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Abstract

We extend the familiar shortest path problem by supposing that agents have demands over

multiple periods. This potentially allows agents to combine their paths if their demands are

complementary; for instance if one agent only needs a connection to the source in the summer

while the other requires it only in the winter.

We not only show that the resulting cost sharing problem always generates a totally balanced

game, regardless of the number of agents and periods, the cost structure or the demand profile,

but that all totally balanced games are representable as MSP problems.

We then exploit the fact that the model encompasses many well-studied problems to obtain

or reobtain balancedness and total-balancedness results for source-connection problems, market

problems and minimum coloring problems.

JEL classification numbers: C71, D63.

Keywords: shortest path, demand over multiple periods, cooperative game, core, total-balancedness,

source-connection, assignment.

1 Introduction

Shortest path problems are well-studied in operations research and economics. While they are

often used to determine, for instance, the quickest route for a truck making a delivery from A to

B, we are interested in applications in which capacity has to be built to connect agents to a source,

the capacity is not easily adjustable and the cost is linearly increasing with capacity. Gas and oil
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pipelines, as well as rail networks, are some examples that fit the bill. Following Rosenthal (2013)

and Bahel and Trudeau (2014), we are interested in the cost sharing problem generated by these

situations. We, however, generalize the problem by supposing that there are multiple periods, and

that agents have demands that vary over these periods. Imagine two small cities, A and B, located

respectively to the northeast and southeast of the capital city. City A is a ski destination popular

in the winter, while city B is a beach destination popular in the summer. When designing a rail

network that will connect both cities to the capital, we could connect them both directly to the

capital, but it probably makes more sense to connect only one, say A, while connecting B to A,

to take advantage of the complementary demand to both cities. We could say the same of gas

pipelines to cities A and B, for which the gas is either used for heating in the winter or cooling in

the summer.

The model in itself, that we call the multi-period shortest path (MSP) problem,1 has not yet been

studied in economics, and our first contribution is to show that the core of the resulting cooperative

game is always non-empty. Thus, we are always able to share the cost in a way that makes sure

that no group of agents could jointly connect to the source at a cost cheaper than the amount they

are assigned. The non-vacuity of the core thus extends from the classic, one-period shortest path

problem (Rosenthal (2013)), and does not require any condition on the network structure, number

of periods, number of agents or demand profile. Our proof is constructive, as we provide a core

allocation built from the shadow prices of the constraints of our problem, expressed as a linear

program (Theorem 1).

In fact, the same reasoning applies to any subgame as well, making the games totally-balanced.

Furthermore, we show that any totally balanced game has an MSP representation, once appropri-

ately zero-normalized and adjusted from value game to cost game (Theorem 2).

We can extend our result that MSP problems generate games with non-empty cores in various

ways. Notably, it is valid whether we suppose that a coalition of agents can connect through (non-

cooperating) neighbors or not (Corollary 2). These variants are discussed for the related minimum

cost spanning tree problem in Trudeau and Vidal-Puga (2019). Our non-vacuity result also extends

to private games (agents can prevent others from using their nodes) where the cost functions on

all edges are convex, if we do not have unoccupied (Steiner) nodes (Theorem 4). That proof is

strongly inspired by Quant et al. (2006), who study a (one-period) network flow problem where on

each edge of the network there is a cost function that is convex with respect to the flow. The result

1Finding a shortest path is optimal when we are looking for the cheapest way to deliver goods to agents whose

demands are over a single period and cost is linearly increasing with the flow on each edge. When we extend the

demand profiles to multiple periods, the resulting optimal way to connect agents to the source might not be a shortest

path in any period, see Example 1. However, the name shortest path is associated with the problem itself, and it

is what we extend to multiple periods and call MSP, even though the solution concept to the operations research

problem does not extend.
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also extends to cases where agents can own multiple nodes (Theorem 5).

The equivalence between games generated by MSP problems and totally-balanced games is

similar to the result of Shapley and Shubik (1969) and Kalai and Zemel (1982), who obtain an

equivalence between totally-balanced games and, respectively, market games and so-called games

of flow.2 In our opinion, our result is a valuable addition as MSP problems naturally encompass,

in full or in part, a variety of well-studied problems. This allows us to obtain or reobtain results on

balancedness and total-balancedness, as well as draw new links between various sets of problems. To

do so, we provide MSP representations that are built directly from the parameters of the problem,

instead of from the values of the corresponding game as in Theorem 2. The games that we describe

are based on operation research problems. While the result in Theorem 2 allows us to build

the link to MSP problems using post-optimization, totally-balanced coalitional games constructed

from operation research problem, in Section 4 we establish direct links between MSP problems and

various pre-optimization operations research problems. Finding the optimal network in the MSP

problem is then equivalent to finding the optimal solution in the corresponding operations research

problem. These pre-optimization links allow for a better understanding of the links between the

various sets of problems.

Source-connection problems are an obvious group of problems that can be rewritten as MSP

problems, such as the aforementioned (one-period) shortest path and the minimum cost spanning

tree (mcst) problems (Bird (1976)). Mcst problems are such that on any edge the first unit of

capacity is costly, but others are free. We also provide results on airport and irrigation problems

(Aadland and Kolpin, 1998; Thomson, 2007).

Less obviously, MSP problems also encompass assignment problems (Shapley and Shubik (1971)),

where we need to match agents belonging to different sides of the market, with the classic example

being a housing market. As in the example described above, we can construct an MSP problem in

which we have some cities demanding in the summer and some others in the winter, and matching

them allows to save on cost. It is well-known that the core of an assignment game is always non-

empty, and we show that all assignment problems can be written as an MSP problem. Extensions of

the assignment problem to m-sides, with m > 2, is where the connection to MSP problems is more

useful. Many variants have been proposed and we study the strict m-sided assignment problem of

Quint (1991) and the generalized version of Atay et al. (2016). In the former, value is created only

when we match a group that contains one player from each side, while in the latter there is also

some value created when we match smaller groups of agents from different sides. In both cases,

the core of the corresponding game can be empty, and sufficient conditions for its non-vacuity have

been proposed. Some but not all of these m-sided assignment problems have a corresponding MSP

2Similar results exist for different types of games. Rosenmüller (1981) provides an equivalence between convex

games and production games, while Van den Nouweland et al. (1993) show the equivalence between monotonic games

and so-called spanning network games.
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representation, but by our stability result, if an assignment problem can be represented as an MSP

problem, it has a non-empty core. We provide sufficient conditions for representability as MSP

problems, and thus for totally-balancedness, extending a condition provided by Stuart Jr (1997).

We also examine compatibility problems, most notably the minimum coloring problem, studied

as a cost sharing problem by Okamoto (2008). In those problems, the set of agents has to be

partitioned in groups, such that agents in the same group have no conflict with each other. The

conflicts are represented in a graph, with an edge between i and j on the graph indicating that i

and j are in conflict and cannot be assigned to the same group. A sufficient condition for the non-

vacuity of the core is provided, requiring that for any subset of agents, the number of groups needed

to avoid conflicts (the chromatic number of the graph) is equal to the size of the largest group of

agents all in conflict with each other (the size of the largest clique in the graph). A simpler version

where the condition is always satisfied is presented by Bahel and Trudeau (2019) where agents

have time-sensitive jobs to be processed on a machine, and in which we are trying to determine

the smallest number of machines required to process all jobs without conflict. We show that when

the condition of Okamoto (2008) is satisfied, we have representability as an MSP problem. We are

also able to use our stability result in a different way to extend the set of problems with non-empty

cores. If we weaken the condition of Okamoto (2008) so that it only needs to hold for the grand

coalition, then there exists an MSP problem which has the same cost for the grand coalition and

a cost that might be smaller but not strictly larger for any other coalition. The core of this MSP

problem is thus a subset of the core of the minimum coloring problem. By our non-vacuity result

for the MSP problem, the core of the minimum coloring problem is then also non-empty.

Comparing how we have represented these various problems as MSP problems allows us to draw

new links between these problems. One such example is that it becomes clear that mcst problems

are m-sided assignment games with a single agent per side, allowing us to find a new sufficient

condition for m-sided assignment problems to have a non-empty core (Theorem 8). Comparing

m-sided assignment problems to compatibility problems also allows us to see that they are both

extensions of classic (2-sided) assignment problems.

The rest of the paper is divided as follows. Section 2 describes the MSP problem and the

associated cooperative game. Section 3 is devoted to the non-emptiness of the core. In Section 4

we show applications to source connection, market and compatibility problems.

2 The model

Let N be the set of agents. Let L ⊇ N be the set of nodes, with |L| finite. Nodes in L \ N are

unoccupied, and are called Steiner nodes. For all S ⊆ N , let S̄ = S ∪ (L \N) be the set of nodes

occupied by agents in S together with the Steiner nodes. Let M = {1, ...,m} be the set of periods,

with m finite. We suppose that |N | ≥ 2 and m ≥ 1.
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Nodes are located at different points in space. We represent their position on a complete, simple

digraph, with each agent occupying a different node. There is a special node, 0, that we call the

source. For all S ⊆ L, S0 := S∪{0} . Let E := {(i, j)|i, j ∈ L0 and i 6= j} denote the set of directed

edges. For any S ⊂ L, let ES := {(i, j)|i, j ∈ S0 and i 6= j}.
For all i ∈ N, let qi = (qi1, ..., qim) ∈ RM+ be the demand profile for agent i. In particular, for

t ∈M, qit is the demand of agent i at time t. Let Q = {qi}i∈N be the demand profiles for all agents.

For all t ∈ M, let N t(Q) = {i ∈ N |qit > 0} be the set of agents with a strictly positive demand at

time t. Steiner nodes have no demand, but it is often convenient to define the demand profile on L.

Let Q̄ = {q̄i}i∈L be such that q̄i = qi for all i ∈ N and q̄i = 0M for all i ∈ L \N . When |M | = |N |
we sometimes use a “diagonal matrix” demand D|N |, such that D

|N |
it = 1 if i = t and D

|N |
it = 0

otherwise.

To obtain their demand, agents need to build paths to the source. In addition, the capacity of

these paths must be large enough to carry their demands in every period. For each edge (i, j) ∈ E,
cij ≥ 0 represents the cost to install a capacity of one unit from i to j. Cost is linear with capacity,

so for any a ≥ 0, the cost of installing a capacity of a on edge (i, j) is a · cij . Let c = (cij)(i,j)∈E

be the collection of costs of all edges. We abuse language slightly by calling it a cost matrix. We

sometimes make assumptions on c. We say that c is symmetric if cij = cji for all i, j ∈ L0. We say

that c satisfies the triangle inequality if for any i, j, k ∈ L0, cik ≤ cij + cjk.

The tuple (N,L,M,Q, c) is called a multi-period shortest path problem (MSP problem for short).

When N = L we sometimes write (N,M,Q, c) instead of (N,L,M,Q, c).

2.1 Optimal networks

The first objective is to build a network connecting all agents to the source that contains enough

capacity to simultaneously carry all demands at each period. For any (i, j) ∈ E, let zij ≥ 0 be the

capacity installed from i to j. Let z = (zij)(i,j)∈E be the collection of capacities on all edges. We

call z a network. For any (i, j) ∈ E and any t ∈M , let xijt be the flow sent from i to j at period t.

