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Abstract

Many econometrics textbooks imply that under mean independence of the regressors and the

error term, the OLS parameters have a causal interpretation. We show that even when this

assumption is satisfied, OLS might identify a pseudo-parameter that does not have a causal

interpretation. Even assuming that the linear model is “structural” creates some ambiguity in

what the regression error represents and whether the OLS estimand is causal. This issue applies

equally to linear IV and panel data models. To give these estimands a causal interpretation, one

needs to impose assumptions on a “causal” model, e.g., using the potential outcome framework.

This highlights that causal inference requires causal, and not just stochastic, assumptions.
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1 Introduction

The zero conditional mean assumption imposing that the regression error is mean independent of

the covariates and has mean zero is a building block of linear regression models. Under this as-

sumption, many econometrics textbooks give the model coefficients a causal interpretation (Angrist

and Pischke, 2017). For example, the econometrics textbook most used in economics, Wooldridge

(2019), discusses the example of yield as outcome and fertilizer as regressor as follows “if fertilizer

amounts are chosen independently of other features of the plots, then [zero conditional mean error]

will hold: the average land quality will not depend on the amount of fertilizer. However, if more

fertilizer is put on the higher-quality plots of land, then the expected value of u [the error] changes

with the level of fertilizer, and [zero conditional mean error] fails.”.1 As we will show, the first

sentence in this quote is true, but the second not necessarily. Notice that a similar approach is

used in other textbooks, e.g., Cameron and Trivedi (2005), Hayashi (2000), and Stock and Watson

(2019).

Although the literature has recognized the advantages of the potential outcome framework over

the traditional linear modeling approach (see the widely cited article by Imbens and Wooldridge,

2009), we clarify the source of ambiguity that may stem from using a non causal model. In

particular, this note highlights that there are cases where the zero conditional mean assumption

holds, but the parameter estimated via OLS suffers from omitted variable bias and has no causal

interpretation. To illustrate this, note that any regression with a fully saturated model would always

be causal if the zero conditional mean assumption would be sufficient for the causal interpretation

of the parameters. Consider the following two examples:

• wagei = β0 + β1collegei + ui where collegei is a binary indicator. In this model, it is always

true that E[ui|collegei] = 0, but no economist would give β1 a causal interpretation.

• wagei = β0 +β1collegei+β2good healthi+β3collegei× good healthi+ui where good healthi

is a binary indicator. E[ui|collegei, good healthi] = 0 always holds because the model is fully

saturated. However, no economist would give β1 a causal interpretation.

In our opinion, the ambiguity occurs because the difference between unobserved variables in

a causal model and the statistical error in the statistical model is often not made explicit. Many

1According to Opensyllabus.org accessed on March 18th 2022.
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books use the same error term to discuss both statistical properties of OLS as an estimator and

omitted variable bias. This might induce in the reader the false idea that zero conditional mean

error implies no confounding. However, the reverse is true, that is, no confounding implies zero

conditional mean error. While the lessons learned in both estimation and identification are still

valid, we think that the conceptual ambiguity is worth clarifying and to be kept in mind when

teaching econometrics.

The goal of this note is to exactly show where and why the ambiguity arises and to propose

alternative and less ambiguous ways of presenting the assumptions needed for a causal interpretation

of the linear model coefficients. We also show how linear instrumental variable (IV) and panel data

models are affected by the same issue. In the Online Appendix we also report several numerical

examples to further illustrate our results.

2 Why the zero conditional mean assumption is not sufficient

Consider the simple regression

Yi = γ + λDi + εi (1)

and assume zero conditional mean of the error term, i.e., E[εi|Di] = 0. From a purely statistical

point of view this is equivalent to assuming that the conditional expectation of Y given D is linear,

i.e. E[Yi|Di] = γ + λDi. We now show that this is not sufficient for a causal interpretation of λ,

which can be arbitrarily different from the causal effect of D on Y . To this end, let Yi(d) be the

potential outcome of individual i if Di = d and assume that

Yi(d) = α+ τd+ βUi.

This implies that the causal effect of a one-unit increase in D on Y is constant and equal to τ , i.e.

Yi(d+ 1)− Yi(d) = τ .

