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SIMPLE SOCIAL CHOICE RULES FOR EXCHANGE

RYAN TIERNEY

Abstract. We study the classical problem of trade in two-dimensional

Euclidean space. It is known that there is no efficient rule for this model

that is compatible with dominant strategy incentives, that is, there is

no efficient and strategy-proof rule. We observe that, in addition to

incentive constraints, informational constraints are also unavoidable for

social planners. Thus, we impose the requirement that finite dimensional

messages be sufficient information to realize a rule. In addition, we

impose the minimal fairness axioms of anonymity and a weakening of

non-bossiness, as well as continuity. The result is a class of rules that is

similar to those characterized by Barberà and Jackson [“Strategy-proof

exchange”, Econometrica, 63 (1995), 51-87].

Key words: Strategy-proof exchange, communication complexity.

JEL codes: D44, D47, D51, D83

1. Introduction

Revelation mechanisms are impossible to execute on large preference

spaces. This is certainly true of the classical domain, the space of monotone

and convex preferences over Euclidean space. Even if agents have preferences

in this domain, they cannot communicate them in finite time. We are thus

lead to study the category of encoded revelation mechanisms, introduced by

Mount and Reiter (1996). These are mechanisms that ask agents to report

not their preference relation but rather a simpler message. Presumably, we

are running a mechanism in the hope of realizing a social choice rule with

desirable properties. Thus, the message must contain all the information

that the social choice rule requires. Therefore, if we want to work with

simple messages, we must limit the amount of information our rule requires.
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SIMPLE EXCHANGE 2

Mount and Reiter (1996) showed that for each social choice rule there is a

space of messages that is minimal in the sense that any smaller space would

fail to encode all the information the rule requires. This is the essential

message space. We study the rules whose essential message space can be

embedded in finite dimensional Euclidean space.

We are interested in social choice rules for the exchange of divisible com-

modities. Each agent is entitled to their endowment and the social choice

rule may or may not recommend a trade that increases welfare. For agents

to be willing to disclose information about their preferences, it is necessary

for the social choice rule to be incentive compatible in some way. We choose

dominant strategy incentive compatibility, also known as strategy-proofness.

It is well known that in economies of finitely many agents, we cannot ex-

pect such rules to be Pareto efficient while still respecting private property

(Serizawa and Weymark (2003); Zhou (1991)), so we forego efficiency as a

desideratum. We also impose anonymity for two principal reasons: 1) in

practice, agents will be wary of participating in a discriminatory mechanism

if there are other mechanisms to choose from and 2) because it should be

easier to understand the informational demands of a rule when these are

the same for all participants. For technical tractability, we also impose a

weakening of non-bossiness. Non-bossy non-traders requires that if an agent

is not permitted to trade, and if a change in this agent’s message still has

them not trading, then this change of message has no effect on the other

agents. This eliminates from contention rules that set agents aside and have

them take the role of a moderator of some kind. Note that anonymity does

not necessarily eliminate such rules because the choice of moderator may

be based on preferences alone. Given that the preference space is infinite

dimensional, there is ample freedom for such rules to operate.

Finally, we limit our study to social choice rules that are continuous

(with respect to the topology of closed convergence (Hildenbrand, 1974)).

This seems necessary to properly measure information. Note that the in-

formational requirements of a rule are manifested in the partition induced

by pre-images of singletons: each of these is the set of economies in which

the rule makes the same choice, and so a single message suffices for all such
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economies. Absent any regularity condition, rules may induce arbitrary

partitions on the space of economies and so may result in mechanisms that

technically can be communicated in finite dimensions but whose message

functions are infinitely convoluted. This trades one form of complexity for

another.

We also find justification for continuity in normative principles. Note first

that, for a strategy-proof rule, each agent at each economy gets their favorite

alternative from a set of alternatives that is determined by the other agents.

By Berge’s theorem of the maximum, therefore, an agent’s own allocation

should be mostly continuous in their own message, with exceptions arising

from non-convex option sets. Since we have a convex consumption space, it

seems reasonable the we should have convex option sets, and so beyond this

requirement, continuity really imposes that one’s influence upon another be

continuous.

You and Juarez (2021) provide background literature on the question

of simplicity for the design of allocation mechanisms for divisible goods.

Theirs is also (to the author’s knowledge) the only recent work to study

the question. They work in the standard mechanism design environment—

quasilinear preferences, unconstrained transfers—and focus on achieving ef-

ficiency and incentive compatibility via one dimensional reports. Among

other things, they discover that partial Nash implementation is only pos-

sible via Vickrey-Clarke-Groves-like (VCG-like) mechanisms and that full

implementation is impossible on the full domain; however, they identify a

subdomain on which it is. In this manuscript, I allow for arbitrary finite-

dimensional messages, but I must forego efficiency as I study a pure-exchange

environment; there may be no flows of resources into or out of the economy.

It is then not surprising that the mechanisms of Barberà and Jackson (1995)

should emerge in my study. Strictly speaking, their mechanisms are a special

case of the class I find here, but they nonetheless contain the most salient

feature of the general class, namely, that trading be ex-ante constrained to

a finite number of line segments in the consumption space.
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2. Model

2.1. Consumption and Preference Spaces. We study social choice allocation

rules on a standard preference domain augmented with Leontief preferences.

The set of agents is N . There is a social endowment |N | ·ω ∈ R2 and we as-

sume that each agent is endowed with an equal share, ω. The analysis below

does not depend on the equality of endowments; it is for ease of exposition.

The set of alternatives, Z, is the hyperplane given by
∑

i∈N xi = |N | · ω,

restricted to the non-negative orthant R2×N
+ . Each projection Zi ⊆ R2×{i}

+

is agent i’s personal consumption. Preferences are such that consumption

has no externalities. Let Ri be the set of agent i’s hypothetical preferences

over his consumption space Zi, so the graph of each Ri ∈ Ri is a subset of

Zi × Zi. Since Zi and Zj are equivalent, we may assume that for each pair

i, j ∈ N , Ri = Rj := R. In particular, R is the set of (weakly) convex and

(weakly) monotone preference relations.1 A social choice rule, or rule for

short, is a function ϕ : RN → Z.

A Leontief preference relation is given by a certain kind of monotone,

terminal path from the origin. An path is a continuous function c : [0, 1]→
X , where X is a topological space, for now R2. A path is monotone if t′ ≥ t
implies c(t′) ≥ c(t).2 A monotone path is increasing if t′ > t implies c(t′) >

c(t). A monotone path is terminal if there is k ∈ {1, 2} with ck(1) ≥ |N |ωk,
making the path hit the upper ≥-envelope of the consumption space. Each

Leontief preference relation Lc is generated by a monotone terminal path

c; for each λ ∈ [0, 1], the set {y : y ≥ c(λ)} is the upper contour set of Lc

at c(λ). Not every monotone terminal path generates a Leontief relation;

consider a piecewise linear path that initially has the form λ 7→ λ(1, 1)

and then has the form λ 7→ λ(0, 1). More generally, let C be the set of

terminal paths c such that, c(0) = 0 and if c(t′) > c(t), then for each t′′ > t′,

1As usual, Ri is strictly monotone if x 
 y implies x Ri y and not y Ri x. It is strictly
convex if its upper contour sets are strictly convex.
2Notational conventions: Let ≥ and > be the standard relations on R. For {x, y} ⊂ R2,
x ≥ y if and only if x1 ≥ y1 and x2 ≥ y2. Similarly, x > y if and only if x1 > y1 and
x2 > y2.
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c(t′′) > c(t′). Then it is easy to verify that C is the set of all paths that

generate Leontief preferences.

For q ∈ R+, denote by h(q) the line in R2 with normal (q, 1) and passing

through ω. For q ∈ R+, each preference relation Ri ∈ R, when restricted to

h(q), has a unique ideal point p(Ri; q), which we shall call its peak on h(q).