The problem of finding the minimum cost to provide the demand to our set of agents can be

written as a linear program γ(N,L,M,Q, c):
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min
∑

(j,k)∈E

zjkcjk

s.t. :

Zjkt : zjk ≥ xjkt for all (j, k) ∈ E, t ∈M

Ot :
∑
i∈L

xi0t ≥
∑
i∈L

q̄it for all t ∈M

Iit : xi0t +
∑
j∈L\i

(xijt − xjit) ≥ q̄it for all i ∈ L, t ∈M

zjk ≥ 0, xjkt ≥ 0 for all (j, k) ∈ E, t ∈M

In words, constraints Zjkt guarantee that the flow is no larger than the capacity for any edge

and any period. Constraints Ot ensure that in any period the flow coming into the source is enough

to serve the demand of all agents in that period. Constraints Iit guarantee that for any node and

any period, outgoing flows minus incoming flows is at least as large as the demand of the agent (if

any) at that node in that period. Since the demand of a Steiner node is 0 in each period, this also

ensures that the outgoing flow from a Steiner node is at least as large as the incoming flow.

A solution to the linear program is z∗ =
(
z∗jk

)
(j,k)∈E

, x∗ =
(
x∗jkt

)
(j,k)∈E
t∈M

. We call a network

that satisfies all the constraints, but is not necessarily the cheapest, feasible.

Let PZjkt
be the shadow price associated with Zjkt, POt be the shadow price associated with

constraint Ot and PIit be the shadow price associated with constraint Iit.

The dual is the problem δ(N,L,M,Q, c):

max
∑
t∈M

(
POt

∑
i∈L

q̄it

)
+
∑
t∈M

∑
i∈L

q̄itPIit

s.t. :

Cjk :
∑
t∈M

PZjkt
≤ cjk for all (j, k) ∈ E

Ait : POt + PIit − PZi0t ≤ 0 for all i ∈ L, t ∈M

Bijt : PIit − PIjt − PZijt ≤ 0 for all i ∈ L, j ∈ L\i, t ∈M

PZjkt
≥ 0, POt ≥ 0, PIit ≥ 0 for all (j, k) ∈ E, i ∈ L, t ∈M

A solution to the dual is P ∗Z =
(
P ∗Zjkt

)
(j,k)∈E
t∈M

, P ∗O =
(
P ∗Ot

)
t∈M , P ∗I =

(
P ∗Iit
)
i∈L
t∈M

.

Let C(N,Q) =
∑

(j,k)∈E z
∗
jkcjk =

∑
t∈M

(
P ∗Ot

∑
i∈L q̄it

)
+
∑

t∈M
∑

i∈L q̄itP
∗
Iit

be the minimal cost

to serve the grand coalition N. In the same manner, for all S ⊆ N, we define as γ(N,L,M,QS , c)

the problem in which only agents in S are demanding, and C(S,Q) its minimal cost, where QS is

the restriction of Q to S, i.e. for all t ∈ M, qSit = qit if i ∈ S and qSit = 0 otherwise. When there is

no confusion we write C(N) instead of C(N,Q) and C(S) instead of C(S,Q).
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Example 1 Throughout the paper we will illustrate our results with a 4-player example, with

L\N = s1, and the cost matrix described in Figure 4. Circled numbers represent the agents and

the source, whereas s1 is a Steiner node. We suppose that the cost matrix is symmetric and the

number on an edge {i, j} represents the cost from i to j and j to i. It is easy to see that the example

satisfies the triangle inequality.

0

1 4

32

s1

5
7 4

7

3

2

3 5

3

5

2 34

5

2

Figure 1: Example of a cost matrix with 4 agents and 1 Steiner node.

Suppose that m = 2 and that Q = ((1, 0) , (2, 1) , (0, 1) , (2, 3)) . While there are 10 units being

consumed, they are evenly split between the two periods. Consider the following networks:

zi10 zi20 zi30 zi40 zis10 zi13 zi41 zi24 zi23 zi1s1 zi2s1 zi3s1 zi4s1 Cost

z1 1 2 1 3 0 0 0 0 0 0 0 0 0 44

z2 1 1 1 2 0 0 1 0 1 0 0 0 0 38

z3 0 0 1 0 4 1 0 0 0 0 2 0 3 36

Network z1 connects all agents directly to the source, with a capacity equal to their largest

demand over all periods. z2 takes advantage of the fact that agents 1 and 4 jointly demand 3 units

in each period. Thus, while agent 4 still installs 2 units of capacity on (4, 0), he now sends his

remaining demand over (4, 1), consuming the unused unit of agent 1 in period 2. We do something

similar for agents 2 and 3, who together demand 2 units in each period. Each connects to the source

with a capacity of 1 and agent 2 sends his remaining demand via agent 3 over (2, 3). z3 follows the

same idea, but instead has agents 1 and 3 and agents 2 and 4 partner up. In this case it is optimal

for agents 2 and 4 to connect via the Steiner node, rather than to connect directly to each other. It
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can be verified that z3 solves γ(N,L,M,Q, c). Thus, C(N) = 36.

2.2 Cooperative game

Let (N,L,M,Q, c) be an MSP problem. Note that C(·) can be regarded as the characteristic

function of a cooperative cost game (N,C), describing the cheapest way for any S ⊆ N to obtain

its demand. By definition C(∅) = 0 and S ⊆ T implies that C(S) ≤ C(T ). For each S ⊆ N we

define the subgame CS such that for all T ∈ 2S , CS(T ) ≡ C(T ).

An allocation is a vector y ∈ RN such that
∑

i∈N yi = C(N). For any S ⊆ N, we define

y(S) ≡
∑

i∈S yi. We say that an allocation y is a core allocation if y(S) ≤ C(S) for all S ⊂ N. For

a cooperative game with characteristic function C, the set of all core allocations is denoted with

Core(C).

A map λ : 2N\ {∅} → [0, 1] is said to be balanced if for all i ∈ N,
∑

S∈2N
i∈S

λS = 1. Bondareva

(1963) and Shapley (1967) have shown that the core of the cooperative (cost) game (N,C) is non-

empty if and only if for any balanced map λ,
∑

S∈2N\{∅} λS C(S) ≥ C(N), i.e. if (N,C) is balanced.

We say that a game is totally balanced if all subgames have a non-empty core.

We often convert (N,C) into a savings game (N,V ) as follows: for any C(·) and S ⊆ N, let

V (S) =
∑

i∈S C ({i}) − C(S). V (S) is the savings generated by the cooperation of agents in S,

compared to each acting on their own. The allocation yv is the savings game-equivalent of y and

is defined as follows: for all i ∈ N, yvi = C({i}) − yi. The allocation yv is a core allocation if

yv(S) ≥ V (S) for all S ⊂ N. By definition, yv ∈ Core(V ) if and only if y ∈ Core(C).

Savings games are special cases of value games, which are such that for all S ⊆ N V (S) ≥ 0

represents the value generated by S. For such a game V its zero normalization is V 0 such that

V 0(S) = V (S) −
∑

i∈S V (i). The restriction from the full set of value games to the set of zero-

normalized ones is not consequential. The core of one problem is the translation of the core of the

other problem. Notice that our savings games are zero-normalized games. Let V0 be the set of

zero-normalized value games.

3 The core of MSP problems

3.1 MSP problems generate totally balanced games

We show in this section that the core of an MSP game is always non-empty. This is done by showing

that the shadow prices of the linear program yield a core allocation. We begin by simplifying the

dual problem.

Lemma 1 Let S = ((PZijt)(i,j)∈E,t∈M , (POt)t∈M , (PIit)i∈L,t∈M ) be an optimal solution to the dual

and suppose there is some POt′ = α, α > 0. Then solution Ŝ which is constructed from S by

replacing POt′ with 0 and adding α to PIit′ for all i ∈ N is also an optimal solution to the dual.
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Proof. First, note that POt′ only appears in the constraints Ait for i ∈ L, which have the form

POt′ + PIit′ + PZi0t′ ≤ 0. It is easy to see that since S satisfies this constraint, so does Ŝ.

Next, consider a constraint Bijt′ for arbitrary i, j ∈ L. As S satisfies this constraint, we know

that PIit′ − PIjt′ − PZijt′ ≤ 0. But then (PIit′ + α)− (PIjt′ + α)− PZijt′ ≤ 0 is also true and thus Ŝ
is indeed a solution to the dual.

The value of S =
∑

t∈M (POt

∑
i∈L q̄it) +

∑
t∈M

∑
i∈L q̄itPIit differs from Ŝ only in

POt′

∑
i∈L

q̄it′ +
∑
i∈L

q̄it′PIit′ =
∑
i∈L

q̄it′α+
∑
i∈L

q̄it′PIit′ = 0 +
∑
i∈L

q̄it′(PIit′ + α)

Hence, the value of Ŝ is the same as that of S and Ŝ is thus also an optimal solution.

Lemma 2 Let S = ((PZijt)(i,j)∈E,t∈M , (POt)t∈M , (PIit)i∈L,t∈M ) be an optimal solution to the dual

and suppose there is an i ∈ L, t ∈ M s.t. PZi0t′ > POt′ + PIit′ . Then S̄ which is constructed from

S by setting PZi0t′ equal to POt′ + PIit′ is also an optimal solution to the dual.

Proof. As PZi0t′ has no influence on the value of the solution, it suffices to show that S̄ satisfies

all the constraints.

PZi0t′ appears in two constraints: Ci0 and Ait′ . As we know that
∑

t∈M PZi0t ≤ ci0 and

POt′ + PIit′ < PZi0t′ , it follows that S̄ satisfies Ci0. Next, consider Ait′ : POt′ + PIit′ − PZi0t′ ≤ 0.

As S̄ is such that PZi0t′ = POt′ +PIit′ it follows that S̄ satisfies Ait′ and moreover, it is binding.

Thus without loss of generality we can assume all POt to be 0 and PZi0t = PIit for all i ∈ N, t ∈
M .

Given these simplifications, we can use the following simplified dual δ∗(N,L,M,Q, c):

max
∑
t∈M

∑
i∈L

q̄itPZi0t

s.t. :

Cjk :
∑
t∈M

PZjkt
≤ cjk for all (j, k) ∈ E

Bijt : PZi0t − PZj0t − PZijt ≤ 0 for all i ∈ L, j ∈ L\i, t ∈M

PZjkt
≥ 0 for all (j, k) ∈ E, t ∈M

Let P ∗Z be a solution of the simplified dual. Define y∗(P ∗Z) as follows. For all i ∈ N, y∗i (P ∗Z) =∑
t∈M q̄itP

∗
Zi0t

.

Theorem 1 For all MSP problems (N,L,M,Q, c) let P ∗Z be a solution of the simplified dual

δ∗(N,L,M,Q, c). Then, y∗(P ∗Z) is a core allocation.
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Proof. First, it is immediate that
∑

i∈N y
∗
i (P

∗
Z) = C(N,M,Q, c), as

∑
i∈N

∑
t∈M q̄itP

∗
Zi0t

=∑
i∈L
∑

t∈M q̄itP
∗
Zi0t

is the optimal value of the simplified dual, with the equality coming from

q̄it = 0 for all i ∈ L \N and all t ∈M . Thus, y∗(P ∗Z) is budget balanced.

For S ⊂ N , consider the simplified dual problem D∗(N,L,M,QS , c) and notice that the con-

straints are independent of S. Therefore, for P ∗ a solution of the simplified dual δ∗(N,L,M,Q, c) we

have that
∑

t∈M
∑

i∈S q̄itP
∗
Zi0t
≤ C(S), as P ∗ is among the set of potential maximizers for coalition

S. Rearranging, we obtain

C(S) ≥
∑
i∈S

∑
t∈M

q̄itP
∗
Zi0t

=
∑
i∈S

y∗i (P
∗
Z)

and thus y∗(P ∗Z) is a core allocation.

MSP problems therefore have the interesting feature that we can always share the cost in a

stable manner, guaranteeing that no group has incentives to secede and do the project by itself.

While this is known to be true for classic, one-period shortest path problems, it is interesting to see

that it also holds in our more general setting, with no conditions on the number of players, number

of periods, demands or cost structure.

