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Abstract

We extend the familiar shortest path problem by supposing that agents have demands over

multiple periods. This potentially allows agents to combine their paths if their demands are

complementary; for instance if one agent only needs a connection to the source in the summer

while the other requires it only in the winter.

We show that the resulting cost sharing problem always has a non-empty core, regardless of

the number of agents and periods, the cost structure or the demand profile.

We then exploit the fact that the model encompasses many well-studied problems to obtain or

reobtain non-vacuity results for the cores of source-connection problems, (m-sided) assignment

problems and minimum coloring problems.

JEL classification numbers: C71, D63.

Keywords: shortest path, demand over multiple periods, cooperative game, core, source-connection,

assignment.

1 Introduction

Shortest path problems are well-studied in operations research and economics. While they are

often used to determine, for instance, the quickest route for a truck making a delivery from A to

B, we are interested in applications in which capacity has to be built to connect agents to a source,

the capacity is not easily adjustable and the cost is linearly increasing with capacity. Gas and oil

pipelines, as well as rail networks, are some examples that fit the bill. Following Rosenthal (2013)

and Bahel and Trudeau (2014), we are interested in the cost sharing problem generated by these
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situations. We, however, generalize the problem by supposing that there are multiple periods, and

that agents have demands that vary over these periods. Imagine two small cities, A and B, located

respectively to the northeast and southeast of the capital city. City A is a ski destination popular

in the winter, while city B is a beach destination popular in the summer. When designing a rail

network that will connect both cities to the capital, we could connect them both directly to the

capital, but it probably makes more sense to connect only one, say A, while connecting B to A,

to take advantage of the complementary demand to both cities. We could say the same of gas

pipelines to cities A and B, for which the gas is either used for heating in the winter or cooling in

the summer.

The model in itself, that we call the multi-period shortest path (MSP) problem, has not been

studied in economics, and our first contribution is to show that the core of the resulting cooperative

game is always non-empty. Thus, we are always able to share the cost in a way that makes sure

that no group of agents could jointly connect to the source at a cost cheaper than the amount they

are assigned. The non-vacuity of the core thus extends from the classic, one-period shortest path

problem (Rosenthal (2013)), and does not require any condition on the network structure, number

of periods, number of agents or demand profile. In fact, it holds for any subgame as well. Our proof

is strongly inspired by Quant et al. (2006), who study a (one-period) network flow problem where

on each edge of the network there is a cost function that is convex with respect to the flow. The

non-vacuity result is also valid whether we suppose that a coalition of agents can connect through

(non-cooperating) neighbors or not. These variants are discussed for the related minimum cost

spanning tree problem in Trudeau and Vidal-Puga (2019). Our non-vacuity result also extends to

private games (agents can prevent others from using their nodes) where the cost functions on all

edges are convex.

Our second contribution is to show how general the model is, and how it encompasses many

well-known problems. Source-connection problems are an obvious group of problems that can

be rewritten as MSP problems, such as the aforementioned (one-period) shortest path and the

minimum cost spanning tree (mcst) problems (Bird (1976)). Mcst problems are such that on any

edge the first unit of capacity is costly, but others are free.

Less obviously, MSP problems also encompass assignment problems (Shapley and Shubik (1971)),

where we need to match agents belonging to different sides of the market, with the classic example

being a housing market. As in the example described above, we can construct a MSP problem in

which we have some cities demanding in the summer and some others in the winter, and matching

them allows to save on cost. It is well-known that the core of an assignment game is always non-

empty, and we show that all assignment problems can be written as a MSP problem. Extensions of

the assignment problem to m-sides, with m > 2, is where the connection to MSP problems is more

useful. Many variants have been proposed and we study the strict m-sided assignment problem of

Quint (1991) and the generalized version of Atay et al. (2016). In the former, value is created only
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when we match a group that contains one player from each side, while in the latter there is also

some value created when we match smaller groups of agents from different sides. In both cases,

the core of the corresponding game can be empty, and sufficient conditions for its non-vacuity have

been proposed. Some but not all of these m-sided assignment problems have a corresponding MSP

representation, but by our stability result, if an assignment problem can be represented as a MSP

problem, it has a non-empty core. We provide sufficient conditions for representability as MSP

problems, and thus for non-vacuity of the core, and show that the resulting set of stable games are

distinct from those described by Quint (1991) and Atay et al. (2016).

We also examine compatibility problems, most notably the minimum coloring problem, studied

as a cost sharing problem by Okamoto (2008). In those problems, the set of agents has to be

partitioned in groups, such that agents in the same group have no conflict with each other. The

conflicts are represented in a graph, with an edge between i and j on the graph indicating that

i and j are in conflict and cannot be assigned to the same group. A sufficient condition for the

non-vacuity of the core is provided, requiring that for any subset of agents, the number of groups

needed to avoid conflicts (the chromatic number of the graph) is equal to the size of the largest

group of agents all in conflict with each other (the size of the largest clique in the graph). A

simpler version where the condition is always verified is presented by Bahel and Trudeau (2019)

where agents have time-sensitive jobs to be processed on a machine, and in which we are trying to

determine the smallest number of machines required to process all jobs without conflict. We show

that when the condition of Okamoto (2008) is verified, we have representability as a MSP problem.

We are also able to use our stability result in a different way to extend the set of problems with

non-empty cores. If we weaken the condition of Okamoto (2008) so that it only needs to hold for the

grand coalition, then there exists a MSP problem which has the same cost for the grand coalition

and a cost that might be smaller but not strictly larger for any other coalition. The core of this

MSP problem is thus a subset of the core of the minimum coloring problem. By our non-vacuity

result for the MSP problem, the core of the minimum coloring problem is also non-empty.

The rest of the paper is divided as follows. Section 2 describes the MSP problem and the

associated cooperative game. Section 3 is devoted to the non-emptiness of the core. In Section 4

we show applications to source connection, assignment and compatibility problems.

2 The model

Let N = {1, ..., n} be the set of agents. Let M = {1, ...,m} be the set of periods. Both n and m

are finite, with n ≥ 2 and m ≥ 1.

For all i ∈ N, let qi = (qi1, ..., qim) ∈ RM+ be the demand profile for agent i. In particular, for

t ∈ M, qit is the demand of agent i at time t. Let Q = (q1, ..., qn) be the demand profiles for all

agents. For all t ∈ M, let N t(Q) = {i ∈ N |qit > 0} be the set of agents with a strictly positive
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demand at time t.

Agents are located at different points in space. We represent their position on a complete,

simple digraph, with each agent occupying a different node. There is a special node, 0, that we call

the source. For all S ⊆ N, S0 := S ∪ {0} . Let E := {(i, j)|i, j ∈ N0 and i 6= j} denote the set of

directed edges. To obtain their demand, agents need to build paths to the source. In addition, the

capacity of these paths must be large enough to carry their demands in every period.

For each pair (i, j) ∈ E, cij ≥ 0 represents the cost to install a capacity of one unit from i

to j. Cost is linear with capacity, so for any k ≥ 0, the cost of installing a capacity of k on edge

(i, j) is k · cij . Let c = (cij)(i,j)∈E be the collection of costs of all edges. We abuse language slightly

by calling it a cost matrix. We sometimes make assumptions on c. We say that c is symmetric

if cij = cji for all i, j ∈ N0. We say that c satisfies the triangle inequality if for any i, j, k ∈ N0,

cik ≤ cij + cjk.