Restricting attention to allocations on h(q), the problem becomes a variant

of the well-studied single-peaked allocation problem (see Sprumont (1991)).

A rationing rule on h(q) is a function ϕq : RN → (h(q))N such that ϕq is a

rule.

2.1.1. The topology of the space of preferences. Given Ri ∈ R and x ∈ Zi,
there is y ∈ Zi, on the diagonal, such that x Ri y Ri x, which is to say

that x and y are R-indifferent. Let ui(x) = ‖y‖. The utility function

ui thus constructed represents Ri. Given this representation mapping, we

may define the following distance on the subset R◦ of strictly monotone

preferences in R:

d
(
Ri, R

′
i

)
= max

x∈Zi

∥∥ui(x)− u′i(x)
∥∥ .

Kannai (1970) showed that this metric induces the coarsest topology that

makes sets of the form {(x, y,R) : x R y} open in Zi×Zi×R◦.3 Inspection

of Kannai’s proof reveals that it works equally well on R, making (R, d)

a metric space. Hildenbrand (1970) then demonstrated that (R, τ), with

τ the topology induced by d, is a subspace of the space of all reflexive

binary relations with the topology of closed convergence. This latter space

is compact, making closed subsets of R compact, and their images under

a continuous function likewise compact. In sum: a continuous function on

(R, d) is a closed map. This observation is the key property we require of

the topology.

3Kannai actually worked with metric

d′(Ri, R
′
i) = max

x∈Zi

‖ui(x)− u′i(x)‖
1 + ‖x‖2

.

This is easily seen to be equivalent to d as d′ ≤ d ≤
(
1 + |N |2 ‖ω‖2

)
d′.
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We henceforth assume R is endowed with topology τ and associated

metric d. We likewise identify C and the set of Leontief preferences, so

topologize C as a subspace of R. First note that our utility representation

gives, for Leontief preference Lc,

u(x) =
√

2 max
c(λ)≤x

max {c1(λ), c2(λ)} .

This then induces a metric between paths in C that finds the maximum

either horizontal or vertical distance between them. We present that metric

formally in Section A, where we also prove the following proposition.

Proposition 1. The topology that (R, τ) induces on C is metrizable and has

infinite Lebesgue covering dimension.

The significance of the latter claim lies in the fact that C does not im-

mediately admit a proof that it cannot be embedded in Rk. Firstly, C being

equipollent with the set of monotone continuous functions, it actually has

the cardinality of the continuum. Second, while there is an obvious convex

structure that can be put on C, and so we may hope show it has infinite

dimension as a topological vector space, the vector operations are not in

fact continuous with respect to our topology, as the example below shows.

Note that if two paths converge in both their maximal horizontal and

vertical distance, they converge in Hausdorff distance. The converse is not

true, as can be seen by considering a sequence of paths of the form λ 7→
λ
(
1, 1

n

)
. Thus, the topology on C is strictly finer than that induced by the

Hausdorff distance.

2.2. Encoded Revelation Mechanisms. Mount and Reiter (1996) introduce

encoded revelation mechanisms to study the complexity of social choice

rules. Their idea is to capture via an intermediate message space the way a

social choice rule uses information. We instead put a constraint on the mes-

sage space and deduce the class of rules that meet this restriction. Whereas

Mount and Reiter studied techniques for deriving a lower bound on the num-

ber of variables that a rule uses, we instead require that a rule uses at most

finitely many variables.



SIMPLE EXCHANGE 7

Definition. Fix a rule ϕ. Let M def
= ×i∈NMi be a set and σ a list of con-

tinuous functions σi : Ri →Mi. If there exists a function ϕ∗ such that the

graph

RN
ϕ
//

σ
��

Rl×N

M
ϕ∗

;;

commutes, then the triple (M, σ, ϕ∗) is an encoded revelation mechanism

that realizes ϕ. We call σ the message function of the mechanism and say

that σ encodes RN . We also call M an encoded revelation message space.

Let ϕ be a rule and consider a pair of preference relations Ri, R
′
i ∈ Ri.

If for each profile R this pair satisfies,

ϕ(Ri, R−i) = ϕ(R′i, R−i),

then agent i need not distinguish Ri and R′i when playing the revelation

game induced by the rule; they are informationally equivalent. The quotient

of Ri under this equivalence
ϕ∼i is the space of i’s characteristics that the

rule actually uses, all other information is discarded. The encoded revelation

mechanism that uses these quotients as message spaces is called the essential

revelation mechanism. Intuitively it is the encoded revelation mechanism

that uses the smallest message space.

Implicit in the definition of encoded revelation mechanisms is the preser-

vation of each agent’s privacy. The alternative construction would be to have

agents first pool their information, but this would pass the computational

burden of the rule entirely to the agents. Consider the smallest message

space arising from this approach. It would use the equivalence relation

defined as follows: profiles R and R′ are equivalent, denoted R ≈ R′, if

ϕ(R) = ϕ(R′). In this case, RN/≈ would be bijective with the image of

ϕ. Moreover, if ϕ is continuous, RN/≈ and ϕ(RN ) would be topologically

equivalent. Thus, the problem would be trivialized.4

4Endow RN/ ≈ with the quotient topology. Let P be the projection map from RN to the
quotient space. The map ϕ∗ given by ϕ∗ ◦ P = ϕ is continuous since ϕ is continuous (See
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In the class of privacy preserving mechanisms, encoded revelation mech-

anisms are more general than revelation mechanisms but are obviously not

the most general. It would have been preferable, for example, to consider

communication protocols that allow for multistage interaction, as in Nisan

and Segal (2006). This approach has proven prohibitive at present, possibly

because our goal differs. Whereas we impose an upper bound on informa-

tion, Nisan and Segal (2006) study the minimal information required to

calculate efficient allocations.

2.3. Properties of Rules. Properties of primary interest in the literature are

strategy-proofness and anonymity. As these are standard, we will not dwell

on them.

Strategy-proofness: ∀R ∈ RN , ∀i ∈ N , ∀R′ ∈ R, ϕi(R) Ri ϕi(R
′
i, R−i).

Anonymity: ∀bijections π : N → N , ∀R ∈ RN ,
(
ϕπ(i)(R)

)
i∈N = ϕ

(
(Rπ(i))i∈N

)
.

Since we study the exchange of privately owned commodities, we must

make formal the notion of private ownership. This is particularly simple

given the assumption that all agents have identical endowment ω.

Voluntary Participation: ∀R ∈ RN , ∀i ∈ N , ϕi(R) Ri ω.

Rules that satisfy voluntary participation are called exchange rules.

The next property formalizes our limitation on the complexity of the

rule. We require that the rule depend on at most finitely many real variables,

making a finite dimensional vector sufficient to communicate an agent’s in-

terests. While restrictive, this is still far more information than is feasible

in reality, as it allows for arbitrary precision.

Simplicity: There exists an encoded revelation mechanism (M, σ, ϕ∗) such

that M may be embedded in finite dimensional Euclidean space.

We require a rule to be continuous in the topology of closed convergence.

This is a metrizable topology important in the foundations of general equilib-

rium (Hildenbrand, 1974). More importantly, the convergence of preference

Kelley (2008) Theorem 3.9). As mentioned, ϕ∗ is bijective. We show in the appendix that
ϕ is a closed map. Thus, for closed U ⊆ RN/ ≈, ϕ∗(U) = ϕ

(
P−1(U)

)
is closed, making

ϕ∗ a homeomorphism.
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relations in this topology is what we expect it should be: upper contour sets

get closer and closer.

Continuity: Endow R with the topology of closed convergence and assume

that R and any of its products are always endowed with the usual topology.

Then ϕ is continuous from RN to Rl×N .

Anonymity prevents a rule from discriminating based on the names of

agents. However, it still allows the rule to discriminate based on any element

of the agent’s preference relation, however questionable the relevance of that

part. We may imagine that, in practice, some idiosyncrasies of an agent’s

behavior, which proceed from idiosyncrasies in his preferences, may identify

him even when his identity is obscured. Note that R is infinite dimensional,

so there is ample space for this. The rule might then become arbitrary.

