
 
 

 

 

 

 

 

 

 

 

 
Core stability and other applications  

of minimal balanced collections 

 
by 

 

 
Dylan Laplace Mermoud, Michel Grabisch, and Peter Sudhölter 

 

 

 

 

 

 

 
Discussion Papers on Economics  

No. 4/2022 

 

 

 

 

 

 

 

 
FURTHER INFORMATION 

Department of Economics 

Faculty of Business and Social Sciences 

University of Southern Denmark 

Campusvej 55, DK – 5230 Odense M 

Denmark 

Email: astni@sam.sdu.dk 

ISSN 2596-8157                                                                  https://www.sdu.dk/en/om_sdu/institutter_centre/oekonomiskinstitut 

mailto:astni@sam.sdu.dk


Core stability and other applications
of minimal balanced collections
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Abstract

We describe algorithms and their implementations as computer programs derived from sev-
eral theoretical results of the theory of cooperative transferable utility (TU) games. We show
how to use Peleg’s well-known inductive method to explicitly compute all minimal balanced
collections of coalitions. The described method is of independent interest and applied in the
implementations of (a) the Bondareva-Shapley Theorem, which allows checking whether a TU
game is balanced, i.e., has a non-empty core, and (b) a recent result of the second and third
author that provides a sufficient and necessary condition for the stability of the core, which
allows checking whether a balanced TU game has a core that is a von Neumann-Morgenstern
stable set.

Keywords: Core, stable set, minimal balanced collections, cooperative game.

MSC Subject Classification: 91A12
JEL Classification: C71, C44

1 Introduction
The theory of cooperative games aims at defining rational mechanisms (called solutions of the
game) to compensate players for their collaboration, by sharing the total benefit generated by
the cooperation of the players. In their seminal work, von Neumann and Morgenstern (1944)
developed the concept of stable sets as a solution for cooperative games, while fifteen years
later, Gillies (1959) popularized the concept of the core.

It rapidly appeared that the concept of stable sets, although appealing and based on a
natural notion of domination among payment vectors, was intractable in many respects: some
games may have no stable sets, or a continuum of stable sets (Lucas 1969, 1992), they are not
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convex in general, and above all, they are extremely difficult to compute, and no condition
for the existence of stable sets is known so far. On the other hand, the concept of core was
revealed to be much easier to use. When nonempty, it is a convex polyhedron, and as soon
as 1963, a necessary and sufficient condition was discovered for its nonemptiness (Bondareva,
1963; Shapley, 1967).

The key point in this condition is the notion of balanced collection. A balanced collection
over a finite set N is a collection of subsets of N , each of them with a positive weight so that
the sum of the weights for each element of N is equal to 1. Partitions are trivial examples of
balanced collections. Minimal balanced collections are those for which no proper subcollection
is still balanced, and only these are of interest. It is to be noted that game theory is not the
only domain where balanced collections appear. They have arisen in several disciplines, each
introducing its terminology. In graph theory, they are known as perfect fractional matching
of hypergraphs, but they can be viewed as specific incidence structures, block designs, or set
systems. Even if we restrict to minimal balanced collections, their number increases much
faster than the number of partitions, and so far no closed form formula exists to enumerate
them. As far as we know, nobody has computed minimal balanced collections when |N | > 4,
despite that Peleg (1965) published a paper describing an inductive method to generate them.

The first aim of this paper is to provide a practical implementation of Peleg’s algorithm as
a computer program, allowing the generation of all minimal balanced collections on a set N
of reasonable size, and consequently to know their number. The second, but more important,
aim is to show that minimal balanced collections can be used for checking many properties of
cooperative games, and not only nonemptiness of the core: checking properties of coalitions
(exactness, strict vital-exactness, extendability), finding the set of effective coalitions, finding
regions in the set of imputations, and checking stability of the core. We elaborate on the
latter point. Checking if the core of a game, supposing it is nonempty, is a stable set in the
sense of von Neumann-Morgenstern, remained for a long time an unsolved problem despite
many attempts. There only exist sufficient conditions in the general case: convexity (Shapley,
1971), subconvexity (Sharkey, 1982), extendability (Kikuta and Shapley, 1986), vital-exact
extendability, or necessary and sufficient conditions for restricted classes of games: matching
games, simple flow games, minimum coloring games (Shellshear and Sudhölter, 2009). A nec-
essary and sufficient condition in the general case was recently found by the second and third
authors (2021), using a complex nested balancedness condition. Thanks to our implementa-
tion of Peleg’s algorithm, it was possible to build a computer program testing core stability.

This nested balancedness condition requires a two-fold generalization of the traditional
concept of minimal balanced collection. On the one hand side, the game has to be restricted
to feasible coalitions. Investigations about the core for games with restricted cooperation
are not new. For instance, Pulido and Sánchez-Soriano (2006) consider sets of feasible coali-
tions that guarantee that the core of the game with restricted cooperation remains bounded,
whereas Grabisch and Sudhölter (2014) investigate the case of unbounded cores of games with
restricted cooperation in which the sets of feasible coalitions form lattices. However, one of
our feasibility conditions requires that the core of the original game must coincide with the
core of the game with restricted cooperation (see Section 4). On the other hand, we consider
minimal balanced collections of certain derived subsets of the positive orthant of the Euclidean
space (see Section 5.2).
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The paper is organized as follows. Section 2 introduces the necessary notions on co-
operative games and stable sets. Section 3 introduces Bondareva-Shapley Theorem on the
nonemptiness of the core and presents the algorithmic implementation of Peleg’s inductive
method to generate all minimal balanced collections. Section 4 shows how to check via min-
imal balanced collections several properties of cooperative games (exactness, extendability,
etc.), while Section 5 is devoted to the implementation of an algorithm checking core stability,
based on the recent publication of Grabisch and Sudhölter (2021), and presents some examples
of games on which the algorithm has been tested. Section 6 gives some concluding remarks.

2 Preliminaries
Let N be the finite nonempty set of n players and let 2N denote its power set, i.e., the set of
all subsets of N . In most case, we tacitly assume that N = {1, . . . , n}. A nonempty subset
of N is called a coalition. A (cooperative TU) game is a pair (N, v) such that v : 2N → R,
v(∅) = 0.

Let (N, v) be a game. An allocation is an n-dimensional vector x = (xi)i∈N of real num-
bers, interpreted as a proposal of how to distribute the payoffs among the players. Denote
by RN the set of all the allocations, and by x(S) =

∑
i∈S xi what the coalition S ⊆ N re-

ceives with allocation x. An allocation is said to be efficient if x(N) = v(N), and an efficient
allocation is called a preimputation. The set of preimputations is denoted by X(N, v). A
preimputation x is individually rational if xi ≥ v({i}) for every player i ∈ N . An individu-
ally rational preimputation is called an imputation, and the set of imputations is denoted by
I(N, v).