It is easy to see that for an MSP problem (N,L,M,Q, c) the above proof extends to all subgames,

yielding the following corollary.

Corollary 1 For all MSP problems (N,L,M,Q, c), C(·) is totally balanced.

3.2 Totally balanced games can be represented as MSP problems

We show that all zero-normalized totally-balanced value games can be represented as an MSP

problem.

Theorem 2 Every zero-normalized totally balanced game V can be rewritten as an MSP problem.

Proof. Let V be a zero-normalized totally balanced game. We construct an MSP as follows. Let

|M | = |N | and Q = D|N |. Let L = 2N . For all i ∈ N , we write i instead of {i}.
Let κ = V (N). For all S ∈ 2N , let cS0 = (|S| − 1)κ if |S| > 1 and cS0 = κ otherwise. For all

i ∈ N and S ⊃ {i}, set ciS = (κ− V (S))/|S|. For any other edge e ∈ E, let ce = |N |κ.

We now need to show that this MSP problem indeed corresponds to V . First note that we may

assume that in an optimal network only edges of the type (S, 0) and (i, S) with i ∈ S have a strictly

positive capacity. To see this consider the following. Suppose there is an edge (S, i) (or (S, T ))

with strictly positive capacity zSi. The cost associated with this edge is then zSi · |N |x. Let T ⊆ N
be the set of agents who send (part of) their flow over (S, i). Then we can set zSi = 0 and increase
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(j, 0) by zSi for all j ∈ T and we would still have a feasible network. The difference between the

cost of this new network and the original one is zSi · |T |κ− zSi · |N |κ ≤ 0.

Now suppose there is an edge (i, S), with i 6∈ S with a strictly positive capacity ziS . In this

case, we can replace ziS with zi0. This new network has a lower cost than the old one as (i, S) has

a cost of |N |κ and (i, 0) has a cost of κ. Moreover, it is still feasible as all flows that went through

(i, S) previously, can now be redirected through (i, 0) instead. Note that we can always assume

that edges leaving the source have a capacity of 0.

Hence we can assume that in an optimal network that for any i ∈ N only edges (i, 0), (i, S) for

i ∈ S and (S, 0) can have a strictly positive capacity. We will now show by induction on |S| that

Σi∈Sc({i})− c(S) = V (S) for all S ⊆ N . For any i ∈ N , by definition c({i})− c({i}) = 0 = V ({i}).
Note that for any |S| > 1, if all i ∈ S connect to S and S is connected to the source with

capacity 1, the total cost is (|S| − 1)κ + |S|κ−V (S)
|S| = |S|κ − V (S). Hence Σi∈Sc({i}) − c(S) =

|S|κ − (|S|κ − V (S)) = V (S). Thus, the cost savings generated by S in our MSP problem is at

least as large as V (S).

Now take any S ⊆ N and assume that for all |T | < |S| it holds that Σi∈T c({i})− c(T ) = V (T )

and that the optimal network zT for T consists of a capacity of 1 on just (T, 0) if |T | = 1 and on

(T, 0) as well as (i, T ) for all i ∈ T otherwise. As cT0 = (|T | − 1)κ and ci0 = κ it is easy to see

that connecting via T is only beneficial if ziT = zjT ≡ αT for all i, j ∈ T . As a consequence, it is

non-optimal to connect via any T ⊃ S. As the flows for any agent need to sum up to 1, it then

follows that the set of potential optimal networks is ΣT⊆Sα
T zT for 0 ≤ αT ≤ 1 and ΣT3iα

T = 1

for all i ∈ N .

The cost of such a network is

∑
T⊆S

αT c(T ) =
∑
T⊆S

αT

(∑
i∈T

c ({i})− V (T )

)
=

∑
i∈S

c ({i})−
∑
T⊆S

αTV (T )

= |S|κ−
∑
T⊆S

αTV (T )

≥ |S|κ− V (S)

and c(S) = |S|κ − V (S) as desired. Note that the second equality come from
{
αT
}
T⊆S being a

balanced set of weights, and the inequality comes from V being totally balanced.

It then follows that the optimal network for S is indeed for all agents i ∈ S to connect via S to

the source and hence Σi∈Sc({i})− c(S) = V (S).

Combining the previous two results, we obtain the following:

Theorem 3 A game is a zero-normalized totally-balanced (value) game if and only if it is repre-

sentable as an MSP problem.
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3.3 Extension to the private property game

So far, we have made the assumption that agents in S can use the nodes of players in N\S to

construct their paths to the source. We can amend this assumption by supposing that a coalition

can only use its own nodes, the unoccupied nodes and the source. In many source connection

problems, like minimum cost spanning tree problems, these distinct games are called private and

public games, depending on whether the nodes are privately or publicly owned. Stated differently,

in a private game, an agent can refuse to let others use his node when he is not cooperating with

them. Among others, see Trudeau and Vidal-Puga (2019) for a discussion of the two approaches.

For an MSP problem (N,L,M,Q, c) the associated private game is denoted CPRV (·, Q) , or,

once again when there is no confusion, CPRV (·) . Serving agents in S in the private MSP problem

can be solved by the linear program γPRV (N,L,M,Q, c), identical to γ(N,L,M,Q, c), except for

the additional constraint that zij = 0 for all (i, j) /∈ ES̄ .

Given the additional constraints, it is immediate that CPRV (S) ≥ C(S) for all S ⊂ N and

CPRV (N) = C(N) and that if y ∈ Core(C), then y ∈ Core(CPRV ). It is obvious that the opposite

is not true. We therefore have the following results.

Lemma 3 For all MSP problems (N,L,M,Q, c), Core(C) ⊆ Core(CPRV ).

Corollary 2 For all MSP problems (N,L,M,Q, c), Core(CPRV ) is non-empty.

3.4 Returns to scale

Another assumption of our model is that we have a linear cost function for each edge. Alternatively,

we could have concave or convex cost functions. Assuming concave cost functions on all edges would

lead to increasing returns to scale, as edges become cheaper the more they are used. If we take

all cost functions to be convex, we get decreasing returns to scale and spreading flow over several

paths might be beneficial.

Perhaps surprisingly, if we combine concave cost functions and cooperative gains, we might

not be able to find core allocations. Specifically, if the bulk of the gains are generated by small

coalitions, the core might be empty. In Trudeau (2009), an example of a (single-period) network

flow problem with concave cost functions that has an empty core is provided. The result extends

to our multiple period framework.

Though convex cost functions give rise to decreasing returns, this can, however, be partially

offset by gains from other factors. In our setup, the ability of an agent to share his unused capacity

in a given period is such a gain, and the access to new edges in the private game is another. As

the coalition grows, the possibilities to minimize cost increase.
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Suppose first that we have a single period and a public game. In this case, there is no way to

compensate the decreasing returns to scale. The core as defined is empty, as coalitions would prefer

to act on their own.3

A private game, however, offers the possibility to offset the losses caused by the convex cost

functions. Quant et al. (2006) consider a (single-period) private network flow game with convex

cost functions and show that the core, as defined in this paper, is always non-empty. Although the

returns to scale are negative, as a coalition grows, it also gains access to new edges and can now

spread its flows to avoid the increasing marginal costs. This is enough to generate a non-empty

core.

We can extend the result of Quant et al. (2006) to multiple periods, as long as we keep their

assumption of no Steiner nodes. Suppose that for each edge (i, j) we have a convex and increasing

cost function θij(kij) with θij(0) = 0. Let Θ = (θij)(i,j)∈E and (N,L,M,Q,Θ) be the resulting

network-flow problem with demand over multiple periods. In all our definitions we replace c by

Θ. While we no longer have a linear program, we can still express the problem by adapting the

objective of problem γPRV to min
∑

(j,k)∈E θij(zij).

Theorem 4 If Θ contains only convex cost functions and N = L then Core(CPRV ) is non-empty.

Proof. The proof follows Quant et al. (2006).

Let λ be a balanced map and B =
{
S ∈ 2N\ {∅} | λS > 0

}
. For all S ∈ B, let zS and xS

be (one of) the solution(s) to γPRV (N,L,M,QS ,Θ). Let z∗ =
∑

S∈B λSz
S and x∗ such that

x∗ijt =
∑

S∈B λSx
S
ijt for all (i, j) ∈ E and t ∈M .

We first show that z∗ and x∗ satisfy all constraints of problem γPRV (N,L,M,Q,Θ). To do

so, we consider the constraints of problems γPRV (N,L,M,QS ,Θ) for all S ∈ B, before summing

them up. Constraints Zjkt, which only depends on zS and xS , are trivially satisfied. We consider

constraints Oit.
4 We have ∑

S∈B
i∈S

λS
∑
i∈N

xSi0t ≥
∑
S∈B
i∈S

λSqit

∑
i∈N

∑
S∈B
i∈S

λSx
S
i0t ≥

∑
S∈B
i∈S

λSqit

∑
i∈N

x∗i0t ≥ qit

In the same manner, z∗ and x∗ satisfy constraint Iit. Thus, z∗ and x∗ are potential minimizers

for the problem γPRV (N,L,M,Q,Θ). We show that
∑

(j,k)∈E θij(z
∗
ij) ≤

∑
S∈B λS

∑
(j,k)∈E θij(z

S
ij).

3The interpretation of the core collapses in this context, as the threat to act on your own to avoid negative

externalities is an empty one. It is in fact more natural to reverse the sign of the inequalities in the definition of the

core, so that each coalition bears a part of the decreasing returns to scale.
4Given that N = L, there is no need to use q̄ instead of q.

13



We have ∑
(j,k)∈E

θij(z
∗
ij) =

∑
(i,j)

θij(
∑
S∈B

λSz
S
ij)

≤
∑
(i,j)

∑
S∈B

λSθij(z
S
ij)

=
∑
S∈B

∑
(i,j)

λSθij(z
S
ij)

=
∑
S∈B

λSC
PRV (S)

where the inequality follows from the fact that in the private game, only coalitions containing {i, j}
can use edge (i, j). This implies that

∑
S∈B
zSij>0

λS ≤ 1 and by the properties of a convex function, the

inequality follows.

Then, since z∗ satisfies all constraints, we have CPRV (N) ≤
∑

(j,k)∈E θij(z
∗
ij) ≤

∑
S∈B λSC

PRV (S)

and thus CPRV is balanced.

Notice that the proof crucially requires that an edge can only be used by coalitions that contain

the agents at each end of that edge. Thus, even the presence of a single Steiner node can generate

an empty core. The edge between the Steiner node and the source remains public, even in the

approach of the private game, and thus vacuity of the core can occur for the same reasons as for

the public game.

3.5 MSP with node ownership

Another variant of the problem consists in allowing agents to own multiple nodes. There is now a

function φ : L→ N ∪{∅} that tells us who owns each node. If φl = ∅ then node l is a Steiner node.

For each i ∈ N, let Φ(i) = {l ∈ L |φ(l) = i} be the set of nodes owned by i. We let Φ(T ) denote the

set of nodes owned by agents in T ⊆ N . We suppose that Φ(i) 6= ∅ for all i ∈ N, i.e. each agent

owns at least a node.

Demand is now defined for each owned node: for each l ∈ φ(N), ql = (ql1, ..., qlm) is the demand

profile associated to node l and Q = (ql)l∈φ(N) is the demand profile.

A multi-period shortest path problem with node ownership is (N,L,M, φ,Q, c). The cost of

supplying agents in S is denoted C(S,L, φ,Q). To distinguish, the ’classic’ MSP problem has a cost

C(S,L,Q).

Theorem 5 For any MSP with node ownership (N,L,M, φ,Q, c), the core is non-empty.