We therefore put a very weak limitation on this, preventing this sort of

responsiveness only when the agent is not participating.

Non-bossy Non-traders: Suppose that ϕi (Ri, R−i) = ϕi (R′i, R−i) = ω.

Then for each j ∈ N , ϕj (Ri, R−i) = ϕj (R′i, R−i).

3. Results

Recall that a rationing rule chooses, a priori, a line through ω in which

to restrict its domain. In other words, a rationing rule takes the original

problem and simplifies it so that it can be viewed as a single-peaked division

problem as in Sprumont (1991). We show that a rule satisfying our prop-

erties must be composed of at most |N | − 1 rationing rules. The particular

profile of preferences will determine which rationing rule is deployed.

Formally, we show that the above conditions imply a subset of the fol-

lowing class:

Barberà & Jackson (B&J) Rules: Each rule ϕ is given by a non-decreasing

list of |N | − 1 real numbers and |N | − 1 strategy proof rationing rules. Let

Q :=
(
q1, q2, . . . , q|N |−1

)
be one such list of numbers. Let Φ :=

(
ϕ1, . . . , ϕ|N |−1

)
be a list of rationing rules, where each ϕk is a rationing rule on h

(
qk
)

and if

qk = qk−1 then ϕk = ϕk−1. Let qk
∗ ∈ Q satisfy k∗ =

∣∣{i ∈ N : p1

(
Ri; q

k∗
)
≥ ω1

}∣∣.
Then ϕ(R) = ϕk

∗
(R).
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Theorem 1. Assume the exchange rule ϕ satisfies strategy-proofness, anonymity,

continuity, simplicity, and non-bossy non-traders. Then ϕ is a continuous

Barbera & Jackson rule.

In their paper, Barberà and Jackson (1995) (henceforth B&J) character-

ize a smaller class of rules. They show that a strategy-proof, anonymous,

voluntary, non-bossy, and tie-free rule is a Barberà & Jackson Rule that

uses uniform rationing. This means that all agents on a given side of the

market who are constrained by the rationing are consuming the same quan-

tity. Our rules are both more and less restricted. We require continuity,

where B&J do not. This means that if a rule transitions from qk to qk+1,

and if qk 6= qk+1, then all agents must first converge to ω. We give an

example of such a rule below. However, by weakening non-bossiness, we

obtain a great deal more freedom. In particular, B&J show that, in this

model, strategy-proofness and non-bossiness together imply the weak form

of group-strategy-proofness.

It should be noted as well that tie-freeness is in fact a weak continu-

ity axiom. It implies, given convex preferences, that an agent is indifferent

between two messages if and only if they yield him the same consumption

bundle. This further implies that each agent’s own consumption varies con-

tinuously with his own message. Thus, our continuity here only adds that

one’s effect on other agents be continuous.

3.1. Examples, and some new rules for single-peaked rationing. As previ-

ously noted, when the consumption space is restricted to a line h(q), we

arrive at a model that is a variant of Sprumont’s (1991) rationing model.

We have discovered that rules satisfying our properties must indeed be con-

structed from several such rationing rules. Thus, to give concrete examples

of B&J rules, we focus, in this section, on the rationing model.

Each agent i is to consume a quantity ξi ∈ R, and a feasible allocation

ξ ∈ RN is such that
∑

i ξi = 0. There are upper and lower bounds b < 0 < b

on the consumption space. Note that if the bounds are set appropriately,

this consumption space may be isometrically mapped to h(q) ∩ R2
+ such

that 0 maps to ω. Now if q > 0 then each Ri restricted to h(q) is a convex
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preference relation having a unique favorite point p(Ri), called its peak (note

we suppress reference to q in p here, as the former will remain constant in

this section).

The rules we construct will be calculated first by applying a transfor-

mation on the profile (p(Ri))i∈N of peaks and then operating the Uni-

form Rule (Sprumont, 1991) on the derived profile. A profile p̂ ∈ RN of

peaks—derived or primitive—naturally divides into two sides of the market,

N−(p̂) = {i ∈ N : p̂i < 0} and N+(p̂) = {i ∈ N : p̂i > 0}. Given a side of

the market ◦ ∈ {−,+},
Ω◦(p̂) =

∑
i∈N◦(p)

|p̂i|

is the offer implied by these peaks that this side makes to the other. The

short side of the market is the one making the smaller offer. Under the

Uniform Rule, the members of the short side of the market get their peaks.

There is then a unique λ ∈ R for the long side such that it is feasible to give

all long side agents i with |p̂i| < |λ| exactly p̂i and the remaining agents λ.

To arrive at our most basic rule, which we shall, with abuse of terminol-

ogy, simply call the Uniform rule, the derived profile of peaks is found by

the mapping

R 7→
(
med

{
b, p(Ri), b

})
i∈N .

That is, this simply ensures that the result of the rule can be mapped prop-

erly to the original two-dimensional space.

More generally, we shall have a continuous function that maps each peak

to a number that is larger in magnitude, and then each agent’s derived peak

will be constrained by these functions applied to the other agents. Formally,

assume f : R → R is a continuous function such that |f(Ri)| ≥ |p(Ri)|,
f(Ri)p(Ri) ≥ 0, and such that p(Ri) = 0 implies f(Ri) = 0. Then agent i’s

derived peak is p(Ri) if i is on the short side and

p̂i (R) = sign (p(Ri)) min ({|f(Rj)| : p(Rj)p(Ri) ≥ 0} ∪ {|p(Ri)|})
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if i is on the long side. We call rules thus calculated Collapsing Uniform

Rules.

Proposition 2. Collapsing Uniform Rules are strategy-proof, anonymous,

continuous and respect voluntary participation.

Proof. Anonymity is clear. Voluntary participation follows from the fact

that an agent is given an amount that is (weakly) between their peak and

0, and since preferences are convex, this is at least as good as 0.

We shall first show that the Uniform Rule is continuous on RN .5 Con-

sidering first p̂ ∈ RN such that no agent has p̂i = λ, we can clearly see that,

locally, λ is calculated as

(3.1)

∑
ξj=p̂j

p̂j

|{k : ξk 6= p̂k}|
,

and so is locally continuous. This further allows us to conclude that peak

profiles of this sort form an open set. They also form a dense subset of RN :

for each i with p̂i = λ, perturb p̂i by ε so that |p̂i + ε| > |p̂i|. Thus, i starts

as being rationed and remains rationed and clearly λ does not change in

response. In sum, there is an open and dense set of peak profiles p̂ ∈ RN

such that λ is calculated via line 3.1, and so the Uniform Rule is continuous

on this set, which we denote P.

Given p̂ ∈ RN , there is a sequence p̂n ∈ P converging to it. Let λn

be the sequence of thresholds induced by p̂n. By choosing a subsequence, if

necessary, we may assume p̂ni p̂
n+1
i and λnλn+1 remain non-negative. Assume

further that λn ≥ 0; the opposite case is symmetric. By choosing a further

subsequence, we may also assume that, for each i, either p̂ni < λn or p̂ni > λn

on the entire sequence. Thus, by inspecting line 3.1, we see that λn is

convergent, with limit λ. Since the feasibility constraints yield a closed

set, λ induces a feasible allocation and, moreover, p̂ni < λn implies p̂i ≤ λ

and p̂ni > λn implies p̂i ≥ λ. It follows then by the construction of the

5Sprumont (1991), on the path to characterizing the Uniform rule, showed that it is
separately continuous.
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Uniform Rule, since only one threshold satisfies feasibility and the required

inequalities, that λ is the threshold for p̂.

Since the minimum of continuous functions is continuous, the only possi-

ble discontinuity for p̂i comes when an agent j switches sides. Note, however,

that if p (Rni ) → 0, then f (Rni ) → 0 and so ϕj (Rn) → 0 for all j. So ϕ is

continuous at R if there is i with p(Ri) = 0. For all other R ∈ RN , p̂ is

clearly locally continuous, and ϕ is the Uniform Rule composed with p̂.