A preimputation x ∈ X(N, v) dominates via a coalition S ⊆ N another preimputation y
if x(S) ≤ v(S) and xi > yi for every i ∈ S, written x domS y. If there exists a coalition S
such that x domS y, then x dominates y, which is denoted by x dom y.

Using this notion, von Neumann and Morgenstern (1944) introduced the notion of stable
sets for cooperative games. A set U ⊆ I(N, v) is a stable set if it satisfies

1. internal stability : if y ∈ U is dominated by x ∈ I(N, v), then x 6∈ U ,

2. external stability : ∀y ∈ I(N, v) \ U,∃x ∈ U such that x dom y.

However, stable sets may or may not exist (Lucas, 1969), and are in general difficult to
identify. According to Deng and Papadimitriou (1994), the existence of a stable set may be
undecidable. These difficulties have led to the development of other solution concepts. Ac-
cording to Gillies (1959), the core is defined as the set of coalitionally rational preimputations:
C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S),∀S ⊆ N}. The core is said to be stable if it is a stable
set. The computation of the core is relatively easy but expensive, due to the large number of
inequalities defining it.

Both stable sets and the core have their own merits as solution concepts. Indeed, the
notions of domination and stability are highly intuitive, “coalitional rationality” is a desirable
property, and its easy computability supports the core. By definition, the core is contained
in each stable set. Hence, if the core is (externally) stable, it must be the unique stable set.
Therefore, it is an interesting and important problem to characterize the set of games for

3



which the above-mentioned solution concepts coincide, i.e., to provide necessary and sufficient
conditions for external stability of the core. This is what Grabisch and Sudhölter (2021) have
achieved.

3 Nonemptiness of the core

3.1 Bondareva-Shapley Theorem
In order to recall the Bondareva-Shapley Theorem, we use the following notation. For T ⊆ N ,
the indicator allocation of T , 1T , is given by 1Ti = 1 if i ∈ T , and 1Ti = 0 otherwise.

Definition 3.1.1. A collection B of coalitions is a balanced if there exists a system of positive
weights (λS)S∈B, called balancing weights, such that

∑
S∈B λ1

S = 1N .

A balanced collection is minimal if it does not contain a balanced proper subcollection.
Denote by B(N) the set of minimal balanced collections on N . Proofs of the following propo-
sition and theorem can be attributed to Bondareva (1963) and Shapley (1965).

Proposition 3.1.2. A balanced collection is minimal if and only if it has a unique system of
balancing weights.

Henceforth, if B is a minimal balanced collection, λB = (λBS)S∈B denotes its unique system
of balancing weights.

Theorem 3.1.3 (Bondareva-Shapley, sharp form). A game (N, v) admits a nonempty core if
and only if, for any minimal balanced collection B,∑

S∈B
λSv(S) ≤ v(N).

Moreover, none of the inequalities is redundant, except the one for B = {N}.

According to the Bondareva-Shapley Theorem, a game with a nonempty core is said to be
balanced. The main result of Grabisch and Sudhölter (2021) is also based on minimal balanced
collections.

3.2 Peleg’s algorithm
Peleg (1965) developed an inductive method to construct, from the minimal balanced collec-
tions defined on a set N , all those that are defined on the set N ′ = N ∪ {p}, with p a new
player that was not included in N . In this subsection, his results are introduced from an
algorithmic point of view. In the following, the main result is divided into four cases and the
fourth one is slightly generalized.

Let C = {S1, . . . , Sk} be a balanced collection of k coalitions on N . Denote by [k] the set
{1, . . . , k} for any positive integer k. If λ is a system of balancing weights for C and I ⊆ [k]
is a subset of indices, denote by λI the sum

∑
i∈I λSi . Also, denote by AC the (n× k)-matrix

defined by ACij = 1 if i ∈ Sj , ACij = 0 otherwise. Denote by rk(AC) the rank of the matrix AC ,
meaning the dimension of the Euclidean space spanned by its column viewed as k-dimensional
vectors.
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First case Assume that C is a minimal balanced collection on N . Take I ⊆ [k] such that
λCI = 1. Denote by C′ the new collection in which the coalitions {Si}i∈I contain the new player
p as additional member and the other coalitions {Sj}j∈[k]\I are kept unchanged.

Lemma 3.2.1. C′ is a minimal balanced collection on N ′.

Proof. Because C is a minimal balanced collection, the equalities
∑

S∈C′,S3i λ
C
S = 1 are already

satisfied for any player i ∈ N . By definition of I, we also have that
∑

S∈C′,S3p λ
C
S = 1. Then

C′ is balanced. Because C is minimal, so is C′.

Second case We assume that C is a minimal balanced collection on N . Take I ⊆ [k] such
that λCI < 1. We denote by C′ the new collection in which the coalitions {Si}i∈I contain the
new player p as additional member, the other coalitions {Sj}j∈[k]\I are kept unchanged, and
in which the coalition {p} is added:

C′ = {Si ∪ {p} | i ∈ I} ∪ {Si | i ∈ [k] \ I} ∪ {{p}}.

Lemma 3.2.2. C′ is a minimal balanced collection on N ′.

Proof. Because C is a minimal balanced collection, the equalities
∑

S∈C′,S3i λ
C
S = 1 are already

satisfied for any player i ∈ N . Define λC′ such that λC′S = λCS for S ∈ C and λC′{p} = 1 − λCI .
Therefore ∑

S∈C′
S3p

λC
′
S = λC

′

{p} +
∑
i∈I

λCSi = 1−
∑
i∈I

λCSi +
∑
i∈I

λCSi = 1.

Then C′ is balanced. We cannot obtain a balanced subcollection of C′ by discarding one of
the {Si}i∈I because C is minimal, and we cannot either discard coalition {p} because λCI < 1.
So C′ is minimal.

Third case We assume that C is a minimal balanced collection on N . Take a subset I ⊆ [k]
and an index δ ∈ [k] \ I such that 1 > λCI > 1 − λCSδ . We denote by C′ the new collection
in which the coalitions {Si}i∈I contain the new player p as additional member, the other
coalitions {Sj}j∈[k]\I are kept unchanged, and in which the coalition Sδ ∪ {p} is added:

C′ = {Si ∪ {p} | i ∈ I} ∪ {Si | i ∈ [k] \ I} ∪ {Sδ ∪ {p}}.

Lemma 3.2.3. C′ is a minimal balanced collection on N ′.

Proof. Define λC′ by λC′S = λCS for S ∈ C \ {Sδ},

λC
′

Sδ∪{p} = 1− λCI and λC
′
Sδ

= λCSδ − λ
C′
Sδ∪{p}.