Proof. Fix a multi-period shortest path problem with node ownership (N,L,M, φ,Q, c). Let

(Φ(N), L,M, I,Q, c) be the corresponding problem in which each owned node has a different owner,

i.e. where I(l) = l for all l ∈ Φ(N). Clearly, (Φ(N), L,M, I,Q, c) is a ”classic” MSP problem, and
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by our results, its core is non-empty. We use this result to show that the core of (N,L,M, φ,Q, c)

is also non-empty. Let x ∈ RΦ(N) be a core allocation of (Φ(N), L,M, I,Q, c).

By definition, for all S ⊆ Φ(N), x(S) ≤ C(S,L, I,Q). In particular, it holds for each Φ(T ) for

some T ⊆ N, for which the constraint becomes

x (Φ(T )) ≤ C(Φ(T ), L, I,Q)

= C(T, L, φ,Q)

Defining y(T ) ≡ x (Φ(T )) , we obtain y(T ) ≤ C(T, L, φ,Q) and thus y is a core allocation for

(N,L,M, φ,Q, c).

4 Applications

An interesting feature of multi-period shortest path problems is that they encompass, partly or

fully, a large number of well-studied problems. We describe some of those in this section. The

proofs for this section are in the appendix.

The games generated by some of these applications are known to be totally-balanced, and thus

by Theorem 2 we have a way to represent them as MSP games. However, that construction is

based on the coalitional game itself, post optimization. In this section, we build representations

that depend on the parameters of the problem, and thus before the optimization that generates the

coalitional game. This will allow to better see the differences and similarities between the various

applications considered.

4.1 Source connection problems

The most obvious application is to the various source-connection problems. We discuss in this

subsection (classic) shortest path problems, airport and irrigation problems, minimum cost spanning

tree problems and minimum cost arborescence problems.

4.1.1 Shortest-path problems

As discussed in the introduction, MSP problems are extensions of the classic shortest path problems.

By setting m = 1, we recover the full set of (classic) shortest path problems. Note that the public

game is not particularly interesting, as each agent paying the cost of his path(s) is the only allocation

in the core. More interesting allocations are found in the core of the private game, which include

the possibility of subsidies for well-located agents. See Rosenthal (2013) and Bahel and Trudeau

(2014).
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4.1.2 Airport and irrigation problems

In airport (Thomson (2007)) and irrigation (Aadland and Kolpin (1998)) problems, agents are

connected to the source by a fixed tree T , and must share the cost of each segment of that tree.

The cost of a coalition S is the cost of all segments needed to connect its members. An airport

problem is an irrigation problem in which the tree is a line, in which case the cost of a coalition is

equal to the cost of connecting the agent furthest from the source.

An irrigation problem is characterized by a cost vector ρ for each segment on the tree. We

extend ρ to a cost matrix as follows, using the notation p(i) to denote the predecessor of i in the

tree. If (i, j) is in the tree, then cij = ρij . Starting with the agents closest to the source, recursively

define ci0 = cp(i)0 + cip(i). Then, if i is in j’s path to the source, let cji = cp(j)i + cjp(j). Otherwise,

let cji = max{ci0, cj0}.
We complete the representation as an MSP problem by letting N = L, |M | = |N | and Q = D|N |.

In words, we have the same number of periods as agents, and each agent demands in a different

period. It is then obvious that it is optimal to build a capacity of 1 on each edge of tree T , allowing

each agent to send one unit of flow along it and yielding C(N,L,M,Q, c) =
∑

i∈N cp(i)i, just as for

irrigation problems.

It is well known that irrigation problems are totally balanced. We recover the result by their

representability as an MSP problem.

Lemma 4 All irrigation problems are representable as MSP problems.

4.1.3 Minimum cost spanning tree and minimum cost arborescence problems

In a similar fashion, MSP problems also encompass the well-studied minimum cost spanning tree

(mcst) problems, in which the cost function on each edge is a fixed cost that has to be paid if the

link is used (in any direction), with the cost not depending on the capacity. It is well established

that the cores of the public and private versions of that problem are non-empty (Bird (1976)).

We can obtain mcst problems as MSP problems by letting N = L, |M | = |N | and Q = D|N |. It

now becomes possible to construct a single tree (with capacity 1) connecting all agents to the source

as they will each use it in a different period. Because all demands are of one unit, the per-unit cost

in MSP problems behaves like the fixed cost of mcst problems.

Lemma 5 If the MSP problem (N,L,M,Q, c) is such that N = L, |N | = |M |, Q = D|N | and c

is symmetric, then (N,L,M,Q, c) is equivalent to a mcst problem. In addition, all mcst problems

can be written as MSP problems.

The second statement in the lemma is obvious: starting from the mcst problem, composed of

N and a cost matrix c, the equivalent MSP problem is (N,N,N,D|N |, c).
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Example 2 We revisit Example 1. Remove the Steiner node s1 and suppose that to N and c we

add M = {1, ..., 4} and Q = D4, i.e. agent i demands 1 unit in period i and none in the other

periods. We can then build a minimum cost spanning tree composed of edges (4,2), (2,1), (1,3) and

(3,0), for a total cost of 12. We build a capacity of 1 on each of those edges, and in period i, agent

i uses the path on that tree from i to the source.

Minimum cost arborescence (mca) problems are extensions of mcst problems where the cost

matrix might be asymmetric. The core of both the private and public games are non-empty, and

the cooperative games generated by these problems were studied in Dutta and Mishra (2012) and

Bahel and Trudeau (2017). The link with MSP problems is the same as for mcst problems, except

that we now allow for asymmetric cost functions.

Lemma 6 If the MSP problem (N,L,M,Q, c) is such that N = L, |N | = |M |, Q = D|N |, then

(N,L,M,Q, c) is equivalent to a mca problem. In addition, all mca problems can be written as

MSP problems.

It would be tempting at this point to conclude that public mcst and mca problems are totally-

balanced, as they can be represented as MSP problems, which are totally-balanced. However,

we have counter-examples showing that public mcst problems do not have to be totally-balanced

(Norde et al., 2001).

To explain this apparent contradiction, we need to define Steiner tree problems. Steiner tree

problems are identical to mcst/mca problems, with the exception that we have public nodes not

occupied by any agent. While our framework allows for Steiner nodes, Steiner tree problems can

generate games with empty cores (Skorin-Kapov, 1995), meaning that they cannot be represented

as MSP problems. We explain the apparent disparity.

Consider a problem with 3 agents (1, 2 and 3), and 3 Steiner nodes (s1, s2 and s3). Costs are

represented in Figure 2, with drawn edges having a cost of 1 and others having a cost of 10.

In the Steiner tree problem, any pair of agents can connect at a total cost of 3 (with both

connecting to the Steiner node they share a cheap connection to) while the three agents together

connect at a total cost of 5 (with one pair connecting as before, and the third agent connecting

through another Steiner node). The core of this game is empty.

In the corresponding MSP problem with the same graph, and with agent i demanding one unit

in period i and none in other periods, the grand coalition can do better in the following way: build

capacities of 1/2 on each of the represented edges, for a total cost of 4.5 and let each agent send

half of its flow via one Steiner node and the other half via another. The corresponding game is

then balanced.

Thus, we can view Steiner tree problems as an MSP problem with the additional constraint

that installed capacities must be 0 or 1. The idea behind mcst/mca and Steiner tree problems is
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Figure 2: Steiner tree problem

to be connected to the source; for mcst/mca that could be represented by each agents demanding

a single unit in a different period, as it was never (uniquely) optimal to send fractions of this unit

via different paths. With the presence of Steiner nodes, this is no longer guaranteed, creating a

gap between Steiner tree problems and MSP problems.

This is what happens in public mcst/mca problems: We can reinterpret the example above as

initially having 6 agents; that game is balanced. But the subgame with agents {1, 2, 3} still allows

them to connect through {s1, s2, s3}, making that subgame equivalent to the Steiner tree problem

of the example. Private mcst/mca problems do not exhibit this problem.

More generally, for total balancedness to extend, we need that the subgames CS remain games

of the same type as the original game. This is not necessarily true for source connection problems,

as the example shows that a mcst problem can become a Steiner tree problem.

4.2 Assignment problems

MSP problems are particularly apt at representing problems in which we match agents together, for

instance buyers and sellers. In this section we first explore classic, two-sided assignment problems

(Shapley and Shubik (1971)), before examining more general m-sided assignment problems. These

represent an extension of classic assignment problems in which we add to the number of sides in

the market. In the next section we instead extend by keeping the two sides, but complexifying the

market in various ways.

4.2.1 Classic assignment problems

In classic assignment problems we have two sets of agents and there is a value to match agents from

different sets. In an assignment, an agent can be assigned to at most one agent from the other side,
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and the value created is pair-specific. An application is a market for houses. The well-studied model

always has a non-empty core. We show in this section that all assignment problems can be written

as MSP problems. This result is much less obvious than the previous subsection, as it involves

defining c in a precise way to reflect the pair-specific benefits of matching, before reinterpreting the

cost game as a savings game.

An assignment problem is a tuple (N1, N2, v), where N t is the set of agents on side t of the

market and v = (vij)i∈N1,j∈N2 gives the value created by each pair of agents from different sides.

We have that N = ∪tN t and for all S ⊂ N , St = S ∩N t,

An eligible assignment is a set of pairs a ⊂ N1 × N2 such that if (i, j) ∈ a, there is no k 6= j

such that (i, k) ∈ a or l 6= i such that (l, j) ∈ a.
Let Ω(N1, N2) be the set of eligible assignments. To find the optimal assignment we need to

find a∗ such that

a∗ ∈ arg max
a∈Ω(N1,N2)

∑
(i,j)∈a

vij .

Let V A(S) = maxa∈Ω(S1,S2)

∑
(i,j)∈a vij for all S ⊆ N .

We build an MSP representation based on parameters of the problem, instead of on its cor-

responding cost function. As can be expected, the way to model assignment problems as MSP

problems is to have two periods, with agents demanding in only one of the two periods.

Example 3 We reconsider Example 1. Suppose that to N ∪ {s1} = L and c we add M = {1, 2}
and Q = ((1, 0) , (1, 0) , (0, 1) , (0, 1)) , i.e. agents 1 and 2 are on one side of the market and 3 and

4 are on the other.

Agents 1 and 3 can join forces by building the path ((1, 3) , (3, 0)) at a cost of 6; a saving of 3

compared to both of them connecting directly to the source. In the same way, agents 1 and 4 would

obtain a saving of 4 by building the path ((4, 1) , (1, 0)), agents 2 and 3 generate a saving of 2 by

building the path ((2, 3) , (3, 0)) and agents 2 and 4 generate a saving of 5 by building a capacity of

1 on (2, s1),(4, s1) and (s1, 0).

Thus, the optimal assignment is to match agent 1 with agent 3 and agent 2 with agent 4, for

total savings of 8.

We show that the full set of assignment problems can be written as MSP problems in the following

way: Let N = N1 ∪ N2, L = N , |M | = 2 and Q such that qi = (1, 0) if i ∈ N1 and qi = (0, 1)

otherwise. Let vmax = maxi∈N1,j∈N2 vij . Let ci0 = 2vmax, cij = cji = 2vmax − vij if i ∈ N1 and

j ∈ N2, and cij = cji = 2vmax otherwise.

Lemma 7 All assignment problems (N1, N2, v) can be written as an MSP problem.
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4.2.2 m-sided assignment problems

Many extensions of the assignment problem to m > 2 sides have been proposed, and we focus here

on the extensions proposed by Quint (1991) and Atay et al. (2016). Both extensions consider cases

in which we have m sides, and value is created by m-tuples consisting of one member of each side.

