϕi(w2, w2) =

ϕ1(w). Given λ ∈ [0, 1], let uλ = λw2 + (1 − λ)w1 and let λ∗ be the maximal

number such that there is (x,m) 6= ϕ1(w) with (x,m) ∈ C
(
uλ, A1(uλ)

)
. We just
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deduced that λ∗ < 1. If λ∗ = 0, then ϕ1(w) ∈ A1(u0) = A2(w1), a contradic-

tion to strategy-proofness. Thus, λ∗ ∈]0, 1[. By WCon, since Ai is continuous,

ϕ1(w) ∈ C
(
uλ
∗
, Ai(u

λ∗)
)
. Then by invoking neutral tie-breaking, we may assume

ϕ2(uλ
∗
, uλ

∗
) = ϕ1(w) and ξ1(uλ

∗
, uλ

∗
) 6= ξ1(v). Clearly, at profile w, 2 prefers the

joint deviation (uλ
∗
, uλ

∗
). For 1, WAnon implies ϕ1(uλ

∗
, uλ

∗
) I

q
uλ
∗y
ϕ1(w), and since

uλ
∗ ∈ T str. (w1, ϕ1(w)), ϕ1(uλ

∗
, uλ

∗
) P Jv1K ϕ1(w). �

Lemma 10. Assume that ϕ either satisfies the hypotheses of Theorem 1 or of Theorem

3. It does not matter whether items come in copies or not. If ϕ1(v) P Jv2K ϕ2(v),

then letting {i, j} = {1, 2}, there is a problem w with ξi (w) = ξj (w) = ξ1(v),

wj ∈ T str. (wi, ξi(w)) and ϕi (w) P JwjK ϕj(w).

Proof. As usual, let ϕ = (ξ, µ) = ϕ(v). For most of this proof, we require only 2Stp,

ETE, and WCon. The only exceptions come in Claim 2 below, where we separately

treat the two cases, one in which the rule satisfies the extra conditions of Theorem 3,

but not WAnon, and the other in which the rule satisfies WAnon.

By linear isomorphism, we assume v2 = 0. This further implies that

∀y ∈ X,µ2 = Uy
(
ϕ2

∣∣v2

)
< Uy

(
ϕ1

∣∣v2

)
= µ1. (A.14)

By richness, since v is regular, there is u1 ∈ T str. (v1, ξ1) ∩ T str. (v2, ξ1). Then by

Lemma 4, for each θ ∈ [0, 1] and λ ∈ [0, 1],

vθ1 = (1− θ)v1 + θu1 ∈ T str. (v1, ξ1) , (A.15)

vλ2 = (1− λ)v2 + λu1 ∈ T str. (v2, ξ1) (A.16)

The Invariance Lemma implies that, for each θ ∈ [0, 1],

ϕ1

(
vθ1, v2

)
= ϕ1. (A.17)

By Lemma 2 we may choose a representation for u1 with u1 ≤ v2 = 0, with equality

only at ξ1. Thus,

∀y ∈ X,Uy
(
ϕ1

∣∣u1

)
= U ξ1

(
ϕ1

∣∣u1

)
+ u1(ξ1)− u1(y) ≥ µ1.

Therefore, by The Anti-nesting Lemma, the fact that v2 = 0, and line A.14,

∀y ∈ X,Uy
(
ϕ2(u1, v2)

∣∣v2

)
≥ µ1 > µ2 = Uy

(
ϕ2

∣∣v2

)
. (A.18)
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By welfare continuity then, there is θ1 satisfying

∀y ∈ X,Uy
(
ϕ1

(
vθ11 , v2

) ∣∣v2

)
=
µ1 + µ2

2
. (A.19)

Henceforth, when no ambiguity may arise, we may replace vηi by η, as we will be

working primarily with the two dimensional subset of profiles of the form (vθ1, v
η
2).

Let

S1 =
{
λ ∈ [0, 1] : ∀y ∈ X,Uy

(
ϕ2(θ1, λ)

∣∣vλ2) > µ2

}
.

Claim 1. For each λ ∈ S1, ϕ1(θ1, λ) = ϕ1.