Let i ∈ N be a player. If i 6∈ Sδ, by balancedness of C,
∑

S∈C′,S3i λ
C′
S = 1. If i ∈ Sδ, then∑

S∈C′
S3i

λC
′
S = λC

′

Sδ∪{p} + λC
′
Sδ

+
∑

S∈C\{Sδ}
S3i

λC
′
S = λCSδ +

∑
S∈C\{Sδ}

S3i

λCS =
∑
S∈C
S3i

λCS ,

that is equal to 1 by balancedness of C. Concerning player p,∑
S∈C′
S3p

λC
′
S = λC

′

Sδ∪{p} + λC
′
I = 1− λCI + λCI = 1.

Then C′ is balanced. Because none of the coalitions S ∈ C or Sδ ∪ {p} can be discarded to
obtain a balanced subcollection, the proof is finished.
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Last case In this case, assume that C is the union of two different minimal balanced
collections on N , C1, and C2, such that the rank of AC is rk(AC) = k− 1. Define two systems
of balancing weights for C, by

µS =

{
λC

1

S if S ∈ C1,
0 otherwise.

νS =

{
λC

2

S if S ∈ C2,
0 otherwise.

Take a subset I ⊆ [k] such that µI 6= νI and

tI =
1− µI
νI − µI

∈ ]0, 1[.

Denote by C′ the new collection in which the coalitions {Si}i∈I contain the new player p as
additional member and the other coalition {Sj}j∈[k]\I are kept unchanged.

Lemma 3.2.4. C′ is a minimal balanced collection on N ′.

Proof. Define λ = (λS)S∈C′ by λS = (1− tI)µS + tIνS . Because λ is a convex combination of
two systems of balancing weights of C,

∑
S∈C′,S3i λS = 1 for all the players i ∈ N . Concerning

player p, ∑
S∈C′
S3p

λS = λI = (1− tI)µI + tIνI = µI + tI(νI − µI) = µI + 1− µI = 1.

We conclude that C′ is a balanced collection. Now, let us prove the minimality of C′ as a
balanced collection. The set of systems of balancing weights for C is the convex set of µ and
ν, and therefore the set of systems of balancing weights for C′ is a subset of this. More precisely,
it is the subset {λ ∈ conv(µ, ν) | λI = 1}, equivalently {t ∈ [0, 1] | (1 − t)µI + tνI = 1} = T ,
and therefore the condition is on the variable t. By assumption, µI 6= νI , and then µI < 1 ≤ νI
without loss of generality. Because the map f : t 7→ (1− t)µI + tνI is linear and f(0) < 1 and
f(1) ≥ 1, there is a unique t∗ ∈ T such that f(t∗) = 1, then this unique t∗ must be tI .

3.3 Final algorithm
It is now possible to construct, from the set of minimal balanced collections on a set N , the
set of minimal balanced collections on another set N ′ = N ∪ {p} (see Algorithm 1).

Algorithm 1 AddNewPlayer

Require: A set of minimal balanced collection B(N) on a set N
Ensure: A set of minimal balanced collection B(N ′) on a set N ′ = N ∪ {p}
1: procedure AddNewPlayer(BN , p)
2: for (C1, C2) ∈ BN × BN do
3: C ← C1 ∪ C2 and k ← |C|
4: if rank(AC) = k − 1 then
5: for I ⊆ [k] such that tI ∈ ]0, 1[ do
6: for i ∈ I do add Si ∪ {p} with weights (1− tI)µSi − tIνSi to C′
7: for i 6∈ I do add Si with weights (1− tI)µSi − tIνSi to C′
8: add C′ to B(N ′)

9: for C ∈ BN do
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10: k ← |C|
11: for I ⊆ [k] such that λCI ≤ 1 do
12: C ′ ← ∅
13: for i ∈ I do add Si ∪ {p} with weights λCSi to C

′

14: for i 6∈ I do add Si with weights λCSi to C
′

15: if λCI < 1 then add {p} with weight 1− λCI to C′
16: add C′ to B(N ′)
17: for δ ∈ [k] \ I such that λSδ > 1− λCI do
18: C ′ ← ∅
19: for i ∈ I \ {δ} do add Si ∪ {p} with weights λCSi to C

′

20: for i 6∈ I ∪ {δ} do add Si with weights λCSi to C
′

21: add Sδ ∪ {p} with weight 1− λCI to C′
22: add Sδ with weight λCSδ + λCI − 1 to C′

23: add C to B(N ′)

24: return B(N ′)

Theorem 3.3.1. The algorithm AddNewPlayer, which takes as an input the set of all
minimal balanced collections on a set N , generates all the minimal balanced collections on the
set N ′ = N ∪ {p}.

Proof. Thanks to the four previous lemmas, the algorithm generates only minimal balanced
collections on N ′. It remains to prove that every minimal collection is generated by this
algorithm. Let B be a minimal balanced collection on N ′. If the player p is removed from
each coalition of B, the collection is still balanced. Denote by B−p this new collection.

• If {p} ∈ B: since B has a unique system of balancing weights, B−p has only one system
of balancing weights, and so it is a minimal balanced collection, and B is generated by
the second case.

• If {p} 6∈ B and there are two identical coalitions in B−p: the minimality of B implies
the minimality of B−p when the two identical coalitions are merged and their weights
added. Then B is generated by the third case.

• Assume now that there is no singleton {p} in B, and that no pair of coalitions in B−p
contains the same coalition twice.

. If B−p is a minimal balanced collection, B is generated by the first case.

. Assume now that B−p is not a minimal balanced collection. Because B is a minimal
balanced collection of k coalitions, rk(AB) = k, and therefore rk(AB−p) = k − 1.
Consequently, the set of solutions of the following system of inequalities

AB−pλ = 1N , λi ≥ 0,∀i ∈ [k] (1)

is one-dimensional and has the form λ = λ0 + tλ1, where λ0 is a system of balancing
weights for B−p, t is a real number and λ1 is a nonzero solution of the homogeneous
system

AB−pλ = 0, λi ≥ 0, ∀i ∈ [k].

The set of solutions of (1) being bounded and one-dimensional, it is a non-degenerate
segment [α, β] that consists of all the solutions of the above system. Let Uα =
{i | αi > 0} and Uβ = {i | βi > 0}. Clearly, Uα and Uβ are proper subsets
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of {1, . . . , k} and Uα ∪ Uβ = {1, . . . , k}. Denote Bα = {Bi ∈ B | i ∈ Uα} and
Bβ = {Bi ∈ B | i ∈ Uβ}. α∗, the restriction of α to Uα, is a system of balancing
weights for Bα, and β∗, the restriction of β to Uβ , is a system of balancing weights
for Bβ . Since α and β are extremal solutions of the system (1), Bα and Bβ must be
minimal balanced collections. Then B is the union of Bα and Bβ , and is generated
by the fourth case.