Thus, it remains to show strategy-proofness, and here we rely on the

fact that |f(Ri)| ≥ |p(Ri)|, so that i’s report can only influence the derived

peaks of agents asking for a larger trade. Thus, let us first show a property

of the Uniform Rule.

Claim. Fix p̂ ∈ RN and assume p̂i ≥ 0. Let q̂ ∈ RN have q̂j = p̂j for j with

p̂j ≤ p̂i. Then Ui(q̂) = Ui(p̂).

Proof. We consider another method for calculating the Uniform rule. Let

Ω = Ω−(p̂) = Ω−(q̂). For each t ∈ [0,Ω], the quantity t is offered by

an auctioneer to the agents on the positive side. At each t, the tenta-

tive allocation is ξti = p̂i if p̂i < t or t otherwise. For t sufficiently small,∑
i∈N+(p̂) ξ

t
i ≤ min{Ω,Ω+(q̂)} and there is a maximal value T for which this

holds. Then for each i on the positive side, Ui(p̂) = ξTi . Via this method, it

is clear that, since the offer of the negative side remains constant, and the

peaks less than p̂i remain constant, that i’s allocation is unchanged. �

Denote by ψ the collapsing Uniform Rule induced by f and let ξ =

ψ(R). Consider an agent with p(Ri) > 0; the opposite case has a symmetric

argument. Since |f(Ri)| ≥ |p(Ri)|, derived peaks preserve the order of the

primitive peaks. If ξi = p(Ri) then there is clearly no profitable manipulation

for i, so assume ξi 6= p(Ri). Let R′i 6= Ri. Consider the change in the

allocation that would result if the effect of the derived peaks on others were

paused. That is, consider peak profile p̂ ∈ RN such that p̂j = p̂j(R) for j 6= i

and p̂i = p̂i(R
′
i, R−i). By construction,

(3.2) p(Ri) ≥ p̂i(R) ≥ ξi,
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and since ξi 6= p(Ri), one of these inequalities is strict. Suppose p (R′i) ≥ ξi.
If p (R′i) < p̂i(R) it means that p̂i(R) > ξi and so ξi = λ. Then, by the

construction of derived peaks, we have p̂i = p(R′i) and so, since i is rationed

at both p̂(R) and p̂, U (p̂) = U (p̂(R)). Otherwise, if p (R′i) ≥ p̂i(R), then

p̂i = p̂i(R) and again U(p̂) = U (p̂(R)). In sum p (R′i) ≥ ξi implies U(p̂) = ξi.

Alternatively, p(R′i) < ξi imples p (R′i) < p̂i (R) and so p (R′i) ≤ p̂i < ξi.

Thus, Ui (p̂) < ξi. In particular, for p̂i ≥ 0, Ui (p̂) = p̂i, and otherwise i gets

p̂i until she is rationed at the other side of the market. In sum, Ui (p̂) ≤ ξi.
Now, in going from p̂ to q̂ = p̂(R′i, R−i), each j with p̂j ≤ p̂i has q̂j = p̂j .

Thus, by the claim and line 3.2,

ψi
(
R′i, R−i

)
= Ui(q̂) = Ui(p̂) ≤ ξi = ψi (Ri) ≤ p(Ri).

Single peakedness implies ψi (Ri) Ri ψi (R′i, R−i). �

We have shown that rules satisfying our conditions belong to the family

of B&J rules; however, not all of these are continuous. In particular, the rule

characterized in Barberà and Jackson (1995) induces large discontinuities as

the trading regime switches from one line to another. By using a collapsing

Uniform Rule on each trading line, this can be avoided. In particular, we

may set f(Ri) = αp(Ri), for α > 1. The larger α is chosen, the more

problems for which the induced continuous B&J rule equals the original rule

in their paper. In this sense, Barberà and Jackson’s rule lies in the “closure”

of the set of continuous B&J rules, though we refrain from fully analyzing

the topology of the space of rules.

A bossy, continuous B&J rule. In their paper, Barberà and Jackson (1995)

impose full non-bossiness. This, together with strategy-proofness implies

group strategy-proofness, a fact that we do not have access to in this analysis.

Some of our efforts might have been wasted if in fact our conditions imply

full non-bossiness. We show now that they do not.
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For each Ri and each x 6= p(Ri), there is a unique number ri(x) such

that ri(x) Ii x. For each Ri ∈ R, let

f(Ri) =

r(−1) p(Ri) ≥ 0

r(1) otherwise.

The collapsing Uniform rule induced by f is clearly bossy.

4. Conclusion

Somewhat novel in the literature, we have explored the consequences

of informational restrictions, in a fairly abstract way, in market design. In

doing so, we have arrived at a result that closely resembles the classic charac-

terization of Barberà and Jackson (1995). Relative to their work, we deploy

a weaker non-bossiness but a stronger continuity condition. Without full

non-bossiness, we are unable to leverage the fact that this condition, cou-

pled with strategy-proofness, implies weak group strategy-proofness. Thus

we are able to more closely hone-in on the effect of individual incentives,

rather than group incentives. However, by imposing our informational re-

striction, we arrive at a class of rules with basically the same structure. It

should be emphasized, however, that we have only been able to do this in

two dimensions, whereas Barberà and Jackson (1995) could work in arbi-

trary dimensions.

Appendix A. Proof of Proposition 1

For x ∈ R2, let /x/ denote its angle with the horizontal axis. Given path

c ∈ C, let c(λ∗) be the maximal point at which c(λ) ∈ Zi. Thus, since Zi is

rectangular, Lc is indifferent between c(λ∗) and the maximal point of Zi. Let

c be the path such that c(λ) = c(λ) for c(λ) ∈ Zi and c(λ) ∈ Jc(λ∗),maxZiK
after. Let

d1(Lc, Lc
′
) = max

x∈c(R),y∈c′(R)

|x1 − y1| (x1 − x2)(y1 − y2) ≥ 0

max {|x1 − x2| , |y1 − y2|} (x1 − x2)(y1 − y2) < 0
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and

d2(Lc, Lc
′
) = max

x∈c(R),y∈c′(R)

|x2 − y2| (x1 − x2)(y1 − y2) ≥ 0

max {|x1 − x2| , |y1 − y2|} (x1 − x2)(y1 − y2) < 0.

The first function calculates the maximal horizontal difference one can find

between the truncated versions of the paths associated with Lc and Lc
′
,

where the distance is cut at the diagonal in the cases when it is crossed.

The second function does the same with vertical distance. Finally, define

d∗(Lc, Lc
′
) = max{d1(Lc, Lc

′
), d2(Lc, Lc

′
)}.

We first show the equivalence of d and d∗. Fix two preferences Lc and Lc
′

and their associated utility functions u and u′. Let λ and λ′ be parameters

such that u (c(λ)) = u(x) and u′(c′(λ′)) = u′(x). For now, suppress reference

to the parameters. For generic x, the indifference sets of Lc and Lc
′

meet x

orthogonally meaning that /c/, /x/, and /c′/ will be strictly ordered, with

/x/ in the middle. Given generic x, assume

c2 = x2 > x1 = c′1

c2 > c1

c2 > c′2

c1 < c′1,

where the first line simply fixes an order on the angles and simultaneously

assumes x is above the diagonal. The remaining lines are then consequences

of the first, that c also be above the diagonal and that c and c′ be anti-

ordered in ≤. Clearly u(x) =
√

2c2 and u′(x) ∈ {
√

2c′1,
√

2c′2}, where the

first case holds if /c′/ < π/4 and the second if /c′/ ≥ π/4. Either way, the

inequalities above give u(x) > u′(x).

If x is in the interior of the consumption space, there is y = x + γ(0, 1)

with γ > 0. Since x1 = c′1, y remains directly above c′, so u′(y) = u′(x).