The tuple (N,M,Q, c) is called a multi-period shortest path problem (MSP problem for short).

2.1 Optimal networks

The first objective is to build a network connecting all agents to the source that contains enough

capacity to simultaneously carry all demands at each period. For any (i, j) ∈ E, let zij ≥ 0 be the

capacity installed from i to j. Let z = (zij)(i,j)∈E be the collection of capacities on all edges. We

call z a network.

For i ∈ N, a path from i to the source Pi is a sequence of edges ((is, is+1))rs=1 with (is, is+1) ∈ E
for all s ∈ {1, ..., r} such that i1 = i, ir+1 = 0 and for l,m ∈ {1, ..., r}, il = im implies l = m. We

use (i, j) ∈ Pi to denote that (i, j) is an element of Pi. We say that r is the length of path Pi.

The set of paths for agent i to the source is denoted by Pi. Note that all Pi have the same finite

cardinality. A connection plan for i ∈ N is a tuple fi = (fi,t)t∈M , denoting the flows for agent i for

all paths and all periods, where for all t ∈M, fi,t = (fPi,t)Pi∈Pi
such that fPi,t ≥ 0 for all Pi ∈ Pi.

The value fPi,t denotes the flow that agent i sends through path Pi in period t. Let f = (fi)i∈N be

a profile of connection plans for all agents. The connection plan f is feasible for demand Q if for

all i ∈ N and all t ∈M,
∑

Pi∈Pi
fPi,t = qit. Let F (N,Q) be the set of feasible connection plans for

demand Q.

A network z realizes f if

zjk ≥ max
t∈M

∑
i∈N

∑
Pi∈Pi

s.t. (j,k)∈Pi

fPi,t

for all (j, k) ∈ E, i.e., if the capacity installed is sufficient to carry all flows, on all edges and in all

periods. We call zf the network in which all weak inequalities hold with equality.

For any z, its cost is γ(z, c) =
∑

(j,k)∈E zjkcjk. Let C(N,Q) = minf∈F (N,Q) γ(zf , c) be the cost

of the cheapest feasible connection plan for the grand coalition N. In the same manner, for all
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S ⊆ N, we define C(S,Q) = minf∈F (N,QS) γ(zf , c) where QS is the restriction of Q to S, i.e. for all

t ∈M, qSit = qit if i ∈ S and qSit = 0 otherwise. When there is no confusion we write C(N) instead

of C(N,Q) and C(S) instead of C(S,Q)

Example 1 Throughout the paper we will illustrate our results with a 4-player example, with the

cost matrix described in Figure 1. Circled numbers represent the agents and the source. We suppose

that the cost matrix is symmetric and the number on an edge {i, j} represents the cost from i to j

and j to i. It is easy to see that the example satisfies the triangle inequality.

0

1 4

32

5
7 4

7

3

2

3 5

0

5

Figure 1: Example of a cost matrix with 4 agents.

Suppose that m = 2 and that Q = ((1, 0) , (2, 1) , (0, 1) , (2, 3)) . While there are 10 units being

consumed, they are evenly split between the two periods. We consider paths of length 1 and 2 to

the source. Let P ki = ((i, k), (k, 0)) if i 6= k and P ki = ((i, 0)) otherwise. Consider the following

connection plans f and the cost of the corresponding network zf .

Agent 1 Agent 2 Agent 3 Agent 4

Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 Period 1 Period 2 γ(zf , c)

f1 P 1
1 ∅ P 2

2 P 2
2 ∅ P 3

3 P 4
4 P 4

4 44

f2 P 4
1 ∅ P 2

2 P 2
2 ∅ P 2

3 P 4
4 P 4

4 43

f3 P 3
1 ∅ P 4

2 P 4
2 ∅ P 3

3 P 4
4 P 4

4 34

Connection plan f1 connects all agents directly to the source, with a capacity equal to their

largest demand in any period. f2 takes advantage of the fact that agents 1 and 4 jointly demand

3 units in each period. Thus, while agent 4 still installs 3 units of capacity on (4, 0), now agent 1

consumes the unused unit in period 1, connecting through (1, 4). We do the same for agents 2 and

3, who together demand 2 units in each period. f3 follows the same idea, but instead has agents 1

and 3 and agents 2 and 4 partner up. There are many other feasible connection plans, but it can
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be verified that none are cheaper than f3. Thus, C(N) = 34.

2.2 Cooperative game

Let (N,M,Q, c) be a MSP problem. Note that C(·) can be regarded as the characteristic function of

a cooperative cost game (N,C), describing the cheapest way for any S ⊆ N to obtain its demand.

By definition C(∅) = 0 and S ⊆ T implies that C(S) ≤ C(T ). For each S ⊆ N we define the

subgame CS such that for all T ∈ 2S , CS(T ) ≡ C(T ).

An allocation is a vector y ∈ RN such that
∑

i∈N yi = C(N). For any S ⊆ N, we define

y(S) ≡
∑

i∈S yi. We say that an allocation y is a core allocation if y(S) ≤ C(S) for all S ⊂ N. For

a cooperative game with characteristic function C, the set of all core allocations is denoted with

Core(C).

A map λ : 2N\ {∅} → [0, 1] is said to be balanced if for all i ∈ N,
∑

S∈2N
i∈S

λS = 1. Bondareva

(1963) and Shapley (1967) have shown that the core of the cooperative (cost) game (N,C) is non-

empty if and only if for any balanced map λ,
∑

S∈2N\{∅} λS C(S) ≥ C(N), i.e. if (N,C) is balanced.

We say that a game is totally balanced if all subgames have a non-empty core.

We often convert (N,C) into a savings game (N,V ) as follows: for any C(·) and S ⊆ N, let

V (S) =
∑

i∈S C ({i}) − C(S). V (S) is the savings generated by the cooperation of agents in S,

compared to each acting on their own. The allocation yv is the savings game-equivalent of y and

is defined as follows: for all i ∈ N, yvi = C({i}) − yi. The allocation yv is a core allocation if

yv(S) ≥ V (S) for all S ⊂ N. By definition, yv ∈ Core(V ) if and only if y ∈ Core(C).

3 The core of MSP problems

3.1 MSP problems generate balanced games

We show in this section that the core of a MSP game is always non-empty. This is done by showing

that the game is balanced, with a proof inspired by Quant et al. (2006). We take a balanced

map, and consider the optimal connection plan and network for each coalition. Multiplying by the

balanced map and then summing up, we show that we obtain a connection plan that is feasible for

the grand coalition and a network that realizes it. Since the cost is linear on each edge, the cost

of this network is the weighted sum of the costs of the networks for all separate coalitions. As this

network realizes a feasible connection plan for the grand coalition, the cost to connect the grand

coalition can thus not be higher and the game is thus balanced.

Theorem 1 For all MSP problems (N,M,Q, c), Core(C) is non-empty.

Proof.
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Let λ be a balanced map and B =
{
S ∈ 2N\ {∅} | λS > 0

}
. For all S ∈ B, let fS be (one of)

its optimal connection plan(s) and zS the corresponding network. Let z∗ =
∑

S∈B λSz
S . Let f∗ be

the connection plan such that f∗i =
∑

S∈B λSf
S
i for all i ∈ N. Note that fSi = 0 for all i 6∈ S.