While Quint (1991) supposes that these are the only groups of agents creating value, Atay et al.

(2016) also allow for subsets to create value. We call the model proposed by Quint (1991) the strict

m-sided assignment problem and the one by Atay et al. (2016) the generalized m-sided assignment

problem.

Our set of agents N is now partitioned in m sides, N1, ..., Nm. For k ∈ {2, ...,m}, let

Ak =
{
S ⊆ N | |S| = k and

∣∣Sl∣∣ ≤ 1 for l ∈ {1, ...,m}
}

be the set of groups containing k agents

from different markets. Let A2,m =
⋃m
k=2Ak.

The strict m-sided assignment problem is given by
((
N1, ..., Nm

)
, w
)
, with w ∈ RAm

+ giving the

value created by any tuple of m agents from different sides. The generalized m-sided assignment

problem is given by
((
N1, ..., Nm

)
, w
)
, with w ∈ RA2,m

+ .

For the strict m-sided assignment problem an eligible assignment is a set of m-tuples a such

that if S ∈ a, there is no other S′ in a such that S′∩S 6= ∅. Let Ω(N1, ..., Nm) be the set of eligible

assignments. For the generalized m-sided assignment problem an eligible assignment is a set of

tuples a of size m or less such that if S ∈ a, there is no other S′ in a such that S′ ∩ S 6= ∅. Let

ΩG(N1, ..., Nm) be the set of eligible assignments in this case.

To find the optimal assignment for the strict m-sided assignment problem we need to find a∗

such that

a∗ ∈ arg max
a∈Ω(N1,...,Nm)

∑
S∈a

wS

while for the generalized m-sided assignment problem we are looking for a∗ such that

a∗ ∈ arg max
a∈ΩG(N1,...,Nm)

∑
S∈a

wS .

Let V S(S) = maxa∈Ω(S1,...,Sm)

∑
T∈awT and V G(S) = maxa∈ΩG(S1,...,Sm)

∑
T∈awT for all S ⊆

N.

Quint (1991) and Atay et al. (2016) report that both the strict and the generalized 3-sided as-

signment problems can have an empty core, and they offer subsets that are always stable. Stuart Jr

(1997) offers a different subset of strict m-sided assignment problems that are stable which neither

contains nor is contained by the set proposed by Quint (1991). We show that a more general version

of this set can be modelled as MSP problems.

We start with the strict m-sided assignment problem. Suppose that S is a coalition consisting

of one agent from each side. Stuart Jr (1997) shows that the game is stable if we can order the sides

N1, ..., Nm and there exist values dij for all {i, j} ∈ N r ×N r+1 such that for any S = {i1, ...., im}
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with S ∈ Am

wS =
m−1∑
r=1

dirir+1

where ir ∈ N r for all 1 ≤ r ≤ m.

A more general set of strict m-sided assignment problems can be modelled as MSP problem.

Take m − 1 pairs of sides N t × N s such that taking one pair out of each would give a connected

graph. Let D denote the set of all values dij for these m− 1 pairs of sides, i.e. dij ∈ D if and only

if (i, j) ∈ N t × N s for one of these m − 1 pairs of sides N t × N s. We say that a strict m-sided

assignment problem satisfies the Stuart condition if there exist m− 1 such pairs of sides such that

for all S ∈ Am:

wS =
∑

i,j∈S:dij∈D
dij

We say that a strict m-sided assignment problem satisfies the linear Stuart condition if these m−1

values form a line.

All strict m-sided assignment problems satisfying the Stuart condition can be written as MSP

problems in the following way: Let N =
⋃
tN

t, L = N , |M | = m and for i ∈ N s, qit = 1 for all t 6= s

and qis = 0. Let vmax = maxS∈Am wS . Let ci0 = (m− 1)vmax for all i ∈ N , cij = cji = vmax − dij
if i ∈ N t and j ∈ N s with t 6= s, where dij = 0 for all dij 6∈ D, and let cij = vmax otherwise.

Theorem 6 Let ((N1, N2..., Nm), w) be a strict m-sided assignment problem which satisfies the

Stuart condition. Then ((N1, N2..., Nm), w) can be written as an MSP problem.

Corollary 3 Every strict m-sided assignment problem ((N1, ..., Nm), w) that satisfies the Stuart

condition is totally balanced.

Example 4 Consider a strict 3-sided assignment problem with N1 = {1, 2}, N2 = {3, 4} and

N3 = {5}. Let w135 = 14, w145 = 11, w235 = 12 and w245 = 15. These values satisfy the Stuart

condition as we can set d13 = 5, d14 = 4, d23 = 3, d24 = 8, d35 = 9 and d45 = 7 and then

wijk = dij + djk, for all i ∈ N1, j ∈ N2 and k ∈ N3.

We represent this assignment problem as an MSP by using the cost matrix in Figure 3, with

b = 15. In addition, we have qit = 0 if i ∈ N t and qit = 1 otherwise.

Note that in this cost matrix d15 = 2 (c15 = b− 2) and d25 = 3 rather than 0. We will use these

values in Example 5. For this example, the important thing to note is that, since (1, 5) and (2, 5)

are the two most expensive edges between any two agents from different sides, these edges will not

be used by any triplet and hence the MSP problem in this example is equivalent to one in which the

cost of these two edges is set to be equal to b.

Given the demands, pairs can do no better than having their members connect directly to the

source, generating no benefit. Agents belonging to the same side also have no incentives to cooperate.

21



0

1 4

32

5

30
30 30

30

b− 4

b− 5

b b

b− 8

b− 3

b− 3 b− 9

b− 2

30

b− 7

Figure 3: MSP represensation of a strict 3-sided assignment problem.

Sets of 3 agents containing one agent from each side do, however. Take {1, 3, 5}. Independently,

they each connect directly to the source at a total cost of 90. Together, they can build a capacity of

one on (5, 3) and (1, 3) and two on (3, 0), for a total cost of 6 + 10 + 2 ∗ 30 = 76, and thus a gain

of 14. We can verify that for all i ∈ N1, j ∈ N2 and k ∈ N3, it is optimal for coalition {i, j, k} to

build a network with one of capacity on (k, j) and (i, j) and two on (j, 0), generating the value in

w.

The optimal assignment here builds coalition {2, 4, 5} and leaves agents 1 and 3 unassigned,

which in our MSP representation implies a direct connection to the source.

Stuart Jr (1997)’s condition for strict assignment problems can be rewritten for generalized

m-sided assignment problems in the following way. We say that a generalized m-sided assignment

problem satisfies the linear Stuart condition if we can order the sides N1, ..., Nm such that for any

S ∈ A2,m, wS is equal to the sum of the |S| − 1 highest values of pairs in S, and for any i, j, k ∈ N
with i ∈ N t, j ∈ N r, k ∈ N s, wij ≥ wik if t < r < s or t > r > s.

We model these generalized m-sided assignment problems in a similar way to how we modelled

2-sided assignment problems as MSP problems. We set N =
⋃
tN

t, L = N , |M | = m and Q such

that qit = 1 if i ∈ N t and qis = 0 otherwise.

Let vmax = maxS∈Am wS . Let ci0 = 2vmax for all i ∈ N, cij = cji = 2vmax − wij if i ∈ N t and

j ∈ N s, with t 6= s and cij = cji = 2vmax otherwise.
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Theorem 7 Let
((
N1, ..., Nm

)
, w
)

be a generalized m-sided assignment problem which satisfies

the linear Stuart condition. Then
((
N1, ..., Nm

)
, w
)

can be written as an MSP problem.

Corollary 4 Every generalized m-sided assignment problem ((N1, ..., Nm), w) that satisfies the lin-

ear Stuart condition is totally balanced.

To illustrate our result, we revisit Example 4.

Example 5 Consider the assignment problem of Example 4. We transform it into a generalized

3-sided assignment problem by defining w as follows. If |S| = 3, then wS is as in Example 4. For

pairs, let w15 = 2, w25 = 3 and wij = dij otherwise.

We represent this problem as an MSP by using the cost matrix in Figure 3, with b = 30. In

addition, we have qit = 1 if i ∈ N t and qis = 0 otherwise.

For any coalition S composed of agents from different sides, it is always optimal to build a path

of capacity one, starting from the agent in the ”last” side and moving to ”earlier” sides and then

the source, with the sides naturally ranked as 1, 2, 3. For instance, coalition {1, 3, 5} builds the path

(5, 3), (3, 1), (1, 0) at a cost of 21 + 25 + 30 = 76. Alone, each agent would build a direct link to the

source, at a cost of 30, thus we get a total gain of 14. Coalition {1, 5} builds the path (5, 1), (1, 0)

at a cost of 28 + 30 = 58, for a gain of 2. We can verify that all pairs and triplets containing at

most one agent from each side generates the same value as in w.

The optimal assignment here builds coalitions {1, 3, 5} and {2, 4}, which generates a value of

22.

4.3 Market games

Returning to two sides - buyers and sellers - we show that many ways to model the interactions

between buyers and sellers (see Núñez and Rafels (2015) for a review of the vast literature) can be

represented as MSP problems.

4.3.1 Market games with one good

We extend classic assignment games by relaxing the assumption that agents can only be involved

in trades for one unit. Suppose that N = S ∪B, where S is a set of sellers and B a set of buyers.

Suppose that buyers demand multiple units, with a non-increasing marginal utility, and sellers can

produce multiple units, with a non-decreasing marginal cost of production. Then, we can represent

the problem as an MSP problem with node ownership.

If a seller has increasing marginal cost of production, it has multiple nodes with demand (0, 1).

In the same way, if buyers have demand for multiple units of the same good, with decreasing

marginal utility, we can represent it with multiple nodes having a demand of (1, 0).
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Let ci0 = cj0 ≡ c0 for all i, j ∈ N . If bl is the node representing the lth unit consumed by buyer

b and if sk is the node representing the kth unit produced by a seller s, cblsk is representative of

the value created i.e. such that c0 − cblsk is equal to the surplus created by selling the kth unit to

agent b, for whom it is the lth unit consumed. If it is optimal to ”connect” the node of a buyer

directly to the source, with no connection to any seller, his demand goes unfulfilled. If it is optimal

to ”connect” the node of a seller directly to the source, that (potential) supply is not produced.

It will always be optimal to first match the highest marginal utilities with the cheapest cost first,

which is also why we can’t accommodate cases with decreasing marginal cost of production or

increasing marginal utility.

Given that agents on the same side of the market have the same demand, they never have any

gains to cooperate in the market games as in the corresponding MSP problems.

4.3.2 Market games with multiple goods

We can extend the construction from a unique good to multiple goods, as long as the utility and

cost are additively-separable over goods.

If these constraints are satisfied, we can build a separate node for each good/unit, i.e. blk is the

node used for the consumption of the kth unit of good l by buyer b. We construct the demand Q in

the following way: For each l ∈ L such that φ(l) ∈ B, ql is such that qlt = 0 for all t except one, i.e.

there is an active demand in a single period. In other words, we create an equivalence between the

set of periods and the set of goods, and say that node l has a demand for the good t for which the

demand is 1. For each l ∈ L such that φ(l) ∈ S, we construct ql such that qlt = 1 for all t except

one. We say that node l has a supply for the good t for which qlt = 0.

Once again, let ci0 = cj0 ≡ c0 for all i, j ∈ L. cblkslm is representative of the value created if

buyer b buys its kth unit of good l from seller s, for which it is the mth such unit produced i.e.

such that c0− cblkslm is equal to the surplus created by that trade. Note that edges between ’buyer’

nodes have a cost of c0 since ’buyer’ nodes do not create any value together. Thus, even though

the demand of some ’buyer’ nodes may be compatible, they cannot benefit from connecting to each

other. Then, by construction, a ’buyer’ node will either be matched with a ’seller’ node of the same

good, or not matched at all, in which case the demand goes unfulfilled.