With the procedure AddNewPlayer used recursively, all the minimal balanced collec-
tions on any fixed set N are generated from the ones on {1, 2}. This is achieved by the
procedure Peleg (see Algorithm 2). Table 1 gives the number of minimal balanced collec-
tions as computed by Peleg up to n = 6.

Number of players Number of minimal balanced collections

3 6
4 42
5 1292
6 201 076

Table 1: Number of minimal balanced collections according to the number of players

Once the minimal balanced collections are generated, checking the balancedness of a game
amounts to checking a set of linear inequalities (one per minimal balanced collection).

Algorithm 2 Minimal balanced collections computation

Require: A number of players n ≥ 3
Ensure: The set of minimal balanced collections on the set [n]
1: procedure Peleg(n)
2: B({1, 2})← {{1, 2}, {1}, {2}}
3: for i ∈ {3, . . . , n} do
4: B([i])← AddNewPlayer(B([i− 1]), i)
5: return B([n])

It is possible to adapt Algorithm 1 to compute the minimal balanced collections on every
set system on which the game is defined. The only difference for the implementation is to
check, when a new minimal balanced collection is created, that every coalition is a subset of
an element of the set system. If it is not the case, just ignore the newly created collection and
continue the computation.

3.4 Example
Let N = {a, b, c, d} and N ′ = N ∪ {e}. Let S1 = {a, b}, S2 = {a, c}, S3 = {a, d} and
S4 = {b, c, d}. Then C = {S1, S2, S3, S4} is a minimal balanced collection with the following
system of balancing weights λ =

(
1
3 ,

1
3 ,

1
3 ,

2
3

)
.
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First case Remark that the set I = {1, 4} satisfies the equation λI = 1. Therefore, a
minimal balanced collection can be constructed as follows:

C′ = {{a, b, e}, {a, c}, {a, d}, {b, c, d, e}}, with
(

1

3
,
1

3
,
1

3
,
2

3

)
.

Second case Let I = {4}. Then λI = 2
3 < 1. Therefore,

C′ = {{a, b}, {a, c}, {a, d}, {b, c, d, e}, {e}}, with
(

1

3
,
1

3
,
1

3
,
2

3
,
1

3

)
.

is a minimal balanced collection on N ′.

Third case Let I = {1, 2} and δ = 4. Then λI = 2
3 and 1 − λSδ = 1

3 . Therefore,
1 > λI > 1− λSδ and the following minimal balanced collection can be constructed:

C′ = {{a, b, e}, {a, c, e}, {a, d}, {b, c, d}, {b, c, d, e}}, with
(

1

3
,
1

3
,
1

3
,
1

3
,
1

3

)
.

Last case For the last case, consider another framework. Let N = {a, b}, and C1 =
{{a}, {b}}, C2 = {{a, b}} be the only two minimal balanced collections on N . Let C be the
union C = {{a}, {b}, {a, b}}.

µ = (1, 1, 0) and ν = (0, 0, 1).

Observe that

rk(AC) = rk

([
1 0 1
0 1 1

])
= 2 = k − 1.

Finally, let I = {1, 2}. Then µI = 2, νI = 0, and

tI =
1− µI
νI − µI

=
1

2
∈ ]0, 1[.

The following collection may therefore be constructed:

C′ = {{a, c}, {b, c}, {a, b}}, with

λC
′

{a,c} = (1− tI)µ{a,c} + tIν{a,c} = 1
2µ{a,c} = 1

2 ,

λC
′

{b,c} = (1− tI)µ{b,c} + tIν{b,c} = 1
2µ{b,c} = 1

2 ,

λC
′

{a,b} = (1− tI)µ{a,b} + tIν{a,b} = 1
2ν{a,b} = 1

2 .

4 Properties of coalitions and collections
There already exist several sufficient or necessary conditions for core stability in the gen-
eral case (Kikuta and Shapley, 1986), or restricted classes of games: matching games, sim-
ple flow games, or minimum coloring games (Shellshear and Sudhölter, 2009). Similarly to
the foregoing authors, we also need the notions of strictly vital-exact or exact coalitions,
extendability, and feasible collections. For recalling the precise definitions, some notation
is needed. Throughout the section let (N, v) be a balanced game, S be a coalition, and
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Sc := {i ∈ N | i 6∈ S}. Denote by HS the hyperplane of the set of preimputations defined by

HS = {x ∈ X(N, v) | x(S) = v(S)}.

Denote by (S, v) the subgame on S, in which only the subcoalitions of S are considered, and
by (N, vS) the game that may differ from (N, v) only inasmuch as vS(Sc) = v(N) − v(S).
This definition can be extended to a collection of coalitions S, with vS(Sc) = v(N)− v(S) for
all S ∈ S and vS(T ) = v(T ) otherwise.

4.1 Strict vital-exactness
Let (N, v) be a balanced game and S a coalition.

Definition 4.1.1. A coalition S is exact (at v) if there exists a core element x ∈ C(N, v)
such that x(S) = v(S). In this case, we say that S is effective for x. Denote by E(N, v) the
set of coalitions that are effective for all core elements.

Hence, a coalition S is exact if and only if the hyperplaneHS intersects the core. Moreover,
S ∈ E(N, v) if and only if C(N, v) ⊆ HS . The following result permits us to build an algorithm
that checks exactness.

Proposition 4.1.2. Let (N, v) be a balanced game. A coalition S is exact if and only if
(N, vS) is balanced.

Proof. Assume that (N, vS) is balanced. Then, for all x ∈ C(N, vS), x(N) = v(N) and
x(Sc) ≥ v(N) − v(S). It implies that x(S) = x(N) − x(Sc) ≤ v(S). But, because x belongs
to the core of (N, vS), it follows that x(S) ≥ v(S), and therefore x(S) = v(S).
Assume now that S is exact. Therefore, there exists x ∈ C(N, v) such that x(S) = v(S).
Because x(N) = v(N), then x(Sc) = v(N)− v(S), and x ∈ C(N, vS).

Recall that the core is said to be stable if it is a stable set. Thanks to exactness, Gillies
(1959) found a necessary condition for a game to have a stable core.

Proposition 4.1.3 (Gillies, 1959). A balanced game has a stable core only if each singleton
is exact.

Now that the set of exact coalitions can be computed, the necessary condition of Gillies
can be checked. Another interesting consequence of this result is the expansion of the space
in which the core is externally stable if it is a stable set. Indeed, if a balanced game satis-
fies this necessary condition, for all player i ∈ N , the core element x ∈ C(N, v) such that
xi = v({i}) dominates every element y of X(N, v) such that yi < v({i}), via {i}. Therefore, in
the definition of stability (see Sect. 2) for the core, the set I(N, v) may be replaced byX(N, v).