Proof. Let Ŝ1 be the subset of S1 in which 1’s welfare has not changed. That is, it

is the set of λ such that ϕ1(θ1, λ) I
q
vθ11

y
ϕ(θ1, v2) = ϕ1. Suppose there is λ ∈ Ŝ1

with ξ1(θ1, λ) = y 6= ξ1. Then since θ1 > 0, by line A.15 and the definition of a strict

Maskin monotonic transform, ϕ1(θ1, λ) P Jv1K ϕ1. Further, the definition of S1 and

v2 yield that

U ξ2(θ1,λ)
(
ϕ2(θ1, λ)

∣∣v2

)
= U ξ2(θ1,λ)

(
ϕ2(θ1, λ)

∣∣vλ2)
> µ2

= U ξ2(θ1,λ)
(
ϕ2

∣∣v2

)
.

In sum, we have a joint manipulation from v to (θ1, λ).

Now suppose that there were λ ∈ S1 for which ϕ1(θ1, λ) P
q
vθ11

y
ϕ1. By lines A.15

and A.17, ϕ1(θ1, λ) P Jv1K ϕ1. The calculations above again hold for agent 2 and we

have a joint manipulation from v to (θ1, λ).

Let η = inf S1 \ Ŝ1. Note that S1 is non-empty and open, and Ŝ1 is closed, so

S1 \ Ŝ1 is open. If S1 \ Ŝ1 is empty, our proof would be done. As a boundary point

of Ŝ1, η ∈ Ŝ1. Note that, since ϕ1(θ1, v2) = ϕ1 P Jv2K ϕ2(θ1, v2) (see line A.19), if

ϕ2(θ1, η) R Jvη2K ϕ1, then by line A.16,

ϕ2 (θ1, η) P Jv2K ϕ1 P Jv2K ϕ2(θ1, v2)

a violation of strategy-proofness. Therefore, ϕ1 P Jvη2K ϕ2(θ1, η), and so given δ > 0,

there is an open set W 3 η such that if η′ ∈ W then

(ξ1, µ1 − δ) P
r
vη
′

2

z
ϕ2(θ1, η

′). (A.20)
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Next we claim that for each such η′ ∈ W ,

ϕ2(u1, η) R
r
vη
′

2

z
(ξ1, µ1 − δ). (A.21)

Since η ∈ Ŝ1, ϕ1(θ1, η) = ϕ1, and so by The Invariance Lemma, ϕ1(u1, η) = ϕ1.

Assume ϕ1 P Jvη2K ϕ2(u1, η). Equivalently, U [vη2 , ϕ1] ⊆ int (U [vη2 , ϕ2(u1, η)]). Since

u1 ∈ T (vη2 , ξ1), we get U [u1, ϕ1] ⊆ U [vη2 , ϕ1]. In sum,

U [u1, ϕ1(u1, η)] = U [u1, ϕ1] ⊆ U [vη2 , ϕ1] ⊆ int (U [vη2 , ϕ2(u1, η)]) ,

violating The Anti-nesting Lemma. Conclude that ϕ2(u1, η) R Jvη2K ϕ1 and the result

follows by choosing W small enough.

Combining lines A.20 and A.21 yields, for each η′ ∈ W , ϕ2(u1, η) P
r
vη
′

2

z
ϕ2(θ1, η

′).

Since we have shown that Uy
(
ϕ1(θ1, λ)

∣∣vθ11

)
cannot increase on S1, and since we

assume S1 \ Ŝ1 is non-empty, there is a sequence ηn ∈ S1 \ Ŝ1, ηn → η, such that

ϕ1 P
q
vθ11

y
ϕ1(θ1, η

n). As ηn is eventually in W , (u1, η) is a successful joint deviation

from (θ1, η
n). �

As in the argument immediately following line A.17, since u1 ∈ T str. (v2, ξ1), for

each y ∈ X, any (z, t), and any λ ∈ [0, 1],

Uy
(
z, t
∣∣vλ2) = U ξ1

(
z, t
∣∣vλ2)+ vλ2 (ξ1)− vλ2 (y)

= U ξ1
(
z, t
∣∣vλ2)+ (1− λ)

(
�
��
�v2(ξ1)−��

�v2(y)
)

+ λ (u1(ξ1)− u1(y))

≥ U ξ1
(
z, t
∣∣vλ2) .