However, y > c, so u(y) > u(x) and u(y) − u′(y) > u(x) − u′(x). Thus, we

can increase γ until y ∈ c (R) and u(y)− u′(y) is increasing the entire way.

Let µ have u (c(µ)) = u(y) and note that c2(µ) = y2, by construction. There
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are two cases. In the first c′(λ) is below the diagonal, so

u(y)− u′(y) =
√

2
(
c2(µ)− c′1(λ)

)
=
√

2 (y2 − x1)

=
√

2 (y2 − y1) ,

where we note that y2 − y1 is the vertical distance from y to the diagonal.

When c′(λ) is above the diagonal,

u(y)− u′(y) =
√

2
(
y2 − c′2(λ)

)
,

in which case we have just multiplied the vertical distance between y and

c′(λ) by a constant. In sum, if d(Lc, Lc
′
) is found at |u(x)− u′(x)| with x

above the diagonal, then it is found at a point such as the above, where y ∈
c(R) and c(λ) are vertically oriented and we have d

(
Lc, Lc

′
)

=
√

2d2(Lc, Lc
′
).

It is then easy to see that, if d(Lc, Lc
′
) is maximized at a point below

the diagonal, the entire argument reflects about the diagonal and yields

d
(
Lc, Lc

′
)

=
√

2d1
(
Lc, Lc

′
)

. In sum, d(Lc, Lc
′
) =
√

2d∗(Lc, Lc
′
).

We now show that C has infinite Lebesgue covering dimension. Let D∗

be the path that first proceeds to point (0, 3) and afterward has the form

λ 7→ (0, 3) + λ(1, 1). Let D+ and D−, be the paths in C that form the

upper and lower boundaries of the open ball B1/2(D
∗), respectively. That

is, D+ first proceeds to (0, 7/2) and then follows λ 7→ (0, 7/2) +λ(1, 1); D− is

symmetric. Given ε > 0, partition R2 in vertical pipes
{
P k
}

of width ε, so

that the projection of P k on the horizontal axis is ]kε, (k+1)ε[. For each odd

k, let ck be the path that follows D− at first, then within P k, turns upward

and meets D+, and continues to follow D+ thereafter. Thus, D∗ ∈ B1(ck).

However, for each distinct pair ck and cj , letting j > k, we have a vertical

distance of 1 between ck and cj within P k+1. Thus, d∗(ck, cj) ≥ 1.

The family
{
B1(ck) : k ∈ 1, . . . ,K

}
∪
{
B1/2(c

′) : c′ /∈ B1(ck), k ∈ 1, . . . ,K
}

is, by construction, a cover of C. Let
{
Bi
}
i∈I be a refinement, and suppose

there is B1(ck) that does not have any member Bi as a subset. Then for each

Bi, either Bi ⊆ B1(cj) for j 6= k, or Bi ⊆ B1/2(c
′) for c′ /∈ B1(cj) for any j.
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In the first case, as shown above, ck /∈ Bi. In the second, d∗(ck, c′) ≥ 1 and

so ck /∈ B1/2(c
′). Thus, ck is not covered by the refinement, and it follows

that any refinement covering C must contain subsets of every B1(ck). As

noted above, each of these contains D∗, and we can make arbitrarily many

of them by choosing ε sufficiently small. Thus, C has infinite Lebesgue cov-

ering dimension.

Appendix B. Proof of Theorem 1

Some notation: For each profile R ∈ RN and each agent i, let Ai(R−i) =

ϕi(R, R−i). This is referred to as agent i’s attainable set at profile R.

Anonymity implies that for each i, j ∈ N , Ai = Aj =: A. For each pair

{x, y} ⊂ R2, let

Jx, yK :=
{
z ∈ R2 : z = θx+ (1− θ)y, 0 ≤ θ ≤ 1

}
Jx, yJ :=

{
z ∈ R2 : z = θx+ (1− θ)y, 0 ≤ θ < 1

}
Kx, yJ :=

{
z ∈ R2 : z = θx+ (1− θ)y, 0 < θ < 1

}
.

Given a vector x ∈ R2
++, denote by Lx the Leontief preference given by a

terminal path of the form λ 7→ λx. These preferences are obviously generated

by the set Θ =
{
θ ∈ R2

++ : ‖θ‖ = 1
}

. A linear preference relation Ri is such

that there exists r ∈ R2 making the inner product 〈·, r〉 a representation of

Ri. Note that linear preference relations are not in our preference domain;

they are a useful tool.

B.1. Without Simplicity. For this subsection, we assume ϕ satisfies all the

properties except simplicity.

This first lemma is an obvious consequence of strategy-proofness, and so

we omit its proof.

Lemma 1. For each agent i ∈ N , and each x ∈ A(R−i), ϕi(R) Ri x.

A set B ⊂ R2 is an anti-chain if each pair in the set is not comparable

by ≤, that is, if for each {x, y} ⊆ B, x 6= y implies ¬ (x ≥ y) and ¬ (y ≥ x).

Lemma 2. For each R ∈ RN , and each i ∈ N , A(R−i) is an anti-chain.



SIMPLE EXCHANGE 19

Proof. Assume that there are x and y in A(R−i) such that y 
 x. Let

R ∈ RN satisfy ϕi (R) = x and R′i ∈ R satisfy ϕi (R′i, R−i) = y. Since ϕ

is strategy-proof and preferences are monotone, y Ii x and Ri must be a

Leontief relation. Let (Rνi )ν∈N be a sequence of strictly increasing preference

relations converging to Ri. Then for each ν, ϕi(R
ν
i , R−i) = x, contradicting

continuity. �

Corollary 1. For each R ∈ RN and each i ∈ N , letting x = ϕi (R) and c ∈ C
cross x at some point, it follows that ϕi (Lc, R−i) = ϕi(R).

Proof. Note that a Leontief preference can be indifferent between two bun-

dles x and y only if they are ≥-ordered in some way. Thus, the choice of

any Lc from any antichain set will be a singleton and an element of the path

c. �

Lemma 3. For each R ∈ RN , and each i ∈ N , A(R−i) is compact-valued

and connected-valued.

Proof. The set Θ is connected and compact. Let LΘ := {Lx : x ∈ Θ}. It is

clear that the mapping x 7→ Lx is continuous and therefore LΘ is connected

and compact. Thus, since ϕ is continuous, ϕi
(
LΘ, R−i

)
is also connected

and compact.

Let x ∈ A (R−i). Since A(R−i) is an anti-chain, ϕ (Lxi , R−i) = x and it

follows that ϕ
(
LΘ, R−i

)
= A(R−i) . �

An anti-chain A ⊂ R2 bends away from the origin if for each pair x, y ∈
A, each γ ∈ Jx, yK and each z ∈ A, if γ ≥ z then γ = z. Equivalently, A is

the upper envelope, in ≤, of a convex set. The following lemma is proven as

Lemma 1 in Sprumont (1995).

Lemma 4. For each profile R ∈ RN and for each agent i ∈ N , A(R−i) bends

away from the origin.

B.2. Bringing in Simplicity. Henceforth assume that ϕ satisfies all the prop-

erties in Theorem 1.

Lemma 5. If σ encodes ϕ then the induced mapping ϕ∗ is continuous.
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Proof. Since M ↪→ Rk for some k ∈ N, its topology can be described via

sequences, rather than the more general nets. Suppose there is an element

m ∈ M such that ϕ∗ is not continuous at m. Thus there is convergent

mn → m such that limϕ∗(mn) 6= ϕ∗(m). Since {mn}n∈N ∪{m} is closed, so

is its pre-image under σ and it is therefore also compact. For each n there is

Rn ∈ RN with σ(Rn) = mn. By compactness, since R is metrizable, there is

a convergent subsequence Rs(n), with limit R, and limσ(Rs(n)) = m = σ(R).