To formulate a novel necessary condition for core stability, the definition of strict vital-
exactness is recalled.

Definition 4.1.4 (Grabisch and Sudhölter, 2021). A coalition S is strictly vital-exact if
there exists a core element x ∈ C(N, v) such that x(S) = v(S) and x(T ) > v(T ) for all
T ∈ 2S \ {∅, S}. Denote by VE(N, v) the set of strictly vital-exact coalitions.

In particular, an exact singleton is strictly vital-exact.

Proposition 4.1.5. Let (N, v) be a balanced game. The core is stable only if VE(N, v) is
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core-describing, i.e.,

C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S), ∀S ∈ VE(N, v)}.

Proof. Assume that the core is stable, and let y ∈ X(N, v) \ C(N, v). Because the core is
stable, there exists x ∈ C(N, v) such that x dom y. Choose a minimal (w.r.t. inclusion)
coalition S such that x domS y. Then, x(T ) > v(T ) for all T ∈ 2S \ {∅, S}. Therefore, S is
strictly vital-exact.

Remark 4.1.6. Let (N, v) be a balanced game. Because the core is convex, for any collection
S of coalitions such that S ∩ E(N, v) is empty, there exists a core element xS such that
xS(S) > v(S), for all S ∈ S. Indeed, for every coalition S ∈ S, there exists a core element
xS such that xS(S) > v(S) because S 6∈ E(N, v). Then, by taking the convex midpoint
1
|S|
∑

S∈S x
S , the desired xS is defined, and it belongs to the core by convexity.

By Remark 4.1.6, we deduce that the minimal (w.r.t. inclusion) coalitions of E(N, v) are
strictly vital-exact. The following result allows checking whether a coalition is effective for all
core elements.

Lemma 4.1.7. E(N, v) is the union of all minimal balanced collections B such that∑
S∈B

λBSv(S) = v(N).

Proof. Let B be a minimal balanced collection such that
∑

S∈B λ
B
Sv(S) = v(N) and x be a

core element. Then

v(N) = x(N) =
∑
S∈B

λBSx(S) ≥
∑
S∈B

λBSv(S) = v(N).

As λBS > 0, x(S) = v(S) for all S ∈ B, i.e., B ⊆ E(N, v).
For the other inclusion, let S ∈ E(N, v). As {N} is a minimal balanced collection, it may
be assumed that S 6= N . It remains to show that S is contained in some minimal balanced
collection B that satisfies

∑
S∈B λ

B
Sv(S) = v(N). Assume the contrary. Then, by Theorem

3.1.3, there exists ε > 0 such that the game (N, vε) that differs from (N, v) only inasmuch
as vε(S) = v(S) + ε is still balanced. Hence, for x ∈ C(N, vε), it follows x(S) > v(S) and
x ∈ C(N, v), then the desired contradiction has been obtained.

In view of Lemma 4.1.7, the following proposition shows that it is possible to compute the
set of strictly vital-exact coalitions.

Proposition 4.1.8. A coalition S is strictly vital-exact if and only if it is exact and

E(N, vS) \ {S} ⊆ {R ∈ 2N | R ∩ Sc 6= ∅}.

Proof. Assume that S is strictly vital-exact. Then there exists x ∈ C(N, v) such that x(S) =
v(S) and x(T ) > v(T ) for all T ∈ 2S \ {∅, S}. Therefore, no coalition T ∈ 2S \ {∅, S} is
included in E(N, vS).
Conversely, assume that S is exact and E(N, vS) \ {S} ⊆ {R ∈ 2N | R ∩ Sc 6= ∅}. Thanks to
Proposition 4.1.2, C(N, vS) is nonempty. The collection 2S \ {S} does not intersect E(N, vS)
by hypothesis. Hence, by Remark 4.1.6 there exists an element x ∈ C(N, vS) such that
x(T ) > v(T ) for all T ∈ 2S \ {∅, S}.
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Algorithm 3 Strict vital-exactness checking algorithm

Require: A coalition S, a balanced game (N, v)
Ensure: The Boolean value: ‘S is strictly vital-exact’
1: procedure IsStrictlyVitalExact(S, (N, v))
2: B(N)← Peleg(|N |)
3: for B ∈ B(N) do
4: if

∑
T∈B λ

B
T v

S(T ) > v(N) then
5: return False
6: else if

∑
T∈B λ

B
T v

S(T ) = v(N) then
7: for T ∈ B do
8: if T ∩ Sc = ∅ then
9: return False

10: return True

4.2 Feasibility
Let (N, v) be a balanced game and F ⊆ 2N be a core-describing collection of coalitions, i.e.,

C(N, v) = {x ∈ X(N, v) | x(S) ≥ v(S), ∀S ∈ F}.

External stability requires that, for every element y ∈ X(N, v) \ C(N, v), there exists a core
element that dominates y. A necessary condition for a preimputation to be dominated is that
there exists a coalition that has interest to leave the grand coalition to gain more than with
the current preimputation. Formally, it is necessary to have a coalition S ∈ F such that
x(S) < v(S). Let us denote by S ⊆ F the set of such coalitions, and define regions as

XS = XFS =

{
x ∈ X(N, v)

∣∣∣∣ x(S) < v(S) for all S ∈ S,
x(T ) ≥ v(T ) for all T ∈ F \ S

}
.

The collection S is F-feasible if the corresponding region XFS is nonempty. The regions form
a partition of X(N, v), with C(N, v) = X{∅}. If no ambiguity occurs, the collection is simply
said to be feasible, and the region is simply denoted by XS . Here are some properties about
the feasible collections.

Lemma 4.2.1 (Grabisch and Sudhölter, 2021). Let S ⊆ F . The following holds.

1. If S is feasible, then it does not contain a balanced collection.

2. For S, S′ ∈ S such that S ∪ S′ = N , no x ∈ XS is dominated via S or S′.

A collection S that contains only two coalitions satisfying condition (ii) above is called
a blocking feasible collection. A characterization that can be translated into an algorithm is
needed to compute the set of feasible collections. In the sequel, denote Sc = {Sc | S ∈ S}.

Lemma 4.2.2. A collection S ⊆ F is feasible (w.r.t. F) if and only if for every minimal
balanced collections B ⊆ F ′ = (F \ S) ∪ Sc,

∑
T∈B

λBT v
S(T )

{
≤ v(N),
< v(N), if B ∪ Sc 6= ∅. (2)
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Proof. For ε, α ∈ R define (N, vSε,α) by, for all coalitions T ,

vSε,α(T ) =


vS(T ) + ε if T ∈ Sc,
v(T ) if T ∈ F \ (S ∪ Sc) or T = N,
α otherwise.