Lemma 8 Any market game with multiple goods can be represented as an MSP game, as long as i)

marginal utility for each good is non-increasing, ii) marginal cost for each good is non-decreasing,

iii) utility and cost are additively-separable over goods.

It is worth noting that the market games described in this section differ from those studied

by Shapley and Shubik (1969), which also are equivalent to totally balanced games. Instead of

dividing agents into buyers and sellers, they have endowments, with gains coming from mutually
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beneficial trades. While the endowments are not an issue to represent as MSP problem - we can

create separate nodes for an agent’s endowments and demands - Shapley and Shubik allow utility

functions that are not quasi-linear, which we cannot represent in the MSP framework. Thus, while

the post-optimization Shapley-Shubik games can be modelled as MSP games through Theorem 2,

we cannot represent all pre-optimization problems as MSP problems.

Many variants proposed to our market games (Kaneko (1976), Sotomayor (1992)) incorporate

constraints on the number of matchings an agent or a buyer-seller pair can make. These can be

added to the MSP problem as follows. Suppose that buyer i cannot consume more than k units

(among all goods). We add k additional dummy agents and instead of representing the surplus

created by the matching on the edge from the buyer to the seller, we represent it on the path from

the buyer to his dummy agent to the seller, with the direct edge presenting no savings for the

buyer-seller pair. We now also need to add one more dummy period to M and set the demand of

the dummy agents equal to one in each period except for that dummy period, while the buyer and

seller nodes have a demand of 1 in that dummy period. This is now equivalent to a strict 3-sided

assignment problem5; the buyer and seller node together have a peak demand of two in the dummy

period and can thus not create any cost savings. Together with a dummy node, the total demand

is two in every period and cost savings become possible.

If we have a market game with multiple goods and constraints on the amount of matchings an

agent can make, we need to add two more periods; one ’buyer’ period, for which each buyer node

and dummy node have a demand of 1 and one ’seller’ period, for which each seller node and dummy

node have a demand of 1. Note that this is needed to ensure that two buyer nodes do not create

savings together. For market games without constraints we ensured this by setting the cost of an

edge between two buyer nodes equal to the cost of an edge to the source. As we now represent the

benefits from connecting on the edge towards the dummy node, we need to use the demand vector

to ensure that two buyer (or two seller) nodes cannot create any savings together.

Example 6 Consider a market game with two sellers and one buyer. Each seller sells one unit,

each of a different good. The buyer has a demand for one unit of each good, but can only buy one

unit in total. We represent this as an MSP by using the graph in Figure 4.

We have N = {1, 2, 3, 4}, with 1 being the buyer, 2 and 3 being the sellers and 4 the dummy

agent. We set Φ(1) = {b11, b21}, Φ(2) = {s11}, Φ(3) = {s21} and Φ(4) = {d1}. In addition to

that we have qb11 = (1, 0, 1, 0, 1), qb21 = (0, 1, 1, 0, 1), qs11 = (0, 1, 0, 1, 1), qs21 = (1, 0, 0, 1, 1) and

qd1 = (1, 1, 1, 1, 0). The first period represents the demand/supply of the first good. A buyer i has

a demand for good 1 if qi1 = 1. A seller node j on the contrary supplies this good if his demand in

that period is zero, i.e. if qj1 = 0. Period 2 represents the same but for good 2. The third period is

5Just as for strict m-sided assignment problems, we now also have to increase the cost of an edge to the source

to 2c0, while keeping the cost of edges between two agents the same, to ensure the cost savings indeed represent the

value created by a match between a buyer node and a seller node.
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the ’buyer’ period, hence qi3 = 1 if i is a buyer node and qi3 = 0 if i is seller. For period 4 this is

the other way around. The dummy has a demand of one in both of these periods. Lastly, period 5

is our dummy period and qi5 = 0 only if i is a dummy node.

The cost matrix is as described in Figure 4, where vb11 represents the value for the buyer from

buying his first unit of good 1 and κs11 is the price this seller charges for selling his good. All

omitted edges have a cost of c0.

Given the demands, no pair can do better than each connecting to the source on its own. Sets

of 3 agents can only benefit from cooperation if it consists of 1 buyer, 1 seller and 1 dummy and

moreover the buyer node has a demand for the good the seller node supplies. Any other set of 3

agents has a total demand of 3 in one of the periods and can thus not create any cost savings.

0

b21 s21

s11b11

d1

2c0

2c0 2c0

2c0 2c0

c0 − vb21

c0 − vb11 c0 + κs11

c0 + κs21

Figure 4: MSP represensation of a market game with constraints and multiple goods.

For constraints on buyer-seller pairs, we proceed in the same manner, creating a dummy agent

for each matching a pair can make.

4.4 Compatibility problems

The minimum coloring problem is a classic operations research problem in which we need to par-

tition a group into elements that have no conflicts with each other - we can think of scheduling for

instance. Conflicts, or incompatibilities, are expressed in a graph composed of undirected edges,

that we express as {i, j}. We have that i and j are incompatible if the undirected edge {i, j}
belongs to the graph. Okamoto (2008) studies the problem in which we want to minimize the cost

of providing services to all agents, with each element of the partition having the same cost. For

example we pay k if we need to schedule k different time slots.
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Formally, a minimum coloring problem is (N,G), where G is an undirected graph. For all

S ⊂ N, let G [S] be the subgraph induced by S. Let χ(G) be the chromatic number of G, i.e.

the minimum number of elements in a partition of N so that if T is an element of the partition,

G [T ] = ∅. The coalitional cost function associated with the minimum coloring problem (N,G) is

CM (S,G) = χ(G [S]).

For a graph G, S ⊆ N is a clique of G if {i, j} ∈ G for all i, j ∈ S. LetW(G) be the set of cliques.

A clique is maximal if there is no other clique that contains it. Let W̄(G) be the set of maximal

cliques. Let ω(G) = maxS∈W(G) |S| be the size of the largest clique. Note that χ(G) ≥ ω(G). We

say that a graph G is a weakly perfect graph if χ(G) = ω(G). We say that a graph G is a perfect

graph if χ(G [S]) = ω(G [S]) for all S ⊆ N.
Okamoto (2008) shows that the core of a minimum coloring problem is totally balanced if and

only if G is a perfect graph. These can all be represented as MSP problems. For a graph G, we

build QG as follows: order cliques in W̄(G) =
{
W1, ...,W|W̄(G)|

}
. For all t = 1, ...,

∣∣W̄(G)
∣∣ and all

i ∈ N, let qGit = 1 if i ∈Wt and qGit = 0 otherwise.

Lemma 9 Let (N,G) be a minimum coloring problem, with G a perfect graph. Let (N,N,M,QG, c)

be such that m =
∣∣W̄(G)

∣∣ , ci0 = 1 for all i ∈ N and cij = 0 otherwise. Then, CM (·, G) = C(·, QG).

We can provide an additional result: minimum coloring problems for which the graph is weakly

perfect still have non-empty cores.

Lemma 10 Let (N,G) be a minimum coloring problem, with G a weakly perfect graph. Then,

Core(CM ) is non-empty.6

A particular subset of minimum coloring problems is the set of job scheduling problems (Bahel

and Trudeau (2019)). In those problems, each agent has a single job that has a starting and

finishing time, and must be processed on a machine without interruption from the starting to the

finishing time. Evidently, a group of agents is incompatible if their jobs intersect. This gives

a lot of structure to the incompatibility graph, which will always be a perfect graph. Thus the

core is always non-empty. We can thus represent those problems as MSP problems. To make the

representation even closer to the original problem, we can reorder the periods in M such that for

any i ∈ N, if qir = qit = 1, then qis = 1 for all r < s < t.
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N,L M Q

shortest path N = L 1 any

airport/irrigation N = L |N | D|N |

mcst/mca N = L |N | D|N |

assignment
N = L

N = N1 ∪N2
2 Qit =

{
1 if i ∈ N t

0 otherwise

strict m-sided assign.
N = L

N = ∪mk=1N
k

m Qit =

{
0 if i ∈ N t

1 otherwise

gen. m-sided assign.
N = L

N = ∪mk=1N
k

m Qit =

{
1 if i ∈ N t

0 otherwise

Market/multiple goods
L : units

N = N1 ∪N2
2 Qit =

{
1 if φ(i) ∈ N t

0 otherwise

minimum coloring N = L
maximal

cliques
Qit =

{
1 if i in max. clique

0 otherwise

4.5 Relations among the problems

We have been able to express many problems as MSP problems, with the table below showing

the structure of such representations, with a description of how to set up the set of nodes and

periods, as well as the demand. The cost matrix, in all cases, is built from the problem at hand.

While the shortest path and minimum cost spanning problems come with a cost matrix that we can

directly use, other problems require a careful construction, described in the previous subsections.

The table allows to find links among the different problems. Some are known, for example that

airport and irrigation problems are subset of minimum cost spanning tree problems. Among the

new relationships that we can see is the fact that mcst problems are special cases of generalized

m-sided assignment problems, such that
∣∣Nk

∣∣ = 1 for all k ∈ {1, ...,m} . This allows us to conclude

that such cases yield a non-empty core. For strict m-sided assignment problems, the result is also

true, although the result is less direct: Build an MSP as for a generalized assignment problem

(demand and cost structure). As long as c satisfies the triangle inequality, it is optimal to connect

all agents together in a tree, and the grand coalition has the same value in the generalized and strict

versions of the problem. The subcoalitions will generate more values in the generalized version than

in the strict version, but any core allocation (in values) for the generalized assignment problem is

also a core allocation for the strict assignment problem. We state these results properly.

6The result can be obtained without MSP representation, by identifying a clique S with the largest size, and

building a graph that contains only edges between members of S. This graph is obviously perfect, and thus it has

core allocations. Since the grand coalition has the same cost of |S| as in the original graph, with all other coalitions

having no larger cost than in the original graph, these core allocations are also in the core of the original game.

We present it with the MSP representation to show how it can be used in various contexts to extend stability

results.
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Theorem 8 Let (N,w) be a generalized or strict m-sided problem, with N = ∪mk=1N
k. If

∣∣Nk
∣∣ = 1

for all k ∈ {1, ...,m.} the corresponding game has a non-empty core.

We can also observe a link between generalized assignment problems and minimum coloring

problems. To see this, consider the Böhm-Bawerk horse trading game which is a 2-sided assignment

problem in which all buyers are symmetrical, and so are all sellers. We can normalize the value

created by any pair to 1. We can model that as a minimum coloring problem, with the groups of

buyers and sellers being the only two maximal cliques. The graph is obviously perfect, and the

game is totally balanced. We can extend to generalized m-sided games, with all agents on a given

side being symmetric, any coalition S of agents in different groups creating a value of |S|−1. That

satisfies the Stuart condition, and the graph is perfect.

In fact, we can view Böhm-Bawerk’s game as the intersection of the set of generalized m-sided

assignment games and of the set of minimum coloring games. This shows the trade-off we are

facing when extending 2-sided assignment games. Minimum coloring problems give up the neat

structure of agents as belonging to sides, allowing for more complex relationships between agents.

However we constrain the gains obtained by a match to be symmetric. The generalized m-sided

problems instead allow for different matches to create distinct values, but keep the partition of

agents in sides. As we have seen, neither of these restrictions are sufficient by itself to guarantee a

non-empty core. Böhm-Bawerk’s markets, which have both restrictions, are however always stable,

even when extended to m sides (Tejada, 2013).
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A Proofs

A.1 Lemma 7

Take a generalized m-sided assignment problem with the property that for any coalition S with at

most one agent from each group, wS is equal to the sum of the |S| − 1 pairs in S that create the

most value and moreover these |S| − 1 pairs create a connected component. We first show that for

such generalized m-sided assignment problems and all 2-sided assignment problems the MSP we

constructed based on it is such that
∑

e∈E z
∗
e = |N | for any optimal graph z∗.