We verify that f∗ ∈ F (N,Q).

Since fS ∈ F (N,QS), we have that for all i ∈ S and all t ∈ M,
∑

Pi∈Pi
fSPi,t

= qit. Multiplying

by λS and summing over S ∈ B, i ∈ S on both sides, we obtain:∑
S∈B
i∈S

λS
∑
Pi∈Pi

fSPi,t =
∑
S∈B
i∈S

λSqit

∑
Pi∈Pi

∑
S∈B
i∈S

λSf
S
Pi,t =

∑
S∈B
i∈S

λSqit

∑
Pi∈Pi

f∗Pi,t = qit

and thus f∗ ∈ F (N,Q).

We next verify that z∗ realizes f∗.

Since zS realizes fS , we have that

zSjk = max
t∈M

∑
i∈N

∑
Pi∈Pi

s.t. (j,k)∈Pi

fSPi,t

for all (j, k) ∈ E. Multiplying by λS and summing over S ∈ B on both sides, we obtain:∑
S∈B

λSz
S
jk = z∗jk =

∑
S∈B

λS max
t∈M

∑
i∈N

∑
Pi∈Pi

s.t. (j,k)∈Pi

fSPi,t

≥ max
t∈M

∑
i∈N

∑
Pi∈Pi

s.t. (j,k)∈Pi

∑
S∈B

λSf
S
Pi,t

= max
t∈M

∑
i∈N

∑
Pi∈Pi

s.t. (j,k)∈Pi

f∗Pi,t

for all (j, k) ∈ E and thus z∗ realizes f∗.

Therefore, we have that ∑
S∈B

λSC(S) =
∑
S∈B

λSγ(zS , c)

= γ(z∗, c)

≥ C(N)

where the last inequality comes from the fact that z∗ realizes f∗ ∈ F (N,Q).

Thus, C is balanced.
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MSP problems therefore have the interesting feature that we can always share the cost in a

stable manner, guaranteeing that no group has incentives to secede and do the project by itself.

While this is known to be true for classic, one-period shortest path problems, it is interesting to see

that it also holds in our more general setting, with no conditions on the number of players, number

of periods, demands or cost structure.

It is easy to see that for a MSP problem (N,M,Q, c) the above proof extends to all subgames,

yielding the following corollary.

Corollary 1 For all MSP problems (N,M,Q, c), C(·) is totally balanced.

3.2 Extension to the private property game

So far, we have made the assumption that agents in S can use the nodes of players in N\S to

construct their paths to the source. We can amend this assumption by supposing that a coalition

can only use its own nodes (and the source). In many source connection problems, like minimum

cost spanning tree problems, these distinct games are called private or public games, depending on

whether the nodes are privately or publicly owned. Stated differently, in a private game, an agent

can refuse to let others use his node when he is not cooperating with them. Among others, see

Trudeau and Vidal-Puga (2019) for a discussion of the two approaches.

For a MSP problem (N,M,Q, c) the associated private game is denoted CPRV (·, Q) , or, once

again when there is no confusion, CPRV (·) . Recalling that F (S,QS) is the set of feasible connection

plans when agents have access to nodes in S0 and the agents in S have demand profile QS , we have

that CPRV (S) = minf∈F (S,QS) γ(zf , c).

We can immediately notice that CPRV (S) ≥ C(S) for all S ⊂ N and CPRV (N) = C(N). It is

thus immediate that if y ∈ Core(C), then y ∈ Core(CPRV ). It is obvious that the opposite is not

true. We therefore have the following results.

Lemma 1 For all MSP problems (N,M,Q, c), Core(C) ⊆ Core(CPRV ).

Corollary 2 For all MSP problems (N,M,Q, c), Core(CPRV ) is non-empty.

3.3 Returns to scale

Another assumption of our model is that we have a linear cost function for each edge. Alternatively,

we could have concave or convex cost functions. Assuming concave cost functions on all edges would

lead to increasing returns to scale, as edges become cheaper the more they are used. If we take

all cost functions to be convex, we get decreasing returns to scale and spreading flow over several

paths might be beneficial.
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Perhaps surprisingly, if we combine concave cost functions and cooperative gains, we might

not be able to find core allocations. Specifically, if the bulk of the gains are generated by small

coalitions, the core might be empty. In Trudeau (2009), an example of a (single-period) network

flow problem with concave cost functions that has an empty core is provided. The result extends

to our multiple period framework.

Though convex cost functions give rise to decreasing returns, this can, however, be partially

offset by gains from other factors. In our setup, the ability of an agent to share his unused capacity

in a given period is such a gain, and the access to new edges in the private game is another. As

the coalition grows, the possibilities to minimize cost increase. We call these technological gains.

Suppose first that we have a single period and a public game. In this case, there are no

technological gains to compensate the decreasing returns to scale. The core as defined is empty, as

coalitions would prefer to act on their own.1

If, however, we do have positive technological gains, they can offset the losses caused by the

convex cost functions. Quant et al. (2006) consider a (single-period) private network flow game

with convex cost functions and show that the core, as defined in this paper, is always non-empty.

Although the returns to scale are negative, as a coalition grows, it also gains access to new edges

and can now spread its flows to avoid the increasing marginal costs. This is enough to generate a

non-empty core.

We can extend the result of Quant et al. (2006) to multiple periods. Suppose that for each edge

(i, j) we have a convex and increasing cost function θij(kij) with θij(0) = 0. Let Θ = (θij)(i,j)∈E

and (N,M,Q,Θ) be the resulting network-flow problem with demand over multiple periods. In all

our definitions we replace c by Θ. (As we have non-constant returns to scale, it is less obvious to

identify flows with particular paths between an agent and the source. We talk of network flows

instead.)

Theorem 2 If Θ contains only convex cost functions, then Core(CPRV ) is non-empty.

Proof. The proof follows Quant et al. (2006) and our earlier proof for the case with linear cost

functions.

Let λ be a balanced map and B =
{
S ∈ 2N\ {∅} | λS > 0

}
. For all S ∈ B, let fS be (one of)

its optimal connection plan(s) and zS the corresponding network. Let z∗ =
∑

S∈B λSz
S . Let f∗ be

the connection plan such that f∗i =
∑

S∈B λSf
S
i for all i ∈ N.

1The interpretation of the core collapses in this context, as the threat to act on your own to avoid negative

externalities is an empty one. It is in fact more natural to reverse the sign of the inequalities in the definition of the

core, so that each coalition bears a part of the decreasing returns to scale.
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All we need to do is show that γ(f∗,Θ) ≤
∑

S∈B λSγ(fS ,Θ). We have

γ(f∗,Θ) =
∑
(i,j)

θij(z
∗
ij)

=
∑
(i,j)

θij(
∑
S∈B

λSz
S
ij)

≤
∑
(i,j)

∑
S∈B

λSθij(z
S
ij)

=
∑
S∈B

∑
(i,j)

λSθij(z
S
ij)

=
∑
S∈B

λSγ(fS ,Θ)

=
∑
S∈B

λSC
PRV (S)

where the inequality follows from the fact that in the private game, only coalitions containing {i, j}
can use edge (i, j). This implies that

∑
S∈B
zSij>0

λS ≤ 1 and by the properties of a convex function, the

inequality follows.