A collection S is feasible if and only if there exists x ∈ RN and ε > 0 such that x(S) ≥ v(S)
for all S ∈ F \ S, x(N) = v(N), and x(P ) ≤ v(P ) − ε, i.e., x(N \ P ) = x(N) − x(P ) =
v(N)−x(P ) ≥ v(N)−v(P )+ε for all P ∈ S. Therefore, for α ≤ minR∈2N x(R), x ∈ C(N, vSε,α)
so that if part of the proof is finished by Theorem 3.1.3.
For the only if part we again employ Theorem 3.1.3. Indeed, by (2), there exist ε > 0 and
α ∈ R small enough such that (N, vSε,α) is balanced. The existence of a core element of
(N, vSε,α) guarantees that S is feasible.

Algorithm 4 Feasibility checking algorithm

Require: The collection F , a collection S ⊆ F , a balanced game (N, v)
Ensure: The Boolean value: ‘S is feasible’
1: procedure IsFeasible(S, F , (N, v))
2: B(N)← Peleg(|N |)
3: for B ∈ B(N) such that B ⊆ F ′ do
4: if B ∩ Sc 6= ∅ and

∑
S∈B λ

B
Sv
S(S) ≥ v(N) then

5: return False
6: else if B ∩ Sc = ∅ and

∑
S∈B λ

B
Sv
S(S) > v(N) then

7: return False
8: return True

4.3 Extendability
Kikuta and Shapley (1986) provide a sufficient condition for a game to have a stable core, a
property they called extendability.

Definition 4.3.1. A coalition S is called extendable (w.r.t. (N, v)) if, for any x ∈ C(S, v),
there exists y ∈ C(N, v) such that x = yS . A game (N, v) is extendable if all coalitions are
extendable.

Theorem 4.3.2 (Kikuta and Shapley, 1986). An extendable game has a nonempty and stable
core.

To check whether a coalition is extendable, by convexity of the core, it is sufficient to check
if each vertex of C(S, v) can be extended to a core element. To this end, the reduced game
property of the core is used. Let S be a coalition, and z ∈ RSc . Recall that the traditional
reduced game (Davis & Maschler, 1965) of (N, v) w.r.t. S and z, (S, vS,z), is the game defined
by

vS,z(T ) =

{
v(N)− z(Sc), if T = S,
maxQ⊆Sc v(T ∪Q)− z(Q), if ∅ 6= T ( S.

According to Peleg (1986) the core satisfies the reduced game property, i.e., if x ∈ C(N, v),
then xS ∈ C(S, vS,xSc ).
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Lemma 4.3.3. Let (N, v) be a balanced game, S be a coalition and y ∈ C(S, v). Then there
exists x ∈ C(N, v) such that xS = y if and only if (Sc, vSc,y) is balanced.

Proof. The only if part is due to the reduced game property. For the if part choose an
arbitrary z ∈ C(Sc, vSc,y). It suffices to show that the only allocation x ∈ RN such that
xS = y and xSc = z belongs to the core. Assume, on the contrary, that x 6∈ C(N, v). As
x(Sc) = vSc,y(S

c) = v(N)− x(S) by definition, x(N) = v(N). Therefore, there exists T ( N
such that x(T ) < v(T ). As (N, v) is balanced, v(Sc) ≤ v(N) − v(S) = v(N) − x(S), so that
T 6= Sc. Moreover, as y ∈ C(S, v), T ∩Sc 6= ∅. Therefore, vSc,y(T ∩Sc) = maxQ⊆S v((T ∩Sc)∩
Q)−x(Q) ≥ v((T∩Sc)∪(T∩S))−x(T∩S). Hence, x(T∩Sc) < v(T )−x(T∩S) ≤ vSc,y(T∩Sc),
which contradicts xSc = z ∈ C(Sc, vSc,y).

Lemma 4.3.3 gives us a necessary and sufficient condition for the existence of an extension
of an element of C(S, v) to an element of C(N, v), based upon a balancedness check. If there
exists an extension for each extreme point of C(S, v), by convexity of the core, any element
of C(S, v) can be extended. The following algorithm checks for each extreme point whether
the reduced game of (N, v) w.r.t. the complement of S and the currently considered extreme
point is balanced.

Algorithm 5 Extendability checking algorithm

Require: A coalition S, a balanced game (N, v)
Ensure: The Boolean value: ‘S is extendable’
1: procedure IsExtendable(S, (N, v))
2: B(Sc)← Peleg(|Sc|)
3: for ξ ∈ ext(C(S, v)) do
4: define the reduced game vSc,ξ
5: for B ∈ B(Sc) do
6: if

∑
T∈B λ

B
T vSc,ξ(T ) > v(N)− v(S) then

7: return False
8: return True

We conclude this section by remarking that extendability can be weakened as follows. A
balanced game has a stable core if it is weakly extendable (w.r.t. a core-describing collection
F) in the sense that each feasible collection of coalitions of F contains a minimal (w.r.t.
inclusion) coalition that is extendable.

5 Stability of the core
The algorithm checking whether a game has a stable core is based on Theorem 5.3.1, which
is the main result of Grabisch and Sudhölter (2021).

5.1 Association, admissibility, and outvoting
Let (N, v) be a balanced game. All results and definitions in this section are due to Grabisch
and Sudhölter (2021). We first recall their definition of outvoting, a transitive subrelation
of domination, that was inspired by a definition given by Kulakovskaja (1973). In view
of Proposition 4.1.5, throughout we assume that (N, v) is a balanced game for which the
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collection of strictly vital-exact coalitions is core-describing.

Definition 5.1.1. A preimputation y outvotes another preimputation x via P ∈ VE(N, v),
written y �P x, if y domP x and y(S) ≥ v(S) for all S 6∈ 2P . Also, y outvotes x, (y � x) if
there exists a coalition P ∈ VE(N, v) such that y �P x.

Denote by M(v) = {x ∈ X(N, v) | y 6� x, ∀y ∈ X(N, v)} the set of preimputations that
are maximal w.r.t. outvoting.

Proposition 5.1.2. Let (N, v) be a balanced game. Then C(N, v) = M(v) if and only if
C(N, v) is stable.

All results are based on this new characterization. To present the main result, some
definitions are needed.

Definition 5.1.3. Let S be a strictly vital-exact coalition and B be a minimal balanced
collection. B is associated with S if there exists i ∈ S such that {i} ∈ B and

B ⊆ {{j} | j ∈ S} ∪ {Sc} ∪ (VE(N, v) \ 2S).

Denote by BS(N) the set of minimal balanced collections on N associated with S.