Recall our construction of an MSP for 2-sided and generalized m-sided assignment problems is

as follows: Given an assignment problem ((N1, ..., Nm), w), let N =
⋃
tN

t, L = N , |M | = m and

Q such that qit = 1 if i ∈ N t and qit = 0 otherwise. Let vmax = maxS∈Am wS . Let ci0 = 2vmax,

cij = cji = 2vmax − wij if i ∈ N t and j ∈ N s, with t 6= s and cij = cji = 2vmax otherwise.

Lemma A.1 Let ((N1, ..., N t), w) be a 2-sided assignment problem or a generalized m-sided as-

signment problem such that for any coalition S with at most one agent from each group, wS is equal

to the sum of the |S| − 1 pairs in S that create the most value and moreover these |S| − 1 pairs

create a connected component. Then, in the MSP as defined above, for any optimal network z∗ we

have Σe∈Ez
∗
e = |N |, i.e. the total capacity is equal to the amount of agents.

Proof. It is easy to see that our cost matrix satisfies the triangle inequality: all edges have a cost

of at least vmax, and thus a path of 2 edges costs at least 2vmax. This means that the cost of a path

of 2 edges is at least as large as the cost of a direct connection, which has a cost of at most 2vmax.
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Furthermore, since every i ∈ N has a demand of 1 in one of the periods, the sum of capacities

on the outgoing edges from i must be at least 1. Hence the total sum of capacities on any feasible

network must be at least |N |. We can furthermore assume that the capacities on all edges are fully

used, as otherwise the network would not be optimal.

Now consider a network z with
∑

e∈E ze > |N |. We will show that such a network is not strictly

optimal. As
∑

e∈E ze > |N |, there must exist at least one node j with outgoing capacity of more

than 1 in z. As j only needs a total capacity of 1 for its own demand, this means we can find a

set of agents S that sends (part of) its flow via j in z, such that redirecting this flow would allow

us to reduce the amount of capacity on the outgoing edges from j. More specifically, we can then

find such an S consisting of agents from different sides, and an amount α, such that reducing the

amount that this coalition S sends via j by α would render an amount of α of the outgoing capacity

from j unused (as well as an amount of α on all of the ingoing edges from S into j over which

this flow is sent). For sake of simplicity we will moreover assume that the total amount of unused

capacity is on one outgoing edge (j, l) only. As we can always pick α small enough for this to be

true, this assumption is w.l.g.

We will now compare the cost of z with the cost of an alternative network where the flow of

S is redirected and the capacities on the corresponding edges are reduced/increased accordingly.

We abuse notation slightly by writing wij even when nodes i and j may be from the same side or

one of them may be the source node, with the understanding that in these cases the cost of the

corresponding edge is 2vmax, i.e. equal to assuming wij = 0.

Let S̄ = {i ∈ S|zij > 0} denote the set of agents in S that send flow directly to j in z. I.e.

when redirecting the flow of S, the edges which capacities we will be able to reduce aside from (j, l)

are all (i, j) for i ∈ S̄. First, suppose there is an i ∈ S̄ that is from the same side as j. As by

construction it then holds that cij = 2vmax = ci0, setting zij = 0 and adding a capacity of zij to

zi0 would give a feasible network with exactly the same cost. Hence, we can assume all i ∈ S̄ to be

from a different side than j and |S̄| ≤ m− 1.

We now redirect all flow from S over j to edges directly to the source, i.e. we reduce the capacity

on all (i, j) for i ∈ S̄ and (j, l) by α and increase the capacity on (i, 0) for all i ∈ S̄ with α. This

gives a change in cost of:

α(|S̄|2vmax − (|S̄|2vmax − Σi∈S̄wij)− (2vmax − wjl)) =

α(Σi∈S̄wij + wjl − 2vmax) ≤ 0

Where the inequality follows from the fact that wjl ≤ vmax and as vmax = maxS∈Am wS and S̄

contains at most one agent from each side, Σi∈S̄wij ≤ vmax as well.

We are now ready to prove Lemma 7.
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Proof. As c satisfies the triangle inequality, we have a limited number of paths to consider. Every

singleton {i} connects through the path ((i, 0)) at a cost of 2vmax, and thus C({i}) = 2vmax.

Now consider pairs {i, j} . If they belong to the same group N1 or N2, then the best they can

do is both connect directly to the source, and C({i, j}) = 4vmax and V ({i, j})) = 0. If they don’t

belong to the same group, then they can share (part of) the same path. Since they are completely

symmetric, we connect j to i and i to the source, at a cost of 4vmax−vij . Thus, C({i, j}) = 4vmax−vij
and V ({i, j})) = 4vmax − (4vmax − vij) = vij .

Now take an |S| > 2. From Lemma A.1 we know that in an optimal network, the total amount

of capacity for each agent on its outgoing edges must be exactly 1 and the total capacity of the

network must thus be exactly |N |. This implies that for every agent i his demand is sent either

directly to the source or via an agent j from the other side, with whom he shares the capacity on

(j, 0), or a mix of these two. We can then for any optimal network z∗ find a collection of balancing

weights λS over {S |S = {i, j}, i ∈ N1, j ∈ N2 or |S| = 1} and a set of networks zS such that

z∗ =
∑
λSz

S . Particularly, z∗ will be the weighted sum of the networks zS where for any S such

that |S| = 1, zSi0 = 1 and zSe = 0 otherwise and for S = {i, j} either zSji = zSi0 = 1 or zSij = zSj0 = 1

and zSe = 0 otherwise.

Since assignment games are known to be balanced, we know that V A(N) ≥
∑

(i,j)∈a λ{i,j}vij

for all sets of balancing weights λ. As we have shown that V ({i, j}) = V A({i, j}) = vij for all pairs

and that in our MSP an optimal network must correspond to the λ-weighted sum over networks

for pairs and singletons, it then follows that our MSP is indeed equal to the original assignment

problem.

A.2 Theorem 6

Before we show that these MSP problems indeed correspond to the strict m-sided assignment

problem it is based on, we first show specifically for S ∈ Am that V (S) = V S(S).

Lemma A.2 Let ((N1, N2..., Nm), w) be a strict m-sided assignment problem satisfying the Stuart

condition and set dij = 0 for all dij 6∈ D. Set N =
⋃
tN

t, L = N , |M | = m and for i ∈ N s,

qit = 1 for all t 6= s and qis = 0. Let vmax = maxS∈Am wS. Let ci0 = (m − 1)vmax for all i ∈ N ,

cij = cji = vmax − dij if i ∈ N t and j ∈ N s with t 6= s and let cij = vmax otherwise.

Then V (S) = V S(S) for all S ∈ Am.

Proof. First, note that c satisfies the triangle inequality and we can therefore ignore any edges

to nodes outside of S. For S it holds that
∑

i∈S qit = m − 1 for any t ∈ M , i.e. the agents

in S could share a total capacity of m − 1 on edges to the source. Building a network with

capacity 1 on either (i, j) or (j, i) for each dij ∈ DS , where DS is the restriction of D to S, and a

total capacity of m − 1 on the edges between the agents in S and the source, has a total cost of

(m− 1)(m− 1)vmax + (m− 1)vmax −
∑

dij∈DS
dij . As, by assumption, for all other pairs i, j ∈ S,
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dij = 0 it is easy to see that it is not possible to build a cheaper network for S. It remains to show

that there exists such a network that is indeed feasible for S.

The edges (i, j) for dij ∈ DS form a connected component and more specifically a tree. Pick an

i ∈ S which is not a leaf node in this tree. For any j ∈ S that is a neighbor of i in the tree, we set

zji = 1 and zij = 0. Next, for any node k ∈ S that is a neighbor of j in the tree we set zkj = 1

and zjk = 0. We repeat this process until we have covered all k ∈ S . We now have a directed tree

consisting of edges corresponding to the values in DS , with i being the root node of the tree.

What remains is to pick (m− 1) edges connecting S to the source. We do this as follows: For

any i ∈ S, set zi0 = |{j ∈ S| zji = 1}|, i.e. the capacity on the edge from i to the source is equal

to the amount of ingoing edges for i with a capacity of 1. Since |DS | = m − 1, the total capacity

on edges between S and the source is now m− 1. We will show that this network is indeed feasible

for S.

First consider a node k which has x > 0 ingoing edges (j, k) with zjk = 1, and all of these

neighbor nodes j are leaf nodes. Each of these leaf nodes, by construction, has exactly 1 outgoing

edge with capacity 1 and thus must send all of his demand over this edge (j, k). As all j ∈ S

are from different sides, each of these agents has his demand of 0 in a different period. Hence, at

node k we now have an accumulated demand of x + 1 (k’s neighbors plus k’s own demand) in all

but x + 1 of the periods and an accumulated demand of x in the other periods. By construction,

zk0 = x and thus after using this capacity fully, we are left with a demand of 1 in each of the

periods that corresponds to neither k’s side, nor the side of any of k’s leaf node neighbors. This

remaining demand we send over k’s outgoing edge to his neighbor in the direction of the central

node i.

Repeating this at every node, we can thus see that at each node the demand that is left after

sending the maximum possible to the source, is a vector consisting of 1’s and 0’s and after each

node that is not a leaf node, we have at least one fewer period for which the remainder demand

is 1. It then follows that if i has x′ ingoing edges, the demand that is sent to i from his direct

neighbors adds up to x′ − 1 for all periods except for the period in which i’s demand is 0, where

it adds up to x′. The total accumulated demand at i is thus equal to x′ for every period. As by

construction zi0 = x′, the network is thus feasible.

We are now ready to prove Theorem 6.

Proof. As each agent has a demand of 0 in one of the periods and 1 in all other periods a coalition

can only reduce the total capacity on edges towards the source, compared to acting individually,

if it contains at least 1 agent from each side. It thus follows that for any S such that S ∩N t = ∅
for some t, V (S) = V S(S) = 0. For all S ∈ Am we know from Lemma A.2 that V (S) = V S(S). It

thus remains to show that this also holds for coalitions |S| > m with at least one agent from each

side.
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As c satisfies the triangle inequality, it is always cheaper to connect directly than via an indirect

path, unless this indirect connection allows for the sharing of capacity. Hence, if zij > 0 for some

edge (i, j), it must be the case that i and j are part of some m-tuple S ∈ Am in order to benefit

from this detour. We can thus conclude that any optimal network for N must be a weighted sum

of optimal subnetworks for S ∈ Am and singletons connecting directly to the source by themselves.

Next, we can assume for any (i, j) such that zij > 0 that dij ∈ D. To see this, note that for any

i and any m-tuple S 3 i there is a j ∈ S\{i} such that dij ∈ DS and cij ≤ cik for any dik 6∈ DS .

Recall that D contains dij for (i, j) ∈ N t × N s for exactly m − 1 pairs N t × N s. This implies

that we can see our problem of finding an optimal network as a problem of finding the optimal

way to connect agents in N t with agents in N s for any N t × N s ⊂ D, with the small difference

that if the smallest side consists of x agents, we connect exactly x of the pairs in N t ×N s even if

both |N t| > x and |N s| > x. Thus, our problem essentially corresponds to solving m − 1 2-sided

assignment problems. As we know that under our MSP construction for 2-sided assignment games

it was indeed optimal to connect the agents in pairs, rather than building a graph that was a

weighted average, it is easy to to see that also in our MSP problem here, it is not strictly optimal

to build a network that is a weighted average. Hence we may assume that in the optimal network

for our MSP, each agent i has at most one edge (i, j) for j 6= 0 such that zij = 1 and for all other

edges from i to any k ∈ N\{j}, zik = 0.