4 Applications

The main attraction of multi-period shortest path problems is that they encompass a large number

of well-studied problems. We describe some of those in this section.

4.1 Source connection problems

The most obvious application is to the various source-connection problems. We discuss in this

subsection (classic) shortest path problems, minimum cost spanning tree problems and minimum

cost arborescence problems.

4.1.1 Shortest-path problems

As discussed in the introduction, MSP problems are extensions of the classic shortest path problems.

By setting m = 1, we recover the full set of (classic) shortest path problems. Note that the public

game is not particularly interesting, as each agent paying the cost of his path(s) is the only allocation

in the core. More interesting allocations are found in the core of the private game, which include

the possibility of subsidies for well-located agents. See Rosenthal (2013) and Bahel and Trudeau

(2014).
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4.1.2 Minimum cost spanning tree and minimum cost arborescence problems

Less obviously, MSP problems also encompass the well-studied minimum cost spanning tree (mcst)

problems, in which the cost function on each edge is a fixed cost that has to be paid if the link is

used (in any direction), with the cost not depending on the capacity. It is well established that the

cores of the public and private versions of that problem are non-empty (Bird (1976)).

We can obtain mcst problems as MSP problems by letting n = m and by having Q = Dn, where

Dn is a “diagonal matrix” such that Dn
it = 1 if i = t and Dn

it = 0 otherwise. In words, we have the

same number of periods as agents, and each agent demands in a different period. It now becomes

possible to construct a single tree (with capacity 1) connecting all agents to the source as they will

each use it in a different period. Because all demands are of one unit, the per-unit cost in MSP

problems behaves like the fixed cost of mcst problems.

Lemma 2 If the MSP problem (N,M,Q, c) is such that |N | = |M | , Q = Dn and c is symmetric,

then (N,M,Q, c) is equivalent to a mcst problem. In addition, all mcst problems can be written as

MSP problems.

The second statement in the lemma is obvious: starting from the mcst problem, composed of

N and a cost matrix c, the equivalent MSP problem is (N,N,Dn, c).

Example 2 We revisit Example 1. Suppose that to N and c we add M = {1, ..., 4} and Q = D4,

i.e. agent i demands 1 unit in period i and none in the other periods. We can then build a minimum

cost spanning tree composed of edges (4,2), (2,1), (1,3) and (3,0), for a total cost of 9. We build a

capacity of 1 on each of those edges, and in period i, agent i uses the path on that tree from i to

the source.

Minimum cost arborescence (mca) problems are extensions of mcst problems where the cost

matrix might be asymmetric. The core of both the private and public games are non-empty, and

the cooperative games generated by these problems were studied in Dutta and Mishra (2012) and

Bahel and Trudeau (2017). The link with MSP problems is the same as for mcst problems, except

that we now allow for asymmetric cost functions.

Lemma 3 If the MSP problem (N,M,Q, c) is such that |N | = |M | and Q = Dn, then (N,M,Q, c)

is equivalent to a mca problem. In addition, all mca problems can be written as MSP problems.

4.1.3 Steiner trees and other source connection problems

Steiner tree problems are identical to mcst problems, with the exception that we have public nodes

not occupied by any agent. While it might seem that Steiner tree problems can be written as

MSP problems, it cannot be, as we have examples of Steiner tree problems generating empty cores

(Skorin-Kapov, 1995).
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Consider a problem with 3 agents (1, 2 and 3), and 3 Steiner nodes (a, b and c). Costs are

represented in Figure 2, with drawn edges having a cost of 1 and others having a cost of 10.

0

a

2b

1 c

3

Figure 2: Steiner tree problem

In the Steiner tree problem, any pair of agents can connect at a total cost of 3 (with both

connecting to the Steiner node they share a cheap connection to) while the three agents together

connect at a total cost of 5 (with one pair connecting as before, and the third agent connecting

through another Steiner node). The core of this game is empty.

In the corresponding MSP problem with the same graph, and with agent i demanding one unit

in period i and none in other periods (we can view the Steiner nodes as being occupied by agents

with null demands), the grand coalition can do better by putting a weight of 1/2 on the connection

plan of each pair: build capacities of 1/2 on each of the represented edges, for a total cost of 4.5.

The corresponding game is then balanced.

Thus, we can view Steiner tree problems as a MSP problem with the additional constraint that

installed capacities must be 0 or 1. The additional constraint is what compromises the balancedness

of the game. The presence of Steiner nodes is what can make non 0-1 capacities optimal, which

explains why we can represent mcst problems as MSP problems.

As discussed previously, if we considered the extension of (private) MSP problems to cases with

convex functions on every edge, we would obtain the network flow problems of Quant et al. (2006)

as a special case with a single period.

4.2 Assignment and other matching problems

The next set of problems covered by MSP problems are assignment problems (Shapley and Shubik

(1971)), in which we have two sets of agents and there is a value to match agents from different

sets. In an assignment, an agent can be assigned to at most one agent from the other side, and
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the value created is pair-specific. An application is a market for houses. The well-studied model

always has a non-empty core. We show in this section that all assignment problems can be written

as a MSP problem. This result is much less obvious than the previous subsection, as it involves

defining c in a precise way to reflect the pair-specific benefits of matching, before reinterpreting the

cost game as a savings game.

There are many extensions of (2-sided) assignment games to m-sided assignment games, and

we lose the certain non-emptiness of the core. We discuss two different extensions and by writing

them as MSP problems, we obtain new sets of such problems with non-empty cores.

4.2.1 Classic assignment problems

An assignment problem is a tuple (N1, N2, v), where N i is the set of agents on side i of the market

and v = (vij)i∈N1,j∈N2 gives the value created by each pair of agents from different sides. We have

that N = ∪iN i and for all S ⊂ N , Si = S ∩N i,

An eligible assignment is a set of pairs a ⊂ N1 × N2 such that if (i, j) ∈ a, there is no k 6= j

such that (i, k) ∈ a or l 6= i such that (l, j) ∈ a. We slightly abuse notation and use k 6∈ a to denote

that there is no (i, j) ∈ a such that k = i or k = j.

Let Ω(N1, N2) be the set of eligible assignments. To find the optimal assignment we need to

find a∗ such that

a∗ ∈ arg max
a∈Ω(N1,N2)

∑
(i,j)∈a

vij .

Let V A(S) = maxa∈Ω(S1,S2)

∑
(i,j)∈a vij for all S ⊆ N .

As can be expected, the way to model assignment problems as MSP problems is to have two

periods, with agents demanding in only one of the two periods.

Example 3 We reconsider Example 1. Suppose that to N and c we add M = {1, 2} and Q =

((1, 0) , (1, 0) , (0, 1) , (0, 1)) , i.e. agents 1 and 2 are on one side of the market and 3 and 4 are on

the other.

Agents 1 and 3 can join forces by building the path ((1, 3) , (3, 0)) at a cost of 6; a saving of

3 compared to both of them connecting directly to the source. In the same way, agents 1 and 4

would obtain a saving of 4 by building the path ((4, 1) , (1, 0)), agents 2 and 3 generate a saving of

2 by building the path ((2, 3) , (3, 0)) and agents 2 and 4 generate a saving of 7 by building the path

((4, 2) , (2, 0)) .