For example, Yi(d) could represent the wage individual i would receive if she had completed d

years of education and Ui is unobserved ability. Assume that E[Ui|Di] = µ+ δDi such that we can

write Ui = E[Ui|Di] + νi = µ+ δDi + νi with E[νi|Di] = 0. Notice that this assumption is always

satisfied if D is binary or if U and D are drawn from a bivariate normal distribution. Under the
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stable unit treatment value assumption (SUTVA), i.e. Yi = Yi(d) if Di = d, we have:

Yi = Y (Di) = α+ τDi + β[µ+ δDi + νi],

= α+ βµ︸ ︷︷ ︸
γ

+ (τ + βδ)︸ ︷︷ ︸
λ

Di + βνi︸︷︷︸
εi

.

Therefore, the conditional expectation of the observed outcome given D is linear, E[Yi|Di] =

γ+λDi, and the zero conditional mean assumption, E[εi|Di] = βE[νi|Di] = 0, is satisfied. However,

although λ = τ + βδ represents how a change in D changes E[Y |D], it can be arbitrarily different

from the causal effect of D on Y , which is given by τ . Notice that βδ is the usual omitted variable

bias that is well known and discussed in any econometric textbook. Most books imply that if D

is uncorrelated with ε there is no omitted variable bias. This is contradicted by our derivation

showing that E[εi|Di] = 0, and as a consequence Cov[εi, Di] = 0, can hold in the presence of

omitted variable bias.

We conjecture that this tension is due to the notion that any omitted variable would be included

in the error term and that this would violate the zero conditional mean assumption (see the quote

in the introduction). However, it is often not clear which error term is referred to. There is the

statistical error term ε and the omitted variable in the causal model U , but they are not necessarily

the same, i.e.

εi ≡ Yi − E[Yi|Di] = βνi 6= βUi

in our example. This ambiguity disappears only in the absence of the omitted variable U , i.e.,

the statistical error is the only unobserved part of the potential outcome. In that case, assuming

zero conditional mean error suffices for causal interpretation.

Notice that E[εi|Di] = 0 does not imply that the conditional mean independence assumption on

the potential outcome holds, i.e E[Y (d)|Di = d] = E[Y (d)|Di = d′], d 6= d′. Indeed, E[Y (d)|Di =

d] − E[Y (d)|Di = d′] = βδ(d − d′). Therefore this assumption on the potential outcomes is only

satisfied if there is no omitted variable bias, so that βδ = 0. However, it would be satisfied if we

put a zero conditional mean assumption on the unobservable part of the potential outcome, i.e.

E[βUi|Di] = 0. This shows that assuming zero conditional mean of the unobserved part in the

potential outcome is sufficient for a causal interpretation.
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To avoid such confusion, it is important to emphasize that exogeneity cannot be used in a

mere statistical model but needs to refer to a causal model instead. In Section 4 we propose some

alternative formulation of the assumption needed that do not necessarily require introducing the

potential outcome framework.

Adding control variables does not change our results as we show in the Appendix as well as in

the simulations we run in the Online Appendix.

3 Implications for linear IV and panel data models

The consequences for linear IV models of our results are twofold. First, the way standard IV is

presented in most books and scientific articles is as a solution to the so called “endogeneity” issue,

i.e., correlation between (some of) the regressor(s) - D in our example of equation (1), and the

regression error, ε in equation (1). As our example demonstrates, even if D is “exogenous”, i.e.,

uncorrelated with ε, we cannot exclude the presence of omitted variables that make λ a pseudo-

parameter that does not have a causal interpretation. Second, consider again the regression model

Yi = γ + λDi + εi,

even if D is endogenous i.e., Cov[D, ε] 6= 0, estimating λ by 2SLS using an instrument Z

that is uncorrelated with ε does not guarantee a causal interpretation. To see this, assume that

Yi(d) = α+ τd+ βUi, Di = πZi + ηi, and Ui = µ+ δZi + ξi with E[ηi|Zi] = E[ξi|Zi] = 0 such that

E[Di|Zi] = πZi, and E[Ui|Zi] = µ + δZi. Following a similar derivation as in Section 2, we can

write the observed outcome as

Yi = Y (Di) = α+ τ(πZi + ηi) + β(µ+ δZi + ξi),

= α+ βµ︸ ︷︷ ︸
γ

+

(
τ +

βδ

π

)
︸ ︷︷ ︸

λ

πZi + τηi + βξi︸ ︷︷ ︸
εi

.