We conclude that

lim(ϕ∗ ◦ σ)(Rn) = limϕ∗(mn)

6= ϕ∗(m)

= (ϕ∗ ◦ σ) (R),

contradicting the continuity of ϕ, as ϕ∗ ◦ σ = ϕ.

�

Lemma 6. ϕ, σ, and ϕ∗ are closed mappings.

Proof. Let A ⊂ R be closed. As a closed subset of a compact space, A is

compact. Since ϕ and σ are continuous, ϕ(A) and σ (A) are compact, and

thus closed. If A ⊆M is closed, then since σ is continuous and ϕ is closed,

ϕ∗(A) =
(
ϕ ◦ σ−1

)
(A) is closed. So ϕ∗ is a closed map. �

Since A (R−i) is an antichain, each of its elements may be uniquely

identified in polar coordinates by an angle in [0, π2 ] and a distance. It will

be more convenient for us, however, to identify [0, π2 ] with Θ, so we inter-

changeably view elements of Θ as angles and vectors.. To avoid confusion,

we write θ′ � θ when sin−1 (θ′2) > sin−1 (θ2). Thus, � linearly orders Θ

anti-clockwise. We will therefore speak of intervals I ⊆ Θ, with upper and

lower bounds according to �, while also identifying arbitrary vectors in R2
+

via rθ for r ∈ R+. Conversely, given x ∈ R2, let /x/ ∈ Θ denote it’s angle.

Note that /·/ allows us to extend the order � to R2
+ as follows: if {x, y} is

an antichain, then x � y if and only if /x/ > /y/.
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For each R−i, there are a set Ki(R−i) ⊆ Θ and an injective function

αi (·;R−i) : Ki(R−i) → A (R−i). As above, we will typically omit the sub-

script on K. Moreover, αi is (jointly) continuous in all arguments and K is

a closed interval. Let

αri (R−i) = αi (minK(R−i);R−i)

αli(R−i) = αi (maxK(R−i);R−i) .

Thus, the set A(R−i) is path. Each point on the path is the image of some

Ri ∈ R under ϕi (·, R−i). Since ϕ is continuous, the paths
{
A (R−i) : R−i ∈ RN\i

}
continuously deform into each other. That is, given a path ν ∈ [0, 1] 7→ Rν−i,{
A(Rν−i)

}
ν∈R is a homotopy. Consider a path ν ∈ [0, 1] 7→ Rν−i ∈ RN\{i}.

By Corollary 1,

{A (Rν)}ν∈[0,1] =
{
ϕi
(
Lc, Rν−i

)}
(c,ν)∈C×[0,1]

.

Proposition 3. Let Rν−j be a path in RN\j. Let {y, x} ⊆ A
(
R0
−j

)
be an

antichain and let N be the set of ν such that {y, x} ⊆ A
(
Rν−j

)
. Let ν∗ =

inf ([0, 1] \ N ).6 Then if ν∗ is finite, it is a member of N . Letting I ⊆ Θ be

the interval with endpoints /y/ and /x/, we have, for each ν ≤ ν∗,

αj
(
·;Rν−j

)∣∣
I

= αj
(
·;R0
−j
)∣∣
I
.

Finally if ν∗ is finite, then one of the endpoints of I is also an endpoint of

K
(
Rν
∗
−j

)
.

Proof. For notational simplicity, since we are considering only the path Rν−i,

we replace Rν−i by ν as an argument in the A, K, and α functions.

Note that the angles I ⊆ Θ identify a closed cone V ∈ R2, with non-

empty interior V . For each ν ∈ N , sinceAi(ν) is an antichain, C (Lx, Ai (ν)) =

{x}. By strategy-proofness, ϕi(L
x, Rν−i) = x. Similarly, ϕi

(
Ly, Rν−i

)
= y.

Closedness of N then follows from continuity, which then yields ν∗ ∈ N .

6We adopt the usual convention that inf ∅ =∞.
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Moreover, for each ν ∈ N , {/y/ , /x/} ⊆ Ki (ν) and so it follows since

attainable sets are connected that I ⊆ Ki (ν). Then for each θ ∈ I and

each ν ∈ N , αi (θ; ν) is defined and, by definition, equals ‖αi (θ; ν)‖ θ. As

Ai(ν) is an antichain, again we have C
(
Lθ, Ai (ν)

)
= {αi (θ; ν)}. Thus, by

strategy-proofness,

(B.1) ∀ν ∈ N ,∀θ ∈ I, ϕi
(
Lθ, Rν−i

)
= αi (θ; ν) .

Let ν < ν∗, θ ∈ I, and

S :=
{
x ∈ R2 : αi (θ; 0) < x < αi (θ; ν)

}
.

Suppose S is non-empty. Let rθ′ ∈ S ∩ V . By line B.1,

ϕi

(
Lθ
′
, R0
−i

)
= αi

(
θ′; 0

)
=
∥∥αi (θ′; 0

)∥∥ θ′ < rθ′ < αi (θ; ν) ,

where the first inequality is because otherwise αi (θ′; 0) ≥ αi (θ; 0), contra-

dicting that Ai(0) is an antichain. Since αi (θ′; ν) is �-ordered with αi (θ; ν),

there is µ < ν with ‖αi (θ′;µ)‖ > r. By the intermediate value theorem then,

there is µ′ with ‖αi (θ′;µ′)‖ = r and so ϕi

(
Lθ
′
, Rµ

′

−i

)
= rθ. In sum, for each

x ∈ S ∩ V , there are θ′ = /x/ ∈ I and ν ′ ∈ [0, ν∗] with ϕi

(
Lθ
′
, Rν

′
−i

)
= x.

Since S ∩ V is open it contains open U with the following shape: there

are x∗ and λ > ‖x∗‖ =: λ such that

U =
{
y : y > x∗, ‖y‖ < λ

}
.

That is, U a small wedge. Since the paths in C are increasing, we may

parameterize each of them so that ‖c(λ)‖ = λ. Let CU be the subset of

terminal monotone paths in R2 such that each c ∈ CU has c(λ) = x∗. It

follows that c meets the boundary of U at c(λ). Define equivalence relation

∼ on CU such that c ∼ c′ if and only if c ([0, 1]) ∩ U = c′ ([0, 1]) ∩ U .

Clearly CU/ ∼ is homeomorphic to C. We show that CU/ ∼↪→M, arriving

at a contradiction, since C cannot be embedded in any finite dimensional

Euclidean space.
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We first show that CU/ ∼ maps injectively to M. Suppose paths c and

c′ are not equivalent. Then there is λ ∈ [λ, λ] such that that c(λ) 6= c′(λ).

Since both are in U ⊆ S ∩ V , ϑ = /c(λ)/ and ϑ′ = /c′(λ)/ are in int I.

Moreover, there is µ ∈ [0, ν∗] such that ϕi
(
Lϑ, Rµ−i

)
= c(λ) = αi(ϑ;µ).

By strategy-proofness ϕi
(
Lc, Rµ−i

)
= ϕi

(
Lϑ, Rµ−i

)
. Since ϑ′ is interior to

I ⊆ Ki (µ), ϕi
(
Lc, Rµ−i

)
∈ C

(
Lc
′
, A(Rµ−i)

)
if and only if ϕi

(
Lc, Rµ−i

)
=

c(λ) is the intersection of c′ and Ai(µ), implying by our parameterization

that c′(λ) = c(λ). Thus, ϕi
(
Lc, Rµ−i

)
6= ϕi

(
Lc
′
, Rµ−i

)
, and moreover this

inequality is true on an open neighborhood of µ. Thus, there is an injection

ξ : CU/ ∼→M ⊆Mi.