Thus, the optimal assignment is to match agent 1 with agent 3 and agent 2 with agent 4, for

total savings of 10.

We show that all MSP problems of this form and such that the cost matrix satisfies the triangle

inequality are assignment games.
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Lemma 4 Let m = 2, Q ∈ {0, 1}N×M and qi1 + qi2 = 1 for all i ∈ N and let c satisfy the triangle

inequality. The MSP problem (N,M,Q, c) can then be written as an assignment game.

Proof. Let N1 ∪N2 = N be such that N1 = N1(Q) and N2 = N2(Q). Note that by definition of

Q, N1 ∩N2 = ∅ and recall that V (S) =
∑

i∈S C ({i})− C(S).

Let v = (vij)i∈N1,j∈N2 be such that vij = V ({i, j}). We show that V (S) = maxa∈Ω(S1,S2)

∑
(i,j)∈a vij

for all S ⊆ N .

It is easy to see that for all S such that S ⊆ N1 or S ⊆ N2, C(S) =
∑

i∈S C ({i}) and thus

V (S) = 0.

Now let S ⊆ N be such S1 6= ∅ and S2 6= ∅. As c satisfies the triangle inequality we only

need to consider two types of paths for any i ∈ S: ((i, 0)) and ((i, k), (k, 0)) for (i, k) ∈ S1 × S2 or

(k, i) ∈ S1 × S2. Clearly, if in the optimal network for S all agents send their flow over one path

only, we can find an a ∈ Ω(S1, S2) such that C(S,Q) =
∑

(i,j)∈aC({i, j}) +
∑

k 6∈aC({k}).
Now suppose that the optimal network zf for S realizes a connection plan in which some agents

send their flow over more than one path. Let fki denote the flow agent i sends over path ((i, k), (k, 0))

and f ii the flow of agent i over path ((i, 0)). We omit t for simplicity, as for all i ∈ N either qi1 = 0

or qi2 = 0. As c satisfies the triangle inequality, we can moreover assume that
∑

i 6=k f
k
i ≤ fkk ≤ 1

for all i, k ∈ S. This follows from the fact that it is only optimal for i to connect through k if it

can use ks unused capacity. If the first inequality is violated, not all agents connecting through k

can simultaneously use that unused capacity. Then

C(S) =
∑
i,j∈S

cij · zij =
∑

{i,j};fji >0

C({i, j}) · f ji +
∑

k;
∑

i 6=k f
k
i <f

k
k

C({k}) · (fkk −
∑
i 6=k

fki ).

It then follows that there must be a set of eligible assignments {a1, ..., an} ⊆ Ω(S1, S2) and a set

of weights (w1, ..., wn) ∈ (0, 1)n ,
∑n

i=1wi = 1 s.t.

C(S) =
n∑
l=1

∑
(i,j)∈al

C({i, j}) · wl +
∑

k;
∑

i 6=k f
k
i <f

k
k

C({k}) · (fkk −
∑
i 6=k

fki ).

Connection plan f is thus a convex combination of eligible assignments and therefore there must

exist an am ∈ Ω(S1, S2) such that

C(S) =
n∑
l=1

∑
(i,j)∈al

C({i, j}) · wl +
∑

k;
∑

i 6=k f
k
i <f

k
k

C({k}) · (fkk −
∑
i 6=k

fki )

≥
∑

(i,j)∈am

C({i, j}) +
∑
k∈S
k/∈am

C({k})

We can therefore conclude that if a network is optimal, it must realize a connection plan in which

for all i ∈ S, fki = 1 for some k ∈ S and f ji = 0 for all j ∈ N\{k}. Thus
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C(S) = min
a∈Ω(S1,S2)

∑
(i,j)∈a

C({i, j}) +
∑
k∈S
k/∈a

C({k})

and by definition of V (S) it follows that V (S) = V A(S).

The following example shows that it is necessary for our result that c satisfies the triangle in-

equality.

Example 4 Let N1 = {1, 2, 3} and N2 = {4, 5, 6}. The cost structure is as in the figure below,

where all edges not drawn have a cost of 10.

0

1

43

2 5

6

3 3

2 11

1

1

Figure 3: Example of a cost matrix violating the triangle inequality.

This cost matrix gives rise to the following cost savings for each pair:

1 2 3

4 2 4 5

5 0 3 3

6 0 3 3
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We can see that V A(N) = 8. However, the cheapest network satisfying all demands has a total

cost of 16, while the sum of the costs of the individual agents is 25, giving V (N) = 25 − 16 = 9.

The difference between V A(N) and V (N) arises due to the fact that in the grand coalition, agent 4

can both share edge (3, 2) with agent 3 and edge (1, 0) with agent 1.

We show that the full set of assignment problems can be written as MSP problems.

Lemma 5 All assignment problems (N1, N2, v) can be written as a MSP problem.

Proof. Let N = N1 ∪N2, m = 2 and Q such that qi = (1, 0) if i ∈ N1 and qi = (0, 1) if i ∈ N2.

Let vmax = maxi∈N1,j∈N2 vij . Let ci0 = 2vmax, cij = cji = 2vmax − vij if i ∈ N1 and j ∈ N2 and

cij = cji = 2vmax otherwise.

It is easy to see that our cost matrix satisfies the triangle inequality: all edges have a cost of

at least vmax, and thus a path of 2 edges costs at least 2vmax. This means that the cost of a path

of 2 edges is at least as large as the cost of a direct connection, which has a cost of at most 2vmax.

Therefore, we have a limited number of paths to consider.

Every singleton {i} connects through the path ((i, 0)) at a cost of 2vmax, and thus C({i}) =

2vmax.

Consider pairs {i, j} . If they belong to the same group N1 or N2, then the best they can do is

both connect directly to the source, and C({i, j}) = 4vmax. If they don’t belong to the same group,

then they can share (part of) the same path. Since they are completely symmetric, we connect j

to i and i to the source, at a cost of 4vmax − vij . Thus, C({i, j}) = 4vmax − vij .
By the previous lemma, if |S| > 2, then

C(S) = min
a∈Ω(S1,S2)

∑
(i,j)∈a

C({i, j}) +
∑
k∈S
k/∈a

C({i})

= min
a∈Ω(S1,S2)

∑
(i,j)∈a

(4vmax − vij) +
∑
k∈S
k/∈a

2vmax

= 2 |S| vmax − max
a∈Ω(S1,S2)

∑
(i,j)∈a

vij .

We then obtain

V (S) =
∑
i∈S

C ({i})− C(S)

= 2 |S| vmax −

2 |S| vmax − max
a∈Ω(S1,S2)

∑
(i,j)∈a

vij


= max

a∈Ω(S1,S2)

∑
(i,j)∈a

vij

= V A(S)

for all S ⊆ N.
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4.2.2 m-sided assignment problems

Many extensions of the assignment problem to m > 2 sides have been proposed, and we focus

here on the extensions proposed by Quint (1991) and Atay et al. (2016). To simplify notations,

we focus here on 3-sided assignment problems, but all results can be extended to m-sided, for any

positive integer m. Both extensions consider cases in which we have 3 groups, and value is created

by triplets consisting of one member of each group. While Quint (1991) supposes that these are

the only groups creating value, Atay et al. (2016) also allow for pairs to create value. We call the

model proposed by Quint (1991) the strict m-sided assignment problem and the one by Atay et al.