4



This implies that

E[Yi|Zi] = α+ βµ︸ ︷︷ ︸
γ

+

(
τ +

βδ

π

)
︸ ︷︷ ︸

λ

πZi.

Therefore, E[εi|Zi] = 0 is satisfied, but λ, the coefficient of a 2SLS regression of Y on D using Z

as an instrument, does not have a causal interpretation unless βδ = 0. Hahn and Ridder (2011)

provide an example of a data generating process (DGP) involving a non-linear (and non-separable)

outcome equation, whereby 2SLS identifies a pseudo-parameter that has no causal interpretation.

Our derivation shows that the DGP does not need to feature a non-linearity or non-additivity for

the 2SLS estimand to lack a causal interpretation despite E[εi|Zi] = 0. See the Online Appendix

for a numerical illustration of these results.

In panel data models it is often implied that in the regression

Yit = γi + λDit + εit, (2)

assuming E[εit|Dit, γi] = 0 is sufficient to give λ a causal interpretation.

Without loss of generality, assume that we only have two periods (t = 1, 2) and that

Yit(d) = αi + τd+ βUit.

Letting ∆ be the first difference operator such that ∆Wi = Wi2−Wi1, we have that first difference

in the potential outcome for a given value of ∆Di, d
′, is given by

∆Yi(d
′) = τd′ + β∆Ui.

Assume that E[∆Ui|∆Di] = µ + δ∆Di. Thus, following a similar derivation as in Section 2, we

have that

E[∆Yi|∆Di] = βµ︸︷︷︸
γ

+ (τ + βδ)︸ ︷︷ ︸
λ

∆Di.

This shows that E[εit|Dit, γi] = 0 is satisfied but λ does not have a causal interpretation unless
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βδ = 0.

4 Alternatives to the zero conditional mean assumption

Many econometrics textbooks, especially at the undergraduate level directly define εi ≡ Yi −

E[Yi|Di]. Other books like Wooldridge (2010) define the regression error as the unobserved part

of the outcome, βUi in our example, but implicitly rely on the assumption that εi = βUi, which

we have proven not to be always satisfied. This shows that it is not enough to assume that the

linear regression model is structural to solve the potential ambiguity. Consider again the potential

outcome of Section 2: Yi(d) = α+ τd+ βUi. As we showed, the observed outcome can be written

in two alternative ways: either as Yi = α + τDi + βUi, or as Yi = γ + λDi + εi. Both equations

represent the same structural model. Thus, when imposing a conditional zero mean assumption

one needs to be very careful in explaining what is meant by the unobservable part. In fact, both

βUi and εi are possible structural errors depending on how we write the model.

Therefore, if one wants to avoid introducing a causal framework, such as the potential outcomes,

it has to be clear that the structural error is meant to include all unobserved variables including

omitted variables that might affect both D and Y . Our derivation also shows the importance of

invoking SUTVA. If this assumption fails, even if we carefully distinguish between statistical and

structural errors, we would not be able to interpret the model coefficients as causal. We suggest

introducing this assumption early on in the definition of the problem.

Another possibility is to make clear that a marginal effect is not necessarily causal and that for

causal inference one needs to have a causal model, and move the discussion around the identification

of causal effects to where causal models are actually introduced.

5 Conclusions

We have shown that having exogenous (mean independent) regressors in a linear regression model

it is not sufficient to avoid omitted variable bias. Although OLS will consistently estimate the

true regression coefficient, the latter does not in general have a causal interpretation. This has

strong implications for the way we teach econometrics and extends also to linear IV and panel

data models, where it is even more common to rely on a lack of correlation or mean independence
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between the instrument/regressors and the error term of the observed outcome equation, to make

causal claims. Ultimately, our results demonstrate that causal inference requires causal rather than

merely stochastic assumptions.
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Appendix: Adding covariates

Consider the regression
Yi = γ + λDi + ϕXi + εi,

and assume E[εi|Di, Xi] = 0.
Assume further that,

Yi(d) = α+ τd+ φXi + βUi,

E[Ui|Di, Xi] = µ+ δDi + πXi.