Example 5.1.4. Let N = {1, 2, 3, 4}, VE(N, v) = 2N \ {∅} and S = {1, 2}. Therefore,
the minimal balanced collection B = {{1}, {2}, {3, 4}} is included in BS(N). Indeed, the
coalitions {1} and {2} are singletons of S, and {3, 4} is the complement of S. Moreover, B is
also associated with {1, 2, 3} for example.

Let S be a strictly vital-exact coalition and B be a minimal balanced collection associated
with S. Denote by B∗S the collection B∗S = B \ {{i} | i ∈ S}. Thanks to the notions of
association and outvoting, the following result holds.

Theorem 5.1.5. Let x be a preimputation, and S a strictly vital-exact coalition. Then x is
outvoted by some preimputation via S if and only if

∀B ∈ BS(N),
∑
i∈S
{i}∈B

λB{i}xi +
∑
T∈B∗S

λBT v
S(T ) < v(N). (3)

This result can be sharpened, with the use of the following notion.

Definition 5.1.6. Let S be a nonempty collection of strictly vital-exact coalitions, S ∈ S,
and B be a minimal balanced collection associated with S. B is admissible for S if B∗S ∩S 6= ∅
or B∗S ∩ Sc = ∅. Denote by BSS(N) the set of minimal balanced collections associated with S
and admissible for S.

Example 5.1.7. Let N = {1, 2, 3, 4}, VE(N, v) = 2N \ {∅} and S = {1, 4}. Therefore, the
collection B = {{1, 2}, {1, 3}, {2, 3}, {4}} is associated with S, and B∗S = B \ {{4}}. Let
S = {{2, 3}, {1, 4}}. The first condition of the definition is satisfied: B∗S ∩ S = {{2, 3}} 6= ∅,
therefore B is admissible for S.

For each nonempty collection S of strictly vital-exact coalitions, denote

C(S) =×
S∈S

BSS(N).

The concept of admissibility allows to sharpen the previous result, and then to reduce the
algorithmic complexity of the core stability checking, thanks to the following result.
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Corollary 5.1.8. Let S be a feasible collection. M(v) ∩XS 6= ∅ if and only if there exists a
system of balanced collections (BS)S∈S ∈ C(S) and x ∈ XS such that

∀S ∈ S,
∑
i∈S
{i}∈B

λB{i}xi +
∑
T∈B∗S

λBT v
S(T ) ≥ v(N).

5.2 Minimal balanced subsets
In this section, we recall (see Grabisch and Sudhölter, 2021) how the notion of balancedness,
defined for collections of coalitions till now, is extended to finite subsets of the positive orthant
of the Euclidean space. Throughout this subsection let N be a finite nonempty set and Z be
a finite subset of RN+ \ {0}.

Definition 5.2.1. Let Z ⊆ RN+ \ {0} be a finite set. Z is balanced if there exists a system
(λz)z∈Z of positive weights (called balancing weights) such that∑

z∈Z
λzz = 1N .

A balanced set is minimal if it does not contain a proper subset that is balanced. Note
that a balanced set is minimal if and only if it has a unique system of balancing weights. Let
F (Z) = {λ ∈ RZ+ |

∑
z∈Z λzz = 1Z , λz ≥ 0, ∀z ∈ Z}. Note that F (Z) is a convex polytope.

Note that λ ∈ F (Z) is an extreme point of F (Z) if and only if {z ∈ Z | λ > 0} is a minimal
balanced set. A minimal balanced set must be linearly independent. Hence, it contains at
most n elements.

In Sect. 3, the minimal balanced collections on a set N are constructed recursively, by
induction on the cardinality of N , finding a proper way to add the new players among the
existing coalitions. The idea here for the new algorithm is completely different because there
are not only indicator functions but also ordinary real vectors. To this end, a linear program
is solved to find a unique system of balancing weights. To avoid useless calculations, we re-
strict our attention to sets Z the elements of which span a linear space that contains 1N and
are linearly independent, i.e., the rank of the matrix the columns of which are the vectors of
Z must be equal to its number of columns, and the expansion by the column 1N must not
change the rank of the matrix. After this restriction, we simply check if the coefficients of the
linear combinations are positive.

For the study of core stability, minimal balanced subsets of a specific set must be computed.
Let S be a feasible collection and (BS)S∈S ∈ C(S). For S ∈ S, let zS ∈ RN be given by

zSj =

{
λB{i}, if j = i for some i ∈ S such that {i} ∈ BS ,
0, for all other j ∈ N.

Define the set

Ω(S, (BS)S∈S) =
{
1S

c | S ∈ S
}
∪
{
1T | T ∈ VE(N, v) \ S

}
∪
{
zS | S ∈ S

}
.

Let LinAlgSolve be a procedure that takes as an input a (n × k)-matrix A and returns a
k-dimensional vector λ such that Aλ = 1N . Denote by B(Ω) the set of minimal balanced
subsets of Ω.
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Algorithm 6 Minimal balanced sets computation algorithm

Require: A set Ω
Ensure: The set B(Ω)
1: procedure IsMinimalBalanced(Z)
2: if rk(AZ) = rk(AZ1 ) = |Z| then
3: λ← LinAlgSolve(AZ)
4: if λ > 0 then
5: return True
6: return False
7: procedure BalancedSets(Ω)
8: for Z ⊆ Ω such that |Z| ≤ n do
9: if IsMinimalBalanced(Z) then

10: add Z to B(Ω)

11: return B(Ω)

5.3 Final algorithm
Finally (see Grabisch and Sudhölter, 2021), for each z ∈ Ω, we define az = az(S, (BS)S∈S) =
max(A ∪B ∪ C), where

A = {v(N)− v(S) | S ∈ S,1Sc = z},
B = {v(T ) | T ∈ VE(N, v) \ S,1T = z},

C = {v(N)−
∑
T∈B∗S

λBST vS(T ) | S ∈ S, z = zS}.

Note that A and B are empty or singletons, but C can be multi-valued because distinct
coalitions can generate the same z. Let N = {1, 2, 3}, S = {1, 2}, T = {1, 3} and BS = BT =
{{1}, {2, 3}}. Then, zS = (1, 0, 0) = zT . To summarize,

az =


maxC if C 6= ∅ = A,
max{A,C} if C 6= ∅ 6= A,
v(N)− v(S) if z = 1S

c for some S ∈ S, C = ∅,
v(T ) if z = 1T for some T ∈ VE(N, v) \ S, A = ∅ = C.

Recall that B(Ω) is the set of all minimal balanced sets Z ⊆ Ω and denote by B0(Ω) the
subset of B(Ω) such that, for all Z ∈ B0(Ω), there exists S ∈ S such that z = 1S

c ∈ Z and
az = v(N)− v(S).