Thus, the indifference set of vλ2 at any bundle takes its minimum at ξ1. Let λ1 =

supS1. Suppose there is λ < λ1 such that ξ2(θ1, λ) = ξ1. By definition, U ξ1
(
ϕ2(θ1, λ)

∣∣vλ2) >
µ2 and so since vλ

′
2 ∈ T str.

(
vλ2 , ξ1

)
when λ′ > λ, ϕ2(θ1, λ

′) = ϕ2(θ1, λ) and U ξ1
(
ϕ2(θ1, λ)

∣∣λ′) >
µ2. It follows that S1 = [0, 1] and so by the claim we arrive at ϕ1(θ1, u1) = ϕ1,

ξ2 (θ1, u1) = ξ1, and ϕ1(θ1, u1) P Ju1K ϕ2(θ1, u1). This is the conclusion of the Lemma,

so in this case, we are done.

Assume, therefore, that for each λ < λ1, ξ2(θ1, λ) 6= ξ1.

Claim 2. We claim that

U ξ1
(
ϕ2 (θ1, λ1)

∣∣vλ12

)
= µ2. (A.22)

Proof. If line A.22 is false, then for each y ∈ X, Uy
(
ϕ2(θ1, λ1)

∣∣vλ12

)
> µ2. It follows

that λ1 = 1, so vλ12 = u1. By Claim 1 and StP, for each θ′ > θ1, ϕ1(θ′, u1) = ϕ1 and
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by ETE, eventually, ϕ2(θ′, u1) R Ju1K ϕ1. By WCon, for each ε > 0, there is θ > θ1

with U ξ1
(
ϕ2(θ, u1)

∣∣u1

)
= µ1 − ε. Assume that for each such ε, ξ2(θ, u1) 6= ξ1, as

otherwise we have again shown what is required.

Case 1. ϕ satisfies the conditions of Theorem 3.

Givenm ∈ R, we could have chosen u1 so that, for each y 6= ξ1, Uy
(
ϕ1

∣∣u1

)
>

m. It follows then that for ε sufficiently small,

µ2(θ, u1) = U ξ2(θ,u1)
(
ϕ2(θ, u1)

∣∣u1

)
= U ξ1

(
ϕ2(θ, u1)

∣∣u1

)
+ u1(ξ1)− u1 (ξ2(θ, u1))

= µ1 − ε+ u1(ξ1)− u1 (ξ2(θ, u1))

= U ξ1
(
ϕ1

∣∣u1

)
+ u1(ξ1)− u1 (ξ2(θ, u1))− ε

= U ξ2(θ,u1)
(
ϕ1

∣∣u1

)
− ε > m,

so ϕ cannot be bounded.

Case 2. ϕ satisfies WAnon.

Then for ε small enough, letting z = ξ2(θ, u1),

U ξ1
(
ϕ2(θ, u1)

∣∣v1

)
= U z

(
ϕ2(θ, u1)

∣∣v1

)
+ v1(z)− v1(ξ1)

= U z
(
ϕ2(θ, u1)

∣∣u1

)
+ v1(z)− v1(ξ1)

= U ξ1
(
ϕ2(θ, u1)

∣∣u1

)
+ u1(ξ1)− u1(z)− (v1(ξ1)− v1(z))

= µ1 − ε+ u1(ξ1)− v1(ξ1) + v1(z)− u1(z)

> U ξ1
(
ϕ1

∣∣v1

)
,

where the last inequality is again because u1 ∈ T str. (v1, ξ1) (with reference

to Lemma 2) and by choosing ε sufficiently small. Thus, 1 and 2 would

like to swap bundles at (vθ1, u1). If they switch preferences, then since

C
(
vθ1,a1(u1)

)
= {ϕ1} (as θ > θ1), WAnon implies agent 2 is better off.