Using a similar derivation as above, we have

E[Yi|Di, Xi] = α+ βµ︸ ︷︷ ︸
γ

+ (τ + β)δ︸ ︷︷ ︸
λ

Di + (φ+ βπ)︸ ︷︷ ︸
ϕ

Xi

Once again, despite the fact that E[εi|Di, Xi] = 0 is satisfied, λ does not have a causal inter-
pretation unless βδ = 0.
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1 Introduction

In this document we study the behavior of the least squares (either ordinary or two-stage) estimator

under the data generating process (DGP) described in Section 2 of the main text. In addition, we

investigate the case where control variables are included (Appendix to the main text). To clarify

the role played by the variables in the simulation experiments we accompany the DGPs with their

corresponding directed acyclic graph (DAG) representation.

2 The DAG point of view

The DAG representation of the models presented in the main text (Figure 1) features two elementary

relationships. The first is the direct effect D → Y , which is what we want to identify. The second is

D

U

Y

Figure 1: Confounding path and direct causal path with no additional variables.

the fork structure Y ← U → D, which is a confounding path. By adding the (observable) variable

X we may obtain different graphical structures; either way by controlling for X we open no further

confounding paths. Without controlling for the common cause U , though, the identification of the

direct effect is impossible.
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D

U

X

Y

(a) X only affects Y.

D

U

X

Y

(b) X affects both D and Y

Figure 2: Models with a covariate.

In particular, we are interested in the situations where X → Y and Y ← X → D (see Figure 2a

and Figure 2b respectively). In the first case, X does not further interfere with the identification of

the direct effect of D on Y (besides the confounding effect of U). While in the second case, further

confounding effects are avoided by controlling for X.

When using instrumental variables, it can happen that the instrument Z affects the outcome Y

through the variable U (Z → U → Y ), as in Figure 3a. In this DGP, Z is not a valid IV for D. An

alternative situation in which the instrument is not valid, arises when the variable U has an effect

on Z opening a confounding path (Z ← U → Y ) as shown in Figure 3b.

3 Monte Carlo experiments

In this Section, we provide numerical evidence to support our theoretical results.1 For ease of

reference one may interpret Y as wage, D as education (or college enrollment if D is binary)

and U as ability, typically an unobserved characteristic: we are interested in studying the effect of

education on wages, two observed variables, and we assume that unobserved ability may have an

1As the panel data model presented in the main text is equivalent to a simple linear model once we take the first
difference, we do not consider such a model in our Monte Carlo experiments.
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D

U

YZ

(a) Z affects Y through U .

D

U

YZ

(b) U affects both Z and Y .

Figure 3: Models with an IV.

effect on wages. We consider two cases, the first where the treatment variable D is continuous and

the second where it is discrete. In addition, we study the properties of the two-stage least squares

(2SLS) estimator when the chosen instrument is not valid. In all the examples we will notice that

the covariance between the disturbances and either the regressors or the instruments is zero, yet

the estimated parameter has no causal interpretation. In all examples, the sample size is set to

n = 1000 and the number of repetitions is 10000.

3.1 A DGP with a continuous treatment

Let us assume the data are produced via the following DGP:

Yi = α+ τDi + βUi + vi (1)

with α = 5000, τ = 100, β = 1000, vi ∼ (χ2
1 − 1) · 1000, and (Di, Ui)

′ ∼ N(µ,Σ), with µ = (12, 0)′

and

Σ =

 4 1

1 1

 .
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(a) OLS estimates of τ and λ.
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(b) Covariance between vi and Di and εi and Di.

Figure 4: Distribution of estimates and covariances for the linear model with continuous treatment.

The causal linear conditional expectation function is then E[Yi|Di, Ui] = 5000 + 100Di + 1000Ui.

The non-causal, but still linear, conditional expectation function omitting ability is

E[Yi|Di] =

(
5000 + 1000×

(
0− 1

2

1

2
12

))
+

(
100 + 1000

1

2

1

2

)
×Di = 2000 + 350×Di.

In this simulation we check the distribution of the estimated coefficients with and without control-

ling for Ui (Figure 4a). We also look at Cov[vi, Di] and Cov[εi, Di] (Figure 4a). We observe that

without controlling for ability, the OLS estimator overestimates the returns to education substan-

tially and centers around 350 instead of the true value of 100. However, the covariance of the error

term and D center around zero for both the correctly and the incorrectly specified regression. This

illustrates that E[εi|Di] = E[εi] = Cov[εi, Di] = 0 is not sufficient to estimate the causal effect

correctly.