(2016) the generalized m-sided assignment problem.

Our set of agents N is now partitioned in three groups, N1, N2, N3. For k = 2, 3, let

Ak =
{
S ⊆ N | |S| = k and

∣∣Sl∣∣ ≤ 1 for l = 1, 2, 3
}

be the set of groups containing k agents from

different markets. Let A2,3 = A2 ∪ A3.

The strict 3-sided assignment problem is given by
((
N1, N2, N3

)
, w
)
, with w ∈ RA3

+ giving the

value created by any triplet of agents from different groups. The generalized 3-sided assignment

problem is given by
((
N1, N2, N3

)
, w
)
, with w ∈ RA2,3

+ .

For the strict 3-sided assignment problem an eligible assignment is a set of triplets a such that

if S ∈ a, there is no other S′ in a such that S′ ∩ S 6= ∅. Let Ω(N1, N2, N3) be the set of eligible

assignments. For the generalized 3-sided assignment problem an eligible assignment is a set of pairs

and triplets a such that if S ∈ a, there is no other S′ in a such that S′∩S 6= ∅. Let ΩG(N1, N2, N3)

be the set of eligible assignments.

To find the optimal assignment for the strict 3-sided assignment problem we need to find a∗

such that

a∗ ∈ arg max
a∈Ω(N1,N2,N3)

∑
S∈a

wS

while for the generalized 3-sided assignment problem we are looking for a∗ such that

a∗ ∈ arg max
a∈ΩG(N1,N2,N3)

∑
S∈a

wS .

Let V S(S) = maxa∈Ω(S1,S2,S3)

∑
T∈awT and V G(S) = maxa∈ΩG(S1,S2,S3)

∑
T∈awT for all S ⊆

N.

To express these problems as MSP problems, a natural way to proceed is to extend what we’ve

done for the classic assignment game, by now creating three groups of agents, with each group

demanding a single unit in a different period. This leads us to generalized 3-sided problems.

Example 5 We revisit once again Example 1. Suppose that to N and c we add M = {1, 2, 3}
and Q = ((1, 0, 0) , (0, 1, 0) , (0, 0, 1) , (0, 0, 1)) , i.e. N1 = {1} , N2 = {2} and N3 = {3, 4} . We

now obtain a game in which there are benefits in combining pairs of agents from different groups,

and triplets containing agents of different groups create even more savings. We obtain the same
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savings as above, in the classic assignment game, for coalitions {1, 3} , {1, 4} , {2, 3} and {2, 4} .
In addition, coalition {1, 2} now creates a saving of 4 (using the path ((2, 1) , (1, 0)) instead of

individual connections to the source). The triplets {1, 2, 3} and {1, 2, 4} also create savings. Since

they consume in different periods, a single path of capacity 1 is sufficient, and for {1, 2, 3} building

the path ((2, 1) , (1, 3) , (3, 0)) gives rise to savings of 7. In the same manner, coalition {1, 2, 4}
generates savings of 11 with the path ((4, 2) , (2, 1) , (1, 0)) .

Strict 3-sided assignment problems are trickier to express as MSP problems, as pairs should not

create any surplus. We do so in the following way. We still define three groups of agents, but now

they all demand a single unit in all periods except one, with the inactive period varying depending

on the group. A triplet composed of agents of different groups can now generate savings, requiring

only a network with a capacity of 2 instead of 3.

Example 6 We modify Example 5, keeping everything but the demand vector, which we change

to Q = ((1, 1, 0) , (1, 0, 1) , (0, 1, 1) , (0, 1, 1)) . Notice that pairs do not create any savings: we still

need to build a separate path for each agent. But triplets containing a member of each group can

generate savings. Coalition {1, 2, 3} can build a network with 2 units of capacity on (1, 0) and one

unit each on (2, 1) and (3, 1) . In each period only two agents are demanding and the network has

enough capacity. The cost is 15, instead of 16 if they all connect directly to the source.

Similarly, coalition {1, 2, 4} can build a network with one unit of capacity each on edges (1, 0) ,

(2, 0) , (4, 1) and (4, 2) . This generates a saving of 4 compared to independent connections.

There is nothing special with our examples, and we can always build 3−sided assignment games

through MSP problems in these manners. Since they are MSP problems, the resulting games are

stable.

Lemma 6 Suppose a MSP problem (N,M,Q, c) with m = 3 and let c satisfy the triangle inequality.

If we can partition N into
(
N1, N2, N3

)
such that:

i) Q is such that qit = 1 if i ∈ N t and qit = 0 otherwise, then (N,M,Q, c) can be written as a

stable generalized 3-sided assignment problem.

ii) Q is such that qit = 0 if i ∈ N t and qit = 1 otherwise, then (N,M,Q, c) can be written as a

stable strict 3-sided assignment problem.

Quint (1991) and Atay et al. (2016) report that both the strict and the generalized 3-sided

assignment problems can have an empty core, and they offer subsets that are always stable. We

show through examples in what follows that the subset of 3-sided assignment games which is

representable as MSP problems, and which therefore has a non-empty core, neither contains nor is

contained by the sets they propose.
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We start with the generalized 3-sided assignment problem (Atay et al. (2016)). Suppose that

{i, j, k} is a coalition of agents from different groups. They show that the game is stable if w{i,j,k} =

w{i,j} +w{i,k} +w{j,k} and if, when i and j are assigned to each other when everybody cooperates

(possibly with a member of the third group), they stay assigned to each other if the third group

stops cooperating.

In Example 5, we have that 7 = w{1,2,3} 6= w{1,2} + w{1,3} + w{2,3} = 4 + 3 + 2 = 9. In MSP

problems, we actually have that w{i,j,k} = w{i,j}+w{i,k}+w{j,k}−min
{
w{i,j}, w{i,k}, w{j,k}

}
, i.e. we

sum up the two largest surpluses of the pairs. Thus, aside from when min
{
w{i,j}, w{i,k}, w{j,k}

}
= 0,

the two sets of problems are disjoint.

For strict 3-sided assignment problems, the sufficient condition of Quint (1991) is as follows.

Suppose first that
∣∣N1

∣∣ =
∣∣N2

∣∣ =
∣∣N3

∣∣ = K and relabel agents such that agent j − i is the ith

player in N j . Suppose next that an optimal assignment is to assign, for k = 1, ...K, the kth player

of all groups to each other. We then need the following two conditions: 1) there exists dij for all

i, j in different groups such that w{i,j,k} = dij + dik + djk for all i, j, k in distinct groups, and 2),

for any α ∈ [0, 1] , di−k,j−l ≤ α di−k,j−k + (1 − α)di−l,j−l. The conditions are similar in spirit to

those of Atay et al. (2016): condition 1) is the same except that now there are no known values for

pairs. Condition 2) describes the strength of the pairwise values of matched agents, compared to

unmatched agents.

As above, it is easy to see that some assignment problems satisfying these conditions will not

be representable as a MSP problem. We need to build a bigger example to show that some strict

assignments problems representable as a MSP problem do not satisfy these conditions.