Agent 1 only fails to be better off if ξ1(u1, θ) = ξ1, and we have yet again

shown the required conclusion.

�

Given line A.19, there is y ∈ X with ay2(θ1) = µ1+µ2
2

. Thus, by strategy-proofness,

Uy
(
ϕ2(θ1, λ1)

∣∣vλ12

)
− U ξ1

(
ϕ2 (θ1, λ1)

∣∣vλ12

)
≥ µ1 + µ2

2
− µ2 =

µ1 − µ2

2
.
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Applying our conversion formulae, the left hand side of this inequality becomes

vλ12 (ξ1)− vλ12 (y) = λ1 (u1(ξ1)− u1(y)) .

Recalling again that u1 ≤ v2 = 0, with equality at ξ1, we derive that

λ1 ≥ λ := min
y 6=ξ1

µ2 − µ1

2 |u1(y)|
.

Now since ϕ1(θ1, λ) = ϕ1 for all λ ∈ S1, by WCon, aξ11 (vλ12 ) = µ1 and ξ1 ∈
C
(
vθ11 ,a(vλ12 )

)
. Consider the linear isomorphism f(x, s) =

(
x, s+ vλ12 (x)− vλ12 (ξ1)

)
.

This sends vλ12 to the zero preference relation, and sends each (ξ1, t) to (ξ1, t). Though

it need not be the case that ξ1

(
vθ11 , v

λ1
2

)
= ξ1, it will hold for vθ1 ∈ T str.

(
vθ11 , ξ1

)
, and

we can repeat all the foregoing arguments, constructing a sequence (θn, λn). For each

n,

U ξ1
(
ϕ2

(
vθn1 , v

λn
2

) ∣∣vλn2

)
= µ2.

Since f is isometric, each λn−λn−1 ≥ λ, and so λn will reach 1 in finitely many steps.

Thus, repeating our arguments, we either arrive at the conclusion, or there is a joint

manipulation. �

Proof of Theorem 3. Assume the rule satisfies all the hypothesis of the theorem except

that

ξi(v) = ξj(v) = 0 =⇒ µi(v) = µj(v). (A.23)

We argue that, in this case, not no envy implies not line A.23, and thus we have the

proof by contrapositive. As real items do not come in copies, for this case, Lemma

10 implies ξ1(v) = 0 directly. The conclusion of the lemma further implies that

µ1(w) 6= µ2(w), contradicting line A.23. �

We now, very briefly, show that the rule satisfies

No Envy of Real Items: If ϕi(v) P JvjK ϕj(v), then ξi(v) = 0.

Lemma 11. The rule satisfies no envy of real items.

Proof. Assume ϕ1(v) P Jv2K ϕ2(v). If real items do not come in copies, Lemma 10

implies ξ1(v) = 0 and so the proof is complete. In the case that real items do come

in copies, Lemmas 9 and 10 together imply ξ1(v) = 0. �

To complete the proof, we need one final lemma.
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Lemma 12. Assume the rule satisfies 2StP, WAnon, WCon, and no envy of real items.

Let v ∈ V have ξ1(v) = 0 and v2 ∈ T str. (v1, 0). Then ϕ2(v) R Jv2K ϕ1(v).

Proof. Fix ϕ = (ξ, µ) = ϕ(v). Suppose ϕ1 P Jv2K ϕ2. As usual, we may, via isomor-

phism, assume v1 = 0. By Lemma 2, we may choose a representation for v2 such that

v2(y) < 0 for y 6= ξ1 = 0 and v2(ξ1) = 0. For each θ ∈ [0, 1] and each i ∈ {1, 2}, let

vθi = (1− θ)v1 + θv2 = θv2. We shall work on this one-dimensional subspace of prefer-

ences for much of this proof, so for cleaner notation, we may replace vθi with θ where

there can be no confusion. Note that since v2 ∈ T str. (v1, 0), {ϕ1} = C (v2, Ai(v2)).

Thus, by WAnon, ϕ1(1, 1) = ϕ2(1, 1) = ϕ1. It follows then that, for each θ and each

i, ϕi(θ, θ) R JθK ϕ1, as otherwise there is a joint deviation from (θ, θ) to (1, 1).