We shall see that this problem also occurs in a setting with control variables if there is remaining

unobserved confounding (see Figure 2a and Figure 2b). For illustration, let us define the DGP as

Yi = α+ τDi + ϕXi + βUi + vi (2)

where the 3× 1 vector (Di, Xi, Ui)
′ is jointly normally distributed with zero mean and covariance

matrix Σ; the diagonal entries of Σ are equal to 1 and the off-diagonal entries are set to ρ = 1/2.
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(a) OLS estimates of τ and λ.
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(b) Covariance between vi and Di and εi and Di.

Figure 5: Distribution of estimates and covariances for the linear model with continuous treatment
and exogenous controls.

Moreover, α = 0 and τ = δ = β = 1. In turn we estimate

Yi = γ + λDi + φXi + εi. (3)

As in the previous case, we notice that the covariances are centered around zero (Figure 5b), but

estimating λ by OLS would not provide unbiased estimates of τ , the causal effect of interest (Figure

5a).

3.2 A DGP with a discrete treatment

Consider the following setting with discrete treatment. Let two covariates be drawn from a multi-

variate standard normal distribution (Xi, Ui)
′ ∼ N(µ,Σ) with µ = (0, 0)′ and

Σ =

 1 ρ

ρ 1


where ρ is the correlation coefficient between Xi and Ui. The binary treatment is then created as

Di = 1[Xi > c]. Now assume that the DGP is:

Yi = α+ τDi + βUi + vi
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(b) Covariance between vi and Di and εi and Di.

Figure 6: Distribution of estimates and covariances for the linear model with binary treatment.

with α = 5000, τ = 2000, β = 1000, u ∼ (χ2
1 − 1) · 1000, ρ = 1/2, and c = 0. The causal linear

conditional expectation function is then E[Yi|Xi, Ui] = 5000 + 2000Di + 1000Ui. The non-causal,

but still linear, conditional expectation function omitting Ui is

E[Yi|Di] =

(
5000− 1000

1

2

ϕ(0)

Φ(0)

)
+

(
2000 + 1000

1

2
2
ϕ(0)

Φ(0)

)
×Di ≈ 4601 + 2798×Di.

We run a simulation study by estimating

Yi = γ + λDi + εi

and we check the distribution of the estimated coefficients with and without controlling for ability

as well as Cov(ui, Di), Cov(εi, Di), E(ui|Di = 0), E(εi|Di = 0), E(ui|Di = 1), and E(εi|Di = 1).

Also in this case the results (Figure 6) are in line with those found for the continuous treatment

case. Furthermore, the average disturbances for Di = 0 and Di = 1 remain centered around zero

both for the estimated model and the actual (causal) outcome model (Figure 7).

3.3 A DGP with instrumental variables

In this section, we consider the case where a researcher mistakenly considers an invalid IV, similarly

to the case described in Figure 3a.2 We will see that even in this case the causal effect cannot be

2Notice that a DGP similar to Figure 3b requires a more cumbersome parametrization but yields analogous
results, which are available from the authors upon request.
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(b) Residuals for Di = 1.

Figure 7: Distribution of residuals for untreated and treated units.
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(a) OLS estimates of τ and 2SLS estimates of λ.
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(b) Covariance between vi and Zi and εi and Zi.

Figure 8: Distribution of estimates and covariances for the linear model with instrumental variables.

recovered even if the correlation between the disturbances of the considered model and the used

instrument is zero. The data are generated according to the equations

Yi = α+ τDi + βUi + vi (4)

Di = πZi + ηi (5)

Ui = µ+ δZi + ξi (6)

and we are interested in recovering the effect D → Y represented by τ . The variables Ui, vi, ηi

and ξi are sampled independently from a standard normal distribution, while the parameters are

7



chosen as α = µ = 0,τ = γ = 2, β = .8, π = δ = 1. We estimate the model

Yi = γ + λDi + εi

by 2SLS with Zi being the instrumental variable. The causal linear conditional expectation function

is then E[Yi|Di, Ui] = 2 × Di + .8 × Ui. The non-causal, but still linear, conditional expectation

function omitting Ui is

E[Yi|Di] = (0 + 0× .8) +

(
2 +

.8× 1

1

)
×Di = 2.8×Di.

The results illustrated in Figure 8 are in line with the other examples provided so far: we find

that the correlation between the instrument Zi and the disturbances is centered around zero (Figure

8b) but we are unable to recover the true causal effect (Figure 8a).
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