Example 7 We suppose that n = 6 and m = 3, with two agents in each groups. Agents 1 and

2 have demands (0, 1, 1), agents 3 and 4 have demands (1, 0, 1) and agents 5 and 6 have demands

(1, 1, 0). The cost structure is as in the figure below.

We obtain the following savings for each triplet of different groups:

S V (S) S V (S)

{1, 3, 5} 2 {2, 3, 5} 2

{1, 3, 6} 3 {2, 3, 6} 4

{1, 4, 5} 2 {2, 4, 5} 2

{1, 4, 6} 1 {2, 4, 6} 0

It can be shown that there are no sets of dij that satisfy condition 1. Thus, the example is a

stable strict 3-sided assignment game that does not satisfy the conditions of Quint (1991).

We conclude this subsection by describing new sets of generalized and strict 3-sided assignment

problems that are always stable, using their representability as MSP problems.
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Figure 4: Example of a cost matrix with 6 agents.

Theorem 3 i) Let
((
N1, N2, N3

)
, w
)

be a generalized 3-sided assignment problem such that w{i,j,k} =

w{i,j} + w{i,k} + w{j,k} − min
{
w{i,j}, w{i,k}, w{j,k}

}
for all i ∈ N1, j ∈ N2 and k ∈ N3. Then

Core(V G) is non-empty.

ii) Let
((
N1, N2, N3

)
, w
)

be a strict 3-sided assignment problem such that there exists a dij for

all i, j in different groups such that w{i,j,k} = dij+dik+djk−min {dij , dik, djk} for all i ∈ N1, j ∈ N2

and k ∈ N3. Then Core(V S) is non-empty.

Proof. For both cases, we build a MSP problem that represents the problem. Fix
(
N1, N2, N3

)
and let N = N1 ∪N2 ∪N3. Let m = 3.

i) Fix w such that w{i,j,k} = w{i,j}+w{i,k}+w{j,k}−min
{
w{i,j}, w{i,k}, w{j,k}

}
for all i ∈ N1, j ∈

N2 and k ∈ N3.

Let Q be such that qit = 1 if i ∈ N t and qit = 0 otherwise.

Let vmax = maxi∈N1,j∈N2,k∈N3 w{i,j,k}. Let ci0 = 2vmax for all i ∈ N, cij = cji = 2vmax−w{i,j} if

i ∈ Nk and j ∈ N l, with k 6= l and cij = cji = 2vmax otherwise. It is easy to see that c is symmetric

and satisfies the triangle inequality.

We discuss C(S). If |S| = 1, then, C(S) = 2vmax. If S = {i, j} and i, j ∈ Nk, then C({i, j}) =

C({i}) +C({j}) = 4vmax. If S = {i, j} and i ∈ Nk and j ∈ N l for k 6= l, then we can connect them
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both through the same path, say ((j, i) , (i, 0)) . The cost is 4vmax−w{i,j}. As we cannot do better,

we have C({i, j}) = 4vmax − w{i,j}. It is then obvious that V ({i, j}) = w{i,j}.

If S = {i, j, k} and there is N l such that N l ∩ {i, j, k} = ∅, then we have (at least) two agents

from the same side. We cannot do better than assign one pair of agents from different sides to each

other, if such exist. Otherwise, the three agents are from different sides. We can connect them

through the same path, connecting one agent to the source and the two others through him. Then,

the cost is

C({i, j, k}) = min
l∈{i,j,k}

cl0 +
∑

l′∈{i,j,k}\{l}

cll′


= min

l∈{i,j,k}

2vmax +
∑

l′∈{i,j,k}\{l}

(
2vmax − w{l,l′}

)
= 6vmax − max

l∈{i,j,k}

∑
l′∈{i,j,k}\{l}

w{l,l′}

= 6vmax − w{i,j} − w{i,k} − w{j,k} + min
{
w{i,j}, w{i,k}, w{j,k}

}
.

It is easy to see that any other structure (for example a path from k to j to i to 0) doesn’t have

a lower cost. We then have that V ({i, j, k}) = w{i,j}+w{i,k}+w{j,k}−min
{
w{i,j}, w{i,k}, w{j,k}

}
=

w{i,j,k}.

For any S such that |S| > 3, we partition (connect independently to the source) the agents into

triplets, pairs and singletons, summing up their cost. Thus, C(S) = mina∈ΩG(S1,S2,S3)

∑
T∈aC(T )+∑

i∈S
i/∈a

C({i}).

Thus, for all S ⊆ N we have V (S) = V G(S).

ii) Fix w such that there exists dij for all i, j in different groups such that w{i,j,k} = dij + dik +

djk −min {dij , dik, djk} for all i ∈ N1, j ∈ N2 and k ∈ N3.

Let Q be such that qit = 0 if i ∈ N t and qit = 1 otherwise.

Let vmax = maxi∈N1,j∈N2,k∈N3 w{i,j,k}. Let ci0 = 2vmax for all i ∈ N, cij = cji = vmax − dij if

i ∈ Nk and j ∈ N l, with k 6= l and cij = cji = vmax otherwise. It is easy to see that c is symmetric

and satisfies the triangle inequality.

We discuss C(S). If |S| < 3 or |S| = 3 and there is N l such that N l ∩ S = ∅, then there is no

gain to cooperation and C(S) = 2 |S| vmax. Thus, V (S) = 0.

Let S = {i, j, k} with i ∈ N1, j ∈ N2 and k ∈ N3. Then, we can connect them through 2 paths

to the source instead of 3. We consider the structure where one agent is connected to the source

(capacity of 2) and the 2 other agents directly to him. It dominates the structure where we build

one path (which requires capacity of 2 on two of the three edges). The structure where 2 agents are
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connected to the source and the third to both of them is also feasible but not cheaper. We obtain:

C({i, j, k}) = min
l∈{i,j,k}

2cl0 +
∑

l′∈{i,j,k}\{l}

cll′


= min

l∈{i,j,k}

4vmax +
∑

l′∈{i,j,k}\{l}

(vmax − dll′)


= 6vmax − max

l∈{i,j,k}

∑
l′∈{i,j,k}\{l}

dll′

= 6vmax − dij − dik − djk + min {dij , dik, djk} .

We then have that V ({i, j, k}) = dij + dik + djk −min {dij , dik, djk} = w{i,j,k}.

For any S such that |S| > 3, we partition (connect independently to the source) the agents into

triplets and singletons, summing up their cost. Thus, C(
(
S1, S2, S3

)
) = mina∈Ω(S1,S2,S3)

∑
T∈aC(T )+∑

i∈S
i/∈a

C({i}).

Thus, for all S ⊆ N we have V (S) = V S(S).

However, these conditions are merely sufficient for representability as a MSP problem. In

particular, for the problem in Example 7, there are no sets of dij that satisfy the condition of

Theorem 3 ii).

4.3 Compatibility problems

The minimum coloring problem is a classic operations research problem in which we need to par-

tition a group into elements that have no conflicts with each other - we can think of scheduling for

instance. Conflicts, or incompatibilities, are expressed in a graph composed of undirected edges,

that we express as {i, j}. We have that i and j are incompatible if the undirected edge {i, j}
belongs to the graph. Okamoto (2008) studies the problem in which we want to minimize the cost

of providing services to all agents, with each element of the partition having the same cost. For

example we pay k if we need to schedule k different time slots.