Let θ∗ be the maximal parameter such that C(θ∗,ai(θ
∗)) ∩X 6= ∅. Since for each

θ > θ∗, C (θ,ai(θ)) = {0}, then to avoid a joint manipulation, a0
i (θ) = µ1. By WCon,

ϕ1 ∈ C (θ∗, Ai(θ
∗)), so it must be that θ∗ > 0 since, by assumption, ϕ1 /∈ A2(v1). Note

that for y ∈ C(θ∗,ai(θ
∗)), not 0,

ayi (θ
∗) = Uy

(
ϕi(θ

∗, θ∗)
∣∣θ∗) (A.24)

= U0
(
ϕi(θ

∗, θ∗)
∣∣θ∗)− θ∗v2(y)

= µ1 − θ∗v2(y).

Thus, since v2(y) < 0 and θ∗ > 0, ayi (θ
∗) > µ1.

Given θ and δ > 0, let uθ,δ2 (0) = vθ2(0) + δ = δ and for all x ∈ X, uδ,θ2 (x) = vθ2(x).

Fix δ and let u2 = uθ
∗,δ

2 . Suppose a0
1(u2) = m > µ1 and let ϕ′ = (ξ′, µ′) = ϕ (u2, u2).

For each x ∈ X and each i ∈ {1, 2},

Ux
(
ϕ′i
∣∣u2

)
= U0

(
ϕ′i
∣∣u2

)
+ u2(0)− u2(x) (A.25)

≥ m+ δ − vθ∗i (x)

> µ1 + δ − vθ∗i (x)

= U0
(
ϕi(θ

∗, θ∗)
∣∣vθ∗i )+ δ − vθ∗i (x)

= Ux
(
ϕi(θ

∗, θ∗)
∣∣vθ∗i )+ δ.

Since x is arbitrary, and µ′i = U ξ′i
(
ϕ′2
∣∣u2

)
, this shows a joint deviation. Conclude that

∃δ∀δ ∈]0, δ[
(
a0

1(u2) ≤ µ1

)
. (A.26)
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Since ϕ1 ∈ C (θ∗, A2(θ∗)), {ϕ1} = C (u2, A2(θ∗)). If U0
(
ϕ1 (θ∗, u2)

∣∣θ∗) < µ1, then

into equation A.25, insert ϕ1 for ϕ′i, and ϕ2(θ∗, u2) for ϕi(θ
∗, θ∗). The inequalities

become equalities and we have another violation of The Anti-nesting Lemma. So

U0
(
ϕ1(θ∗, u2)

∣∣θ∗) ≥ µ1. Now assume there is x ∈ X in C (θ∗,a1(u2)). The same

argument as in line A.24 yields ax1(u2) > µ1. There is v′1 ∈ T str. (θ∗, x), close enough

to vθ
∗

1 so it remains that C (u2,a2(v′1)) = {0} and a0
2(v′1) > µ2. Then we have a

joint deviation from v to (v′1, u2). Conclude that, 1 chooses only 0 at (θ∗, u2) and

U0
(
ϕ1 (θ∗, u2)

∣∣θ∗) = a0
1(u2) = µ1.

In sum, C (θ∗, Ai(u2)) = C (u2, Ai(θ
∗)) = {ϕ1}. By WCon, there is an open set

W of problems of the form
(
vθ1, u

θ,δ
2

)
, such that, for each w ∈ W , C (w1, A1(w2)) =

C (w2, A2(w1)) = {ϕ1}. We may find a further open subset W ∗ ⊆ W such that, for

each w ∈ W ∗ and each y ∈ C(θ∗,ai(θ
∗)), Uy

(
ϕ2(w)

∣∣w2

)
> ayi (θ

∗). For each w ∈ W ∗

and each y ∈ C(θ∗,ai(θ
∗)), line A.24 yields

Uy
(
ϕ1(w)

∣∣w1

)
= U0

(
ϕ1(w)

∣∣w1

)
+ w1(0)− w1(y) (A.27)