We wish to show that ξ is a homeomorphism. Let LU be the set of

Leontief preferences induced by paths c ∈ CU . We use the diagram below,

where id is the identity mapping:

LU × [0, 1]
σ′i×id//

σi×id
��

ϕ

==

CU/ ∼ ×[0, 1]

ϕ′i
��

M × [0, 1]
ww

ξ

ϕ∗
// ϕ∗i (M,R

[0,1]
−i )

That is, let σ′i be the obvious mapping from Leontief preference relations

to paths in CU/ ∼, which is clearly a homeomorphism. Let ϕ′i then be the

mapping that then gives allocations from reports of the form (c, ν). That

is, ϕ′i is essentially ϕi restricted to LU × R[0,1]. Observe then that CU/ ∼
maps continuously into ϕ∗i (M,R

[0,1]
−i ) via ϕ′i. Thus, if A ⊆ M is closed,

ϕ′−1 (ϕ∗(A)) is closed by the closedness of ϕ∗ and continuity of ϕ′. This

shows that ξ is continuous. By Lemma 6, σi is closed, so if A ⊆ CU/ ∼ is

closed, then
(
σ ◦ σ′−1

)
(A) is closed. This shows that ξ is closed. In sum, ξ

is a continuous, closed bijection, and therefore a homeomorphism. Thus we

have that CU/ ∼ is homeomorphic to M ⊆Mi, a contradiction, as C cannot

be embedded in any finite dimensional Euclidean space.
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Conclude that S is empty and so αi (θ; ν) = αi (θ; 0). Since ν was an

arbitrary parameter not greater than ν∗, and θ was an arbitrary member of

int I, we are done.

Finally, if neither endpoint of I is an endpoint of K(ν∗), then I ⊆
int (K(ν∗)) and we may invoke the above arguments again to conclude that

{y, x} ⊆ Aj (ν) for some ν > ν∗, a contradiction. �

Say that x ∈ A(R−i) is a (relative) interior point if /x/ ∈ int (K(R−i)).

The following lemma then demonstrates how the attainable set is traced by

its endpoints.

Lemma 7. Let Rν−i be a path in RN\i. Suppose that x /∈ A(Rν−i) but is an

interior element of A
(
Rν
′
−i

)
for ν ′ > ν. Then there is ν∗ ∈ ]ν, ν ′[ such that

x ∈
{
αli(R

ν∗
−i), α

r
i (R

ν∗
−i)
}

. Symmetrically, if x is an interior point of A
(
Rν−i

)
and does not belong to A

(
Rν
′
−i

)
for some ν ′ > ν, then there is ν∗ ∈ ]ν, ν ′[

such that x ∈
{
αli(R

ν∗
−i), α

r
i (R

ν∗
−i)
}

.

Proof. Note that the two claims of the lemma are actually equivalent: if one

is true then it implies the other by running the path Rν in reverse. Thus,

we shall prove the second claim as it allows us to more directly apply the

previous lemma.

Since x is interior to A
(
Rν−i

)
, the attainable set is non-trivial, so there

is y1 ∈ A
(
Rν−i

)
, interior, such that

{
y1, x

}
is an antichain. Let N 1 ⊆ [ν, 1]

be the set of parameters µ, at least ν, with
{
y1, x

}
⊆ A

(
Rµ−i

)
. Let ν1

correspond to ν∗ in Proposition 3. Since x and y are interior at ν, and

x leaves the attainable set at some point, ν < ν1 < 1. The proposition

further implies that {
/
y1
/
, /x/} contains an endpoint of K(ν1). Letting I1

be the interval with endpoints
/
y1
/

and /x/, we have also that αi (·; ν)|I1 is

constant in ν up to and including ν1. Thus,
{
αli(ν

1), αri (ν
1)
}
∩
{
x, y1

}
6= ∅.

If the intersection contains x we are done. If not, then there is y2 interior to

Ai(ν
1) such that {y2, x} forms an antichain. In particular, we may choose

y2 so that
∣∣/y2

/
− /x/

∣∣ < 1
2

∣∣/y1
/
− /x/

∣∣. Thus, if repetition of the above

argument results in an infinite sequence yn, then yn → x and the argument

then follows from continuity of the αl and αr functions. �
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For each k ∈ {1, . . . , |N |−1}, let Lk :=
(
L

(1,0)
1 , . . . , L

(1,0)
k , L

(0,1)
k+1 , . . . , L

(0,1)
|N |

)
.

By anonymity, for each k, there are xk and yk ∈ R2 such that for each i ∈ N ,

if Lki = L(1,0) then ϕi(L
k) = xk and otherwise, ϕi(L

k) = yk. Let qk be a

normal vector to line segment
q
xk, yk

y
. Feasibility implies ω ∈

q
xk, yk

y
.

Lemma 8. For each k such that xk 6= ω, and each i ≤ k,
q
ω, xk

y
⊆ A

(
Lk−i

)
.

Symmetrically, for i > k,
q
yk, ω

y
⊆ A

(
Lk−i

)
.

Proof. Let θω = /ω/. Construct the path ν ∈ [θω, (0, 1)] ⊆ Θ 7→ Rν by

setting

Rνi =

L(1,0) i ≤ k

Lν i > k.

By anonymity then, each side of k has a common bundle under ϕ. In

particular, for each i ≤ k, strategy-proofness and the anti-chain property of

attainable sets imply ϕi (Rν) = αr1 (ν). For the opposite side, each i > k has

ϕi (Rν) = ϕn (Rν), where we let n = |N |. By feasibility,

ϕn (Rν) =
nω − kαr1(ν)

n− k
,

so the allocation of one side is the weighted reflection through ω of the

allocation of the other. The approach of our argument is then to use the

fact that αr1 traces the (common) attainable set of the i ≤ k agents, which

means it must move in arcs bending away from the origin. This then implies

that ϕn(Rν) must move in arcs bending toward the origin. Thus if we can

show that ϕn(Rν) also traces an attainable set then we must have them both

linear.

By voluntary participation, ϕi(R
0) = ω for all ι. Assume ϕ1 (Rν) 6= ω.

Thus by feasibility and voluntary participation, ϕn(Rν) � ω � ϕ1(Rν). Fur-

ther, since attainable sets are path connected, there is x ∈ A1 (ν), interior,

with ω � x. Note that, since A1 is antichain valued, if there were ν ′ with

αl1(ν ′) = x then each x′ ∈ A1(ν ′) would have ω � x � x′, in violation of

voluntary participation. Thus, αl1 cannot touch x on the path Rν . It follows

by Lemma 7, that there is at least one ν ′ < ν such that αr1 (ν ′) = x. The
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set of such ν ′ that is less than ν is closed, and it has a maximal element ν∗.

Thus, again by Lemma 7, x ∈ A1(µ) for all µ ∈ [ν∗, ν] and is interior to the

attainable set for all these except ν∗.

For each µ ∈ [ν∗, ν], there is z ∈ A1(µ) with z ≥ ω. Let q ∈ R2
+ be normal

to Jω, xK and suppose qαr1(µ) > qx. Since x ∈ A1(µ), we have x � αr1(µ).

Since ω � x, x 6= z and so z � x, as z and x must be anti-ordered in some

way. In sum, z � x � αr1(µ). There is x′ ∈ Jz, αr1(µ)K with /x′/ = /x/.

Conclude that

qx′ = q (λz + (1− λ)αr1(µ))

> λqω + (1− λ)qx

= λqx+ (1− λ)qx

= qx,

in violation of Lemma 4. Therefore, qαr1(µ) ≤ qx. Note that x = ϕ1

(
Rν
∗)

,

and let y = ϕn(Rν
∗
). It follows, by also considering feasibility, that for each

µ ∈]ν∗, ν],

qϕn(Rµ) ≥ qy = qω = qx ≥ qαr1 (µ) = qϕ1(Rµ),(B.2)

ϕn(Rµ) � y � ω � x � αr1 (µ) = ϕ1 (Rµ) .(B.3)

If there is µ ∈]ν∗, ν] with y ∈ An(µ), then line B.3 implies it is interior.

Thus, by Lemma 7 and the fact that line B.3 holds for arbitrary µ ∈]ν∗, ν],

y ∈ An(ν). Then Lemma 4 applied to line B.2 makes the inequalities equal-

ities and yields Jϕn(Rν), ωK ⊆ An(ν). Since ν is arbitrary, this yields the

lemma.