Theorem 5.3.1 (Grabisch and Sudhölter, 2021). A balanced game (N, v) has a stable core if
and only if, for every feasible collection S and for every (BS)S∈S ∈ C(S),

∃Z ∈ B(Ω) \ B0(Ω) such that
∑
z∈Z

λZz az > v(N), or

∃Z ∈ B0(Ω) such that
∑
z∈Z

λZz az ≥ v(N).

For each Z ∈ B(Ω), let ψ(Z) =
∑

z∈Z λ
Z
z az. The following algorithm checks whether a

game has a stable core.

17



Algorithm 7 Nested balancedness checking algorithm

Require: A game (N, v)
Ensure: The Boolean value: ‘(N, v) has a stable core’
1: procedure IsNestedBalanced(N, v)
2: for S ⊆ VE(N, v) that is feasible do
3: for (BS)S∈S ∈ C(S) do
4: Ω← {1Sc | S ∈ S} ∪ {1T | T ∈ VE(N, v) \ S} ∪ {zS | S ∈ S}
5: if max

Z∈B(Ω)
ψ(Z) ≤ v(N) and arg max

Z∈B(Ω)
ψ(Z) 6∈ B0(Ω) then

6: return False
7: if max

Z∈B(Ω)
ψ(Z) < v(N) and arg max

Z∈B(Ω)
ψ(Z) ∈ B0(Ω) then

8: return False
9: return True

5.4 Examples
Computing device: Apple M1 chip, CPU 3.2 GHz, 16 GB RAM.

4-player game Let (N, v) be the game defined by N = {1, 2, 3, 4} and v(S) = 0.6 if |S| =
3, v(N) = 1 and v(T ) = 0 otherwise. The algorithm returns that the set E(N, v) only contains
N . The set of strictly vital-exact coalitions is VE(N, v) = {{i} | i ∈ N} ∪ {N \ {i} | i ∈ N}.
The collection {{1, 3, 4}, {1, 2, 3}} is a blocking feasible collection, so by Lemma 4.2.1, the
core is not stable. The CPU time for this example is 0.1 second.

5-player game Let (N, v) be the game defined by Biswas et al. (1999), defined on N =
{1, 2, 3, 4, 5} by v(S) = max{x(S), y(S)} with x = (2, 1, 0, 0, 0) and y = (0, 0, 1, 1, 1). For this
game, the set of effective proper coalitions is

E(N, v) \ {N} = {{2, 3}, {2, 4}, {2, 5}, {1, 3, 4}, {1, 3, 5}, {1, 4, 5}}.

The set of strictly vital-exact coalitions is VE(N, v) = E(N, v) ∪ {{i} | i ∈ N}. The
feasible collections that do not contain a minimal extendable coalition are the nonempty
subsets of {{1, 3, 4}, {1, 3, 5}, {1, 4, 5}}, so there are 7 feasible collections. The collection
{{1, 3, 5}, {1, 4, 5}} does not satisfy the condition of Theorem 5.3.1, therefore the core of the
game is not stable. The CPU time for this example is 1.5 seconds.

Let (N, v) be the same game, but with v(N) = 3.1. The set E(N, v) becomes {N}. The
set of strictly vital-exact coalitions now contains 14 coalitions, while the previous game had
11 strictly vital-exact coalitions. The additional ones are {1, 3}, {1, 4}, {1, 5}. The set of
feasible collections that do not contain a minimal extendable coalition considerably increases,
with 51 feasible collections, but no blocking feasible collection. The largest feasible collection
contains 6 strictly vital-exact coalitions. The estimated time for the algorithm to check if this
specific collection satisfies the condition of Theorem 5.3.1 is greater than 200 hours, due to
the cardinality of the set C(S) with S denoting the specific collection.
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6-player game Let (N, v) be the game defined by Studený and Kratochvíl (2021), defined
on N = {1, 2, 3, 4, 5, 6} by

v(S) = 2 for S =

{
{2, 5}, {3, 5}, {1, 2, 5}, {2, 3, 5}, {2, 4, 5}, {2, 5, 6}, {1, 2, 4, 5}
{1, 2, 4, 6}, {1, 2, 5, 6}, {2, 4, 5, 6} and {1, 2, 4, 5, 6},

v(S) = 3 for S = {3, 4, 5},

v(S) = 4 for S =

{
{3, 6}, {1, 3, 5}, {1, 3, 6}, {3, 4, 6}, {3, 5, 6}, {1, 2, 3, 5},
{1, 3, 4, 5}, {1, 3, 4, 6}, {1, 3, 5, 6}, {2, 3, 4, 5} and {1, 2, 3, 4, 5},

v(S) = 6 for S =

{
{2, 3, 6}, {1, 2, 3, 6}, {2, 3, 4, 6}, {2, 3, 5, 6},
{1, 2, 3, 4, 6} and {1, 2, 3, 5, 6},

v(S) = 8 for S = {3, 4, 5, 6}, {1, 3, 4, 5, 6}, {2, 3, 4, 5, 6},
v(N) = 10 and v(T ) = 0 otherwise.

The set E(N, v) is only {N}. The set of strictly vital-exact coalitions is

{{i} | i ∈ N} ∪ {{2, 5}, {3, 6}, {1, 3, 5}, {2, 3, 6}, {1, 2, 4, 6}, {2, 3, 4, 5}, {3, 4, 5, 6}}

and the feasible collections that do not contain a minimal extendable coalition are the nonempty
subsets of {{1, 3, 5}, {3, 4, 5, 6}, {2, 3, 4, 5}}. The feasible collection {{1, 3, 5}, {3, 4, 5, 6}} does
not satisfy the condition of Theorem 5.3.1, therefore the core of the game is not stable. The
CPU time for this example is 18 minutes and 12 seconds, among which 43 seconds for com-
puting the set of minimal balanced collections on a set of 6 players.

6 Concluding remarks
We have shown in this paper that minimal balanced collections are a central notion in coop-
erative game theory, as well as in other areas of operations research and graph theory. As a
balanced collection is merely the expression of a sharing of one unit of resource among subsets,
we believe that many more applications should be possible.

Just focusing on the domain of cooperative games, the consequences of our results appear
to be of primary importance for the computability of many notions like exactness, extend-
ability, etc. Indeed, a blind application of the definition of these notions leads to difficult
problems related to polyhedra, limiting their practical applicability. Thanks to our results,
provided minimal balanced collections are generated beforehand (which is possible since they
do not depend on the considered game), these notions can be checked very easily and quickly,
as most of the tests to be done reduce to checking simple inequalities.

Generating minimal balanced collections has also permitted implementing an algorithm
testing core stability. The examples in Section 5 have shown that, even if for many cases, the
answer can be obtained quickly, there are instances where the computation time goes beyond
tractability, due to the highly combinatorial character of the condition of core stability. Still,
further research is needed to overcome this limitation.
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