= µ1 − w1(ξ1(w))

= ay1(θ∗) + θ∗v2(y)− vθ1(y)

= ay1(θ∗) + (θ∗ − θ) v2(y)

< ay1(θ∗),

where, for the last inequality we recall that v2(y) < 0. Now for ν ∈ [0, 1], let wν2 be in

the convex hull of w2 and vθ
∗

2 with w0
2 = w2, and let ϕν = ϕ(w1, w

ν
2). Then ay1(wν2)→

ay1(θ∗) as ν → 1. By StP there is ν > 0, such that Uy
(
ϕν1
∣∣w1

)
> Uy

(
ϕ0

1

∣∣w1

)
. Let ν∗

be the infimum of such values, so that Uy
(
ϕν
∗

1

∣∣w1

)
= Uy

(
ϕ0

1

∣∣w1

)
, but the inequality

holds for at least a sequence of νn ↘ ν∗. We perform a similar calculation to line

A.25: for x ∈ X, wν
∗

2 (x) < 0, so

Ux
(
ϕν
∗

2

∣∣wν∗2

)
= U0

(
ϕν
∗

2

∣∣w2

)
+ wν

∗

2 (0)− wν∗2 (x)

= µ1 − wν
∗

2 (x)

= U0
(
ϕν
∗

1

∣∣w1

)
− wν∗2 (x)

> Ux
(
ϕν
∗

1

∣∣vθ∗i ) .
Thus, by Lemma 11, Ux

(
ϕν
∗

2

∣∣wν∗2

)
> ax2(w1). It follows that for ν > ν∗ on the afore-

mentioned sequence and sufficiently close to ν∗, Ux
(
ϕν2
∣∣wν2) > ax2(w1). In particular,
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ϕν2 = ϕ1. Now recalling v1 = 0 and v2 ≤ 0 with v2(0) = 0, we calculate

U ξν1
(
ϕν1
∣∣v1

)
= Uy

(
ϕν1
∣∣v1

)
= Uy

(
ϕν1
∣∣w1

)
+ w1(y)− w1(ξν1 )

> Uy
(
ϕ0

1

∣∣w1

)
+ w1(y)− w1(ξν1 )

= U0
(
ϕ0

1

∣∣w1

)
+ w1(0)− w1(ξν1 )

= µ1 + θv2(0)− θv2(ξν1 )

≥ µ1.

Thus, agent 1 prefers the joint report wνwhen the truth is v. Since ϕν2 = ϕ1, agent 2

agrees, and we have a joint deviation. �

Proof of Theorems 1 and 4. Suppose ϕ1(v) P Jv2K ϕ2(v). By Lemma 11, the rule

satisfies no envy for real items, so ξ1(v) = 0. By Lemma 10, there is a problem w

with ξi (w) = ξj (w) = 0, wj ∈ T str. (wi, 0) and ϕi (w) P JwjK ϕj(w). However,

Lemma 12 implies that, for this problem, we have ϕj (w) R JwjK ϕi(w). �

Appendix B. Proof of Theorem 2

Let us strengthen pairwise weak monotonicity to

Joint Monotonicity: If for each i ∈ N , R′i ∈ T (Ri, ϕi(R)), then for each i ∈ N ,

ϕi (R
′) R′i ϕi (R).

In our model, we can strengthen the theorem of Barberà et al. (2016) (BBM) into the

following form:

Proposition 2. If a rule on a rich domain, ϕ : RN → ZN , satisfies strategy-proofness

and joint-monotonicity, then it satisfies weak group-strategy-proofness.