Formally, a minimum coloring problem is (N,G), where G is an undirected graph. For all

S ⊂ N, let G [S] be the subgraph induced by S. Let χ(G) be the chromatic number of G, i.e.

the minimum number of elements in a partition of N so that if T is an element of the partition,

G [T ] = ∅. The coalitional cost function associated with the minimum coloring problem (N,G) is

CM (S,G) = χ(G [S]).

For a graph G, S ⊆ N is a clique of G if {i, j} ∈ G for all i, j ∈ S. LetW(G) be the set of cliques.

A clique is maximal if there is no other clique that contains it. Let W̄(G) be the set of maximal

cliques. Let ω(G) = maxS∈W(G) |S| be the size of the largest clique. Note that χ(G) ≥ ω(G). We
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say that a graph G is a weakly perfect graph if χ(G) = ω(G). We say that a graph G is a perfect

graph if χ(G [S]) = ω(G [S]) for all S ⊆ N.
Okamoto (2008) shows that the core of a minimum coloring problem is non-empty when G is

a perfect graph. These can all be represented as MSP problems. For a graph G, we build QG as

follows: order cliques in W̄(G) =
{
W1, ...,W|W̄(G)|

}
. For all t = 1, ...,

∣∣W̄(G)
∣∣ and all i ∈ N, let

qGit = 1 if i ∈Wt and qGit = 0 otherwise.

Lemma 7 Let (N,G) be a minimum coloring problem, with G a perfect graph. Let (N,M,QG, c)

be such that m =
∣∣W̄(G)

∣∣ , ci0 = 1 for all i ∈ N and cij = 0 otherwise. Then, CM (·, G) = C(·, QG).

Proof. First, notice that by definition of c, we have that for any connection plan f, γ(zf , c) =∑
i∈N z

f
i0, i.e. the cost is the sum of the capacities to the source.

Fix S ⊆ N . Let W̄+(G) =
{
T ∈ W̄(G) | |T | = ω(G)

}
and let GS+ be such that {i, j} ∈ GS+

if and only if i, j ∈ R ∈ W̄+(G [S]). For any G′ ⊂ G, we construct QG′ from QG as follows: for all

t = 1, ...,
∣∣W̄(G)

∣∣, if there exists a T ∈ W̄(G′) such that T ⊆ Wt, we set qG
′

it = qGit for all i ∈ T .

Otherwise qG
′

it = 0.

We consider the problem (N,M,QGS+
, c) and in particular C(S, QGS+

). Take anyR ∈ W̄+(G [S]).

Then, {i, j} ∈ GS+ for all i, j ∈ R and by construction of QGS+
, there exists t ∈ M such

that qG
S+

it = 1 for all i ∈ R. To accommodate this demand in period t, we will need (at least)

|R| = ω(G [S]) units of capacity to the source, i.e. we need f such that
∑

i∈N z
f
i0 ≥ |R| = ω(G [S]).

Thus, we have C(S,QGS+
) ≥ ω(G [S]) = χ(G [S]), where the last equality comes from G being a

perfect graph.

Next, observe that
(
QG
)S ≥ QG[S] ≥ QGS+

. Thus, it follows that C(S, QG) ≥ C(S,QGS+
).

Combining with the previous result, we obtain C(S, QG) ≥ ω(G [S]) = χ(G [S]).

Let
{
S1, ..., Sω(G[S])

}
be a partition of S that solves the minimum coloring problem for S. By

definition of QG, if i, j ∈ Sr for some r = 1, ..., ω(G [S]), then {i, j} /∈ G and there is no t ∈M such

that qGit = qGjt = 1. Thus, consider the connection plan fS such that for all r, we randomly pick an

agent ir in Sr, and build a capacity of 1 from ir to the source as well as from all other members of

Sr to ir. This is a feasible connection plan, and it is obvious that γ(zf
S
, c) =

∑
i∈N z

fS

i0 = ω(G [S]).

Thus, C(S,QG) ≤ ω(G [S]).

Combining, we obtain that C(S,QG) = ω(G [S]) = CM (S,G) for all S ⊆ N.

We can provide an additional result: minimum coloring problems for which the graph is weakly

perfect still have non-empty cores.

Lemma 8 Let (N,G) be a minimum coloring problem, with G a weakly perfect graph. Then,

Core(CM ) is non-empty.2

2The result can be obtained without MSP representation, by identifying a clique S with the largest size, and

23



Proof. Let (N,M,QG, c) be as above and consider C(N,QG). Since G is a weakly perfect graph,

χ(G) = ω(G), and by the same logic as in the previous lemma, C(N,QG) = ω(G) = CM (N,G).

Fix S ⊂ N and let
{
S1, ..., Sχ(G[S])

}
be a partition of S that solves the minimum coloring

problem for S. By definition of QG, if i, j ∈ Sr for some r = 1, ..., χ(G [S]), then {i, j} /∈ G and

there is no t ∈ M such that qGit = qGjt = 1. Thus, we can build a path of capacity 1 connecting all

members of Sr to each other, with one agent connected to the source. By the definition of c, the

cost of such a path is 1. Thus, C(S,QG) ≤ χ(G [S]) = CM (S,G).

Since (N,M,QG, c) is a MSP problem, Core(C) is non-empty. Since C(S,QG) ≤ CM (S,G) for

all S ⊂ N and C(N,QG) = CM (N,G), Core(C) ⊆ Core(CM ). Thus, Core(CM ) is non-empty.

A particular subset of minimum coloring problems is the set of job scheduling problems (Bahel

and Trudeau (2019)). In those problems, each agent has a single job that has a starting and

finishing time, and must be processed on a machine without interruption from the starting to the

finishing time. Evidently, a group of agents is incompatible if their jobs intersect. This gives

a lot of structure to the incompatibility graph, which will always be a perfect graph. Thus the

core is always non-empty. We can thus represent those problems as MSP problems. To make the

representation even closer to the original problem, we can reorder the periods in M such that for

any i ∈ N, if qir = qit = 1, then qis = 1 for all r < s < t.

5 Concluding remarks

We have shown that MSP problems do not just generate balanced games, but in fact totally balanced

games. The total balancedness of MSP games extends to many, but not all games that we have

discussed. For total balancedness to extend, we need that the subgames CS remain games of the

same type as the original game. This is not necessarily true for source connection problems. For

instance, the subgame of a public mcst problem is a Steiner tree problem, which can have an empty

core, while the subgame of its MSP representation has a non-empty core, but does not correspond

to a mcst problem. It is in fact known that the public mcst problem does not always generate

totally balanced games (Norde et al., 2001).

For assignment (2 or m-sided) and minimum coloring problems, the subset of games that are

representable as MSP problems are not only balanced, but also totally balanced. It is an open

question if all totally balanced m-sided assignment games are representable as a MSP problem.

Deng et al. (2000) show that a minimum coloring problem is totally balanced if and only if its

building a graph that contains only edges between members of S. This graph is obviously perfect, and thus it has

core allocations. Since the grand coalition has the same cost of |S| as in the original graph, with all other coalitions

having no larger cost than in the original graph, these core allocations are also in the core of the original game.

We present it with the MSP representation to show how it can be used in various contexts to extend stability

results.
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graph is perfect.

References
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