We can thus conclude that there is an optimal graph which corresponds to x disjoint subgraphs

each corresponding to an S ∈ Am and possibly some agents connecting individually to the source.

Hence our MSP is equal to the original strict assignment problem.

A.3 Theorem 7

Proof. Let (N,M,Q, c) be an MSP problem as defined in Section 4.2.2 for a generalized m-

sided assignment problem. We will show that it corresponds to the original generalized m-sided

assignment problem
((
N1, ..., Nm

)
, w
)
.

It follows from Lemma A.1 that the flow of an agent i never goes via an agent from the same

side as i. In other words, it either goes directly to the source, or via a path consisting of some

agents from a different side from i (which themselves are not from the same side either). Moreover,

in the second case i shares the capacity on the edges he uses with the agents he sends his flow via.

This means that when examining if an MSP problem indeed corresponds to a generalized m-sided

assignment problem we only need to consider a limited number of possible networks.

From this it follows that for any optimal network z∗ we can find a collection of balancing weights

λS over {S |S ∈ A2,m or |S| = 1} such that z∗ is equal to the λ-weighted sum of networks zS for

S ∈ A2,m and singletons. It turns out that for m-sided assignment problems that satisfy the linear

Stuart condition, we can make additional assumptions on the networks zS for S ∈ A2,m.
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Due to Lemma A.1 we can assume for the singletons that the network z{i} has capacity of

1 on (i, 0) and 0 otherwise. By the same result, combined with the symmetry of c and the fact

that ci0 = 2vmax for all i ∈ N , we may assume that z{i,j}, for i ∈ N s, j ∈ N t, t > s, has a

capacity of 1 on (j, i) and (i, 0) and 0 otherwise. In general, for any S ∈ A2,m and i, j, k ∈ S

with i ∈ N r, j ∈ N s, k ∈ N t, t > s > r we can assume zS to have a capacity of 0 on (k, i), since

wki ≤ wkj , wji and thus cki ≥ ckj , cji. As moreover ci0 ≥ cij for all i ∈ N and j 6= i we may in

general assume that for any coalition the flow goes from the agent belonging to the side with the

highest number in our order to the agent from the side with the lowest number, via all other agents

in the coalition in order of decreasing side number. It is easy to see from this that V (S) = V G(S)

for all {S |S ∈ A2,m or |S| = 1}.
Now let z be a network corresponding to a balanced collection of weights on {S|S ∈ A2,m or |S| =

1} such that there is a 0 < λS < 1. We will show that this network cannot be strictly cheaper than

one which corresponds to a balanced collection of weights on {S |S ∈ A2,m or |S| = 1} in which all

weights are either 0 or 1, i.e. one that corresponds to a feasible assignment.

Note that we can assume there to be an edge e such that 0 < ze < 1, since if ze ∈ {0, 1} for

all edges e ∈ E, we can always find a balanced collection of weights on {S |S ∈ A2,m or |S| = 1}
in which all weights are either 0 or 1 and we would be done. We will show that, for any feasible

network z with some 0 < ze < 1, we can construct a weakly cheaper network with at least one

fewer edge e for which 0 < ze < 1.

Since we may assume that all i ∈ N1 send their flow directly to the source, any edge e such

that 0 < ze < 1 is either between two agents from different sides, or between j ∈ N\N1 and the

source. By Lemma A.1 we furthermore know that we can assume
∑

i∈N0
zji = 1 for all i ∈ N .

Next, since for S ∈ A2,m we assumed that the path used is a line, going from the agent in the

side with the highest number towards the agent in the side with the lowest number, it follows that

for every {S |S ∈ A2,m or |S| = 1} and for every i ∈ S, at most one of the ingoing edges for i has

a capacity of 1 in zS , and all others have a capacity of 0. As λ is a balanced map, it then follows

that
∑

j∈N zji ≤ 1 for all i ∈ N and moreover that for any side N t and any edge (j, i), the sum of

the flows from agents in N t going via (j, i) is at most zji.

We now construct two graphs, z1 and z2, such that z is the weighted average of z1 and z2.

Let (j1, i1) be the edge with the smallest non-zero capacity in z and let (j1, i2) be a different edge

such that 0 < zj1i2 < 1. We set z′j1i1 = 0, z′j1i2 = zj1i2 + zj1i1 and z′ = z otherwise. Next we

check if
∑

j∈N z
′
ji2
≤ 1, i.e. if i2 does not have more capacity than 1 on his ingoing edges after this

change. If
∑

j∈N z
′
ji2
≤ 1 holds or if i2 is the source node, we are done. Otherwise, pick a new edge

(j2, i2) 6= (j1, i2) such that 0 < zj2i2 < 1. Note that such an edge must exist, since
∑

j∈N zji ≤ 1

for all i ∈ N . We repeat the same process for j2, moving again a capacity of zj1i1 . I.e. we pick an

edge (j2, i3) 6= (j2, i2) such that 0 < zj2i3 < 1 and set z′′j2i2 = zj2i2 − zj1i1 , z′′j2i3 = zj2i3 + zj1i1 and

z′′ = z′ otherwise.
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We repeat this process until we find a cycle or chain such that moving a capacity of zj1i1 in

either direction gives a new network z̃ in which
∑

j∈N z̃ji ≤ 1 for all i ∈ N . Note that in the case

of a chain, and if
∑

j∈N zji1 > 1 − zj1i1 , we will have to repeat the same process in the opposite

direction, starting with adding zj1i1 to edge (j1, i1) and subtracting it from edge (j1, i2), in order to

ensure we have a chain such that moving a capacity of zj1i1 in both directions will yield a network

in which
∑

j∈N z̃ji ≤ 1 for all i ∈ N . Since we have a finite amount of edges and the condition∑
j∈N zji ≤ 1 is satisfied for z, it is always possible to find such a chain or cycle.

Now let z1 be the network created when we move a capacity of zj1i1 in the initial direction, i.e.

z1
j1i1

= 0. In the other direction we might be able to move more. Let zj′i′ be the largest amount of

capacity we can move in this direction and denote z2 the resulting network (thus z2
j′i′ = 0). Note

that both z1 and z2 are still feasible networks as by construction
∑

j∈N z
x
ji ≤ 1 for both z1 and z2

and at every step we keep
∑

i∈N z
′
ji = 1 for all j ∈ N . Moreover, as we assumed that the flow of

every coalition goes in the same direction, we can be sure that both z1 and z2 are still such that for

any side N t and any edge (j, i), the sum of the flows from agents in N t going via (j, i) is at most 1.

We show that z =
zj′i′

zj1i1+zj′i′
z1 +

zj1i1
zj1i1+zj′i′

z2. Note that for any edge kl that is not part of the

cycle/chain zkl = z1
kl = z2

kl. Now consider an edge kl such that z2
kl = zkl− zj′i′ < zkl < zkl + zj1i1 =

z1
kl. We then have that:

zj′i′

zj1i1 + zj′i′
z1
kl +

zj1i1
zj1i1 + zj′i′

z2
kl =

zj′i′

zj1i1 + zj′i′
(zkl + zj1i1) +

zj1i1
zj1i1 + zj′i′

(zkl − zj′i′) =

zkl +
zj′i′

zj1i1 + zj′i′
zj1i1 −

zj1i1
zj1i1 + zj′i′

zj′i′ = zkl

It is easy to see that the same holds for any edge kl such that z2
kl = zkl+zj′i′ > zkl > zkl−zj1i1 =

z1
kl. Hence, z is indeed a weighted average of z1 and z2. By definition of a weighted average, either

z1 or z2 must be weakly cheaper than z. Hence we have constructed a feasible network that is

weakly cheaper than z and which has at least one fewer edge e such that 0 < ze < 1. We can thus

conclude that a network corresponding to a balanced collection of weights such that all weights are

either 0 or 1 is weakly better than one for which this is not the case.

As V (S) = V G(S) for all {S |S ∈ A2,3 or |S| = 1}, it then follows that V (S) = V G(S) for all

S ⊆ N .

A.4 Lemma 9

Proof. First, notice that by definition of c, we have that for any network z,
∑

e∈E zece =
∑

i∈N zi0,

i.e. the cost is the sum of the capacities to the source.
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Fix S ⊆ N . Let W̄+(G) =
{
T ∈ W̄(G) | |T | = ω(G)

}
and let GS+ be such that {i, j} ∈ GS+

if and only if i, j ∈ R ∈ W̄+(G [S]). For any G′ ⊂ G, we construct QG′ from QG as follows: for all

t = 1, ...,
∣∣W̄(G)

∣∣, if there exists a T ∈ W̄(G′) such that T ⊆ Wt, we set qG
′

it = qGit for all i ∈ T .

Otherwise qG
′

it = 0.

We consider the problem (N,M,QGS+
, c) and in particular C(S, QGS+

). Take anyR ∈ W̄+(G [S]).

Then, {i, j} ∈ GS+ for all i, j ∈ R and by construction of QGS+
, there exists t ∈ M such

that qG
S+

it = 1 for all i ∈ R. To accommodate this demand in period t, we will need (at least)

|R| = ω(G [S]) units of capacity to the source, i.e. we need that
∑

i∈N zi0 ≥ |R| = ω(G [S]). Thus,

we have C(S,QGS+
) ≥ ω(G [S]) = χ(G [S]), where the last equality comes from G being a perfect

graph.

Next, observe that
(
QG
)S ≥ QG[S] ≥ QGS+

. Thus, it follows that C(S, QG) ≥ C(S,QGS+
).

Combining with the previous result, we obtain C(S, QG) ≥ ω(G [S]) = χ(G [S]).

Let
{
S1, ..., Sω(G[S])

}
be a partition of S that solves the minimum coloring problem for S. By

definition of QG, if i, j ∈ Sr for some r = 1, ..., ω(G [S]), then {i, j} /∈ G and there is no t ∈M such

that qGit = qGjt = 1. Thus, consider the network zS such that for all r, we randomly pick an agent

ir in Sr, and build a capacity of 1 from ir to the source as well as from all other members of Sr

to ir. This is a feasible network, and it is obvious that
∑

e∈E z
S
e ce =

∑
i∈N z

S
i0 = ω(G [S]). Thus,

C(S,QG) ≤ ω(G [S]).

Combining, we obtain that C(S,QG) = ω(G [S]) = CM (S,G) for all S ⊆ N.

A.5 Lemma 10

Proof. Let (N,M,QG, c) be as above and consider C(N,QG). Since G is a weakly perfect graph,

χ(G) = ω(G), and by the same logic as in the previous lemma, C(N,QG) = ω(G) = CM (N,G).

Fix S ⊂ N and let
{
S1, ..., Sχ(G[S])

}
be a partition of S that solves the minimum coloring

problem for S. By definition of QG, if i, j ∈ Sr for some r = 1, ..., χ(G [S]), then {i, j} /∈ G and

there is no t ∈ M such that qGit = qGjt = 1. Thus, we can build a path of capacity 1 connecting all

members of Sr to each other, with one agent connected to the source. By the definition of c, the

cost of such a path is 1. Thus, C(S,QG) ≤ χ(G [S]) = CM (S,G).

Since (N,M,QG, c) is an MSP problem, Core(C) is non-empty. Since C(S,QG) ≤ CM (S,G)

for all S ⊂ N and C(N,QG) = CM (N,G), Core(C) ⊆ Core(CM ). Thus, Core(CM ) is non-empty.
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