Assume, therefore, that for each µ ∈]ν∗, ν] , y /∈ An(ν). Let µn ↘ ν∗. For

each n, there is zn ∈ An(µn) with zn ≥ ω. Suppose that each n has /zn/ ≥
/y/. Note that if zn � ϕn

(
Rµ

n)
, then by line B.3, zn � ω, a contradiction.

Therefore, since ϕn(Rµ
n
) must be �-ordered with zn, ϕn

(
Rµ

n) � zn. In

sum, /
ϕn
(
Rµ

n)/
> /zn/ ≥ /y/ .
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Since ϕn
(
Rµ

n)→ y, and /·/ is continuous, lim /zn/ = /y/, a contradiction

since y � ω and the set of points �-ordered with ω is open. Thus, we may

choose µ ∈]ν∗, ν] such that there is z ∈ An (µ) with z ≥ ω and

/ϕn (Rµ)/ > /y/ > /z/ .

Moreover, sinceAn(µ) bends away from the origin, for each θ ∈ [/z/ , /ϕn(Rµ)/],

αn(θ;µ) dominates some element of Jϕn(Rµ), zK. Thus, there is λ ∈ [0, 1]

with

qαn (/y/ ;µ) ≥ q (λϕn(Rµ) + (1− λ)z)

≥ λqy + (1− λ)qω recalling line B.2

= λqy + (1− λ)qy = qy,

Therefore, y′ := αn (/y/ ;µ) > y, and y′ is interior to An(µ). Since y′ and y

cannot be together in an attainable set, while y ∈ An(ν∗), Lemma 7 implies

there is some µ′ ∈]ν∗, µ[ with αln (µ′) = y′. As above we can choose µ′ so

that y′ is interior to An (γ) for each γ ∈]µ′, µ[.

Recall that the path Rν is defined on [θω, (0, 1)] ⊆ Θ. Suppose /y/ ≥ µ′.
Then y′ ∈ An

(
R/y/

)
and so, by strategy-proofness, ϕn

(
R/y/

)
= y′. Other-

wise, /y/ < µ′. That is, Rµ
′

n = Lµ
′

with µ′ > /y/ = /y′/, where αln(µ′) = y′.

Thus, each z ∈ An(µ′) has y′ � z, and therefore C
(
Lµ
′
, An(µ′)

)
= {y′},

yielding ϕn(Rµ
′
) = y′. In sum, there is µ∗ ∈ [µ′, ν] ⊆]ν∗, ν] such that

ϕn
(
Rµ
∗)

= y′. This implies by feasibility that ϕ1

(
Rµ
∗)

< x. However,

µ∗ > ν∗, so x ∈ A1 (µ∗), contradicting strategy-proofness. Conclude that

y ∈ An(µ). �

Lemma 9. Assume that there is p ∈ R2 such that each i ∈ N has pϕi (R) =

pω and, moreover, that no agent i ∈ N has ϕi (R) = ω. Assume also

that for each i ∈ N , Jϕi (R) , ωK ⊆ A(R−i). Choose i ∈ N and let R′i be

such that ϕi (R′i, R−i) ∈ Jϕi (R) , ωK. Then it remains that each j ∈ N has

pϕj(R
′
i, R−i) = pω, Jϕj (R′i, R−i) , ωK ⊆ A (R′i, R−i−j), and no agent j ∈ N

has ϕj (R′i, R−i) = ω.
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Proof. LetRνi be a path inR fromRi toR′i with C (A(Ri), R
ν
i ) ⊆ Jϕi (R) , ωK.

Let

ν∗ = inf {ν : ∀j ∈ N,ϕj(Rνi , R−i) = ω}

and suppose there are ν ′ < ν∗ and j ∈ N with

pϕj(R
ν′
i , R−i) 6= pω.

By feasibility there is k ∈ N with pϕk(R
ν′
i , R−i) > pω. Since p is nor-

mal to Jϕk (R) , ωK, which is in A (R−k), to avoid a contradiction with

Lemma 4, Lemma 7 requires that αrk (Rµi , R−i−k) or αlk (Rµi , R−i−k) first

travel, along Jϕk (R) , ωK, to ω. By the convexity of preferences and the

fact that ϕk (R) is optimal for Rk from Jϕk (R) , ωK, there is ν ′′ < ν ′ with

C
(
A
(
Rν
′′
i , R−i−k

)
, Rk

)
= {ω}. This violates strategy-proofness, since

ν ′′ < ν∗ implies ϕk

(
Rν
′′
i , R−i

)
6= ω.

Conclude via continuity that for each ν ′ ≤ ν∗ and each j ∈ N , pϕj(R
ν′
i , R−i) =

pω. There is j ∈ N such that ϕj
(
Rν
∗
i , R−i

)
= ω. Since i’s attainable set

has not changed, i is not consuming ω at this point, so there is at least one

agent on each side of ω. That is, there is k with ϕk
(
Rν
∗
i , R−i

)
6= ω and/

ϕk

(
Rν
∗
i , R−i

)/
≶ /ω/ ≶

/
ϕi

(
Rν
∗
i , R−i

)/
,

where the top and bottom row of inequalities are two possible cases; the

argument is similar for both. Prior to ν∗, j shares a side with either k or i;

assume it is k. Note that by Lemma 7, Jϕk(R), ωK ∩ Ak
(
Rν
∗
i , R−i−k

)
has a

non-trivial intersection. Thus there is a path, Rµj , from Rj to Rk such that

C
(
{y : py = pω} , Rµj

)
remains on the same side of ω as ϕk1

(
Rν
∗
i , R−i

)
. It

follows that

C
(
A(Rν

∗
i , R−i−j), R

µ
j

)
= {ω}

and so of course this is the choice of the rule for j. Then by non-bossy non-

traders, ϕk

(
Rν
∗
i , R

1
j , R−i−j

)
= ϕk

(
Rν
∗
i , R−i

)
6= ω, and we have a violation

of anonymity.
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Thus, ν∗ = ∞, so for each element of the path and each j ∈ N , in-

cluding ν = 1, ϕj (Rνi , R−i) 6= ω. Since [0, 1] is compact, the distance from

ϕj (Rνi , R−i) to ω attains a minimum and thus is bounded away from zero

on the entire path. By Proposition 3 and Lemma 7, there is a non-trivial

Jz, ωK ⊆ Jϕj(R), ωK ⊆ A (R′i, R−i−j). By the same arguments of the first

paragraph, pϕj (Rνi , R−i) = pω, and so we conclude that Jϕj (Rνi , R−i) , ωK ⊆
A (R′i, R−i−j). �

Proof of Theorem 1. This now follows rather directly from Lemmas 8 and

9. The set of profiles R such that

∀i,∀k,C
({
x : qkx = qkω

}
, Ri

)
63 ω

is open and dense. We show the proof on this set and it follows on the whole

domain by continuity.

Let R be such a preference profile and let N (1,0) := {i ∈ N : p1(Ri; q
k) >

ω1} have
∣∣N (1,0)

∣∣ = k. Relabel the agents so that i ∈ N (1,0) if and only if

Lki = L(1,0). We show that for each i ∈ N , qkϕi(R) = qkω. The proof is by

induction. For each ι ∈ N , let Rι :=
(
R1, . . . , Rι, L

k
ι+1, . . . , L

k
|N |

)
. Induction

will be with respect to ι.

If ϕ1(Lk) = ω, then all agents consume ω, and the result follows directly

from non-bossy non-traders.

By Lemma 8, for each i ∈ N ,
q
ϕi(R

0), ω
y
⊆ A(R0

−i). Since R is a generic

economy, C
(q
ϕ1

(
R0
)
, ω

y
, R1

)
63 ω, so Lemma 9 can be invoked. Repeating

this yields the result. �

References
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