Proof. Given the results of BBM, we need only to show that strategy-proofness and

joint-monotonicity in this model imply respectfulness. Fix R ∈ RN
and assume

that R′i has U [R′i, ϕi(R)] = U [Ri, ϕi(R)]. Note that this implies the equality of

the lower-contour and indifference sets as well. Now if ϕi(R
′
i,R−i) P

′
i ϕi(R), then

ϕi(R
′
i,R−i) Pi ϕi(R) in violation of strategy-proofness. We can make a symmetric

observation about Ri and therefore conclude that both Ri and R′i are indifferent

between ϕi(R
′
i,R−i) and ϕi(R). This is the first hypothesis of respectfulness. It also

implies that R′i ∈ T (Ri, ϕi(R)) and Ri ∈ T (R′i, ϕi(R
′
i,R−i)); this is the remaining
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hypothesis of respectfulness. Let j ∈ N . Then we invoke joint-monotonicity in two

directions, from R to (R′i,R−i) and the opposite, to conclude that ϕj (R′i,R−i) Ij

ϕj (R) , which is the conclusion of respectfulness. �

Let ϕ be a rule and consider the induced two-person rule ψ given by ψ(R) =

ϕ{1,2}(R,R
0
N\{1,2}). We may apply Proposition 2 to ψ. In fact, if ϕ is strategy-proof

and pairwise weakly monotonic, we can apply it for each R0
N\{1,2} ∈ RN\{1,2} and

conclude that

Corollary 7. If a rule on a rich domain, ϕ : RN → ZN , satisfies strategy-proofness

and pairwise weak monotonicity, then it satisfies weak pairwise strategy-proofness.

The corollary and Theorem 1 then imply that a rule satisfying the conditions of

Theorem 2 must be a quasi-equilibrium when restricted to the quasilinear domain, V ,

induced by R. To show the proof on the entire domain, we argue via induction. In

particular, assume that ϕ satisfies no envy when restricted to R{1,...,k−1} × V{k,...,n}.
Suppose now that Rk ∈ R \ V and ϕi (R) Pk ϕk(R). Note that it cannot be that

i and k both have quasilinear preferences as the two-person rule ϕ
(
·,R−{i,k}

)
is a

quasi-equilibrium on the quasilinear domain. Thus, we can ignore agents j /∈ {i, k}
for this argument so we suppress notation for their preferences.

Let R′i ∈ T str. (Ri, ϕi(R)) be close to Ri in terms of the uniform topology on the

utility function representation. By The Invariance Lemma, ϕi(R
′
i, Rk) = ϕi(R). By

welfare continuity it remains that ϕi (R
′
i, Rk) Pk ϕk(R

′
i, Rk). Let vk be the quasilinear

preference induced by Rk at ϕk(R
′
i, Rk) and v′i be the quasilinear preference induced

by R′i at ϕi (R
′
i, Rk). Then by two invocations of respectfulness,

ϕi (v
′
i, vk) I

′
i ϕi (R

′
i, Rk) , (B.1)

ϕk (v′i, vk) I
′
k ϕk (R′i, Rk) (B.2)

By the induction hypothesis, to prevent envy, we have ϕi (R
′
i, vk) 6= ϕi (R

′
i, Rk) and

so ϕi (v
′
i, vk) Pi ϕi (R). Now let v′′i ∈ T str. (v′i, ϕi (v

′
i, vk)). By The Invariance Lemma,

ϕi (v
′′
i , vk) = ϕi (v

′
i, vk). By joint monotonicity, ϕk (v′′i , vk) R JvkK ϕk (v′i, vk), and if

this is strict, we have a joint manipulation from R to (v′′i , vk) . Otherwise, it is an

indifference relation, so we can invoke respectfulness again to get

ϕi (v
′′
i , Rk) I Jv′′i K ϕi (v

′′
i , vk) = ϕi (v

′
i, vk) . (B.3)
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If ϕi (v
′′
i , Rk) = ϕi (v

′
i, vk), then since ϕi (v

′
i, vk) Pi ϕi (R), we get a violation of

strategy-proofness. Otherwise, line B.3 implies ϕi (v
′′
i , Rk) P Jv′iK ϕi (v′i, vk), so the

foregoing analysis yields

ϕi (v
′′
i , Rk) ∈ int (U [v′i, ϕi (v

′
i, vk)])

by line B.1 = int (U [R′i, ϕi (R
′
i, Rk)])

since ϕi (R
′
i, Rk) = ϕi (R) = int (U [R′i, ϕi (R)])

⊆ int (U [Ri, ϕi (R)]) ,

another violation of strategy-proofness.
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