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Abstract

We show that on the domain of convex games, Dutta-Ray’s egalitarian solution is charac-

terized by core selection, aggregate monotonicity, and bounded richness, a new property

requiring that the poorest players cannot be made richer within the core. Replacing

“poorest” by “poorer” allows to eliminate aggregate monotonicity. Moreover, strength-

ening core selection into bilateral consistency à la Davis and Maschler, and Pareto opti-

mality into individual rationality and bilateral consistency à la Hart and Mas-Colell, we

obtain alternative and stylized axiomatic approaches.

Keywords: Dutta-Ray’s egalitarian solution, axiomatizations, convex TU game

JEL: C71

1. Introduction

In the context of transferable utility cooperative games (games, for short), Dutta and

Ray (1989) introduced the egalitarian solution which combines individual interests with

the Lorenz criterion to promote equality. Although this solution lacks general existence

properties, on the domain of convex games it selects the unique Lorenz maximal imputa-

tion within the core. On this domain, the first axiomatizations of the egalitarian solution

were provided by Dutta (1990) by means of DM-consistency or HM-consistency, that is,

consistency with respect to (w.r.t) the reduced games proposed by Davis and Maschler

(1965) or Hart and Mas-Colell (1989), respectively, together with constrained egalitari-

anism (CE), a prescriptive property that determines the solution for two player games.

∗Corresponding author: calleja@ub.edu (P. Calleja), francesc.llerena@urv.cat (F. Llerena),
psu@sam.sdu.dk (P. Sudhölter). 



Klijn et al. (2000) reformulated the above characterizations replacing CE by efficiency

(EF), also known as Pareto optimality, that requires the solution to distribute the entire

worth of the grand coalition, equal division stability (EDS), which forces the solution

to select an allocation in the equal division core (Selten, 1972), bounded maximum pay-

off (BMP) imposing an upper bound for the payoffs of the players receiving most, and

only requiring DM-consistency and HM-consistency when these richest players leave with

their assigned payoffs. Hougaard et al. (2001) described another axiomatization com-

bining DM-consistency and EF with non-emptiness and rich are strong (RS), requiring

that the solution can only make a player i richer than another player j if the maximum

surplus (in the sense of Davis and Maschler, 1965) of i over j is positive and larger

than the maximum surplus of j over i. Arin et al. (2003) reinterpreted the egalitarian

solution providing a characterization without making use of any consistency property

and invoking continuity, equal treatment of equals, and independence of irrelevant core

allocations.1 Recently, Llerena and Mauri (2017) provided a characterization imposing

DM-consistency for reduced games with at most two players and suitable well-known

properties such as individual rationality (IR) or core selection (CS), which guarantee

that each single player or coalition receive, respectively, at least what they can get by

themselves.

In this paper, we provide two new characterizations without consistency. To do so,

we use aggregate monotonicity (AM) defined by Megiddo (1974), a very natural property

requiring that no player suffers if only the worth of the grand coalition increases,2 and

bounded richness (BR), imposing an upper bound for the payoffs of non-poorest players,

together with CS. Up to our knowledge, AM has not been employed before in any of

the existing characterizations of the egalitarian solution. Strengthening BR, replacing

“poorest” by “poorer”, allows to eliminate AM. Moreover, we prove that on the domain

of convex games DM-consistency for two-person reduced games, called bilateral DM-

consistency (2-DMC), implies CS. Furthermore, we show that bilateral HM-consistency

(2-HMC) together with IR imply EF. These logical implications lead to new and stylized

axiomatizations. Indeed, 2-DMC together with either BMP or RS characterize the egal-

itarian solution. Additional axiomatizations emerge when replacing 2-DMC by 2-HMC

and IR. We also show that the egalitarian solution can be characterized by constrained

welfare egalitarianism (CWE) in the sense of Calleja et al. (2020) and either 2-DMC or

2-HMC and IR. We recall that CWE requires to distribute an additional amount obtained

1See Arin et al. (2003) for the precise definitions of these properties.
2See also Hougaard et al. (2005) for a generalization of Dutta-Ray’s egalitarian solution on the

domain of convex games satisfying monotonicity properties.
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by the grand coalition to the poorer players making payoffs as equal as possible subject

to nobody is worse off. Hence, CWE implies AM. However, egalitarianism may regard

CWE, though stronger than AM, as even more appealing. Indeed, CWE prioritizes those

players who received less before the grand coalition became richer.

The remainder of the paper is organized as follows. Section 2 contains preliminaries

on games. In Section 3 we introduce properties of solutions. Section 4 contains our

main results. Subsection 4.1 is devoted to the characterization results of the egalitarian

solution with AM and without consistency. In Subsection 4.2 we provide alternative

axiomatizations for a variable society of agents making use of 2-DMC and 2-HMC.

2. Preliminaries

Let U be a set (the universe of potential players) and N be the set of coalitions in

U (a coalition is a nonempty finite subset of U). Given S, T ∈ N , we use S ⊂ T to

indicate strict inclusion, that is, S ⊆ T and S 6= T . By |S| we denote the cardinality

of the coalition S ∈ N . We assume that |U | ≥ 3. Given N ∈ N , let RN stand for the

set of all real functions on N . An element x ∈ RN , x = (xi)i∈N , is a payoff vector for

N . For all S ⊆ N , x(S) =
∑
i∈S xi, with the convention x(∅) = 0. For each x ∈ RN

and T ⊆ N , xT denotes the restriction of x to T : xT = (xi)i∈T ∈ RT . Given N ∈ N ,

for all x, y ∈ RN , x ≥ y if xi ≥ yi for all i ∈ N . For all α ∈ R, α+ = max{0, α}. For

any two vectors y, x ∈ RN with y(N) = x(N), we say that y weakly Lorenz dominates

x, denoted by y �L x, if min{y(S) | S ⊆ N, |S| = k} ≥ min{x(S) | S ⊆ N, |S| = k}, for

all k = 1, 2, . . . , n− 1. We say that y Lorenz dominates x, denoted by y �L x, if at least

one of the above inequalities is strict.

A transferable utility cooperative game (a game) is a pair (N, v) where N ∈ N is the

set of players and v : 2N −→ R is the characteristic function that assigns to each S ⊆ N
a real number v(S), with v(∅) = 0. Given a game (N, v) and ∅ 6= N ′ ⊂ N , the subgame

associated to N ′ is denoted by (N ′, v). A game (N, v) is convex if, for every S, T ⊆ N ,

v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ). We denote by ΓU the set of all convex games and,

for any coalition N ∈ N , by ΓN the subset of games in ΓU with N as player set. By Γ≥2U

we denote the set of games in ΓU with at least two players, and by Γ ⊆ ΓU a generic

subset of ΓU . For t ∈ R and any game (N, v), we denote by (N, vt) the game defined as

vt(S) = v(S) for all S ⊂ N and vt(N) = v(N) + t. Note that (N, vt) remains convex if

(N, v) is convex and t > 0. Any x ∈ RN defines the inessential game (N, x) ∈ ΓU by
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x(S) =
∑
i∈S xi. For (N, v) ∈ ΓU , define

X∗(N, v) = {x ∈ RN |x(N) ≤ v(N)} − the set of feasible payoff vectors,

C(N, v) = {x ∈ X∗(N, v) |x(S) ≥ v(S) ∀ S ⊆ N} − the core.

A solution on ΓU is a mapping σ that assigns an element σ(N, v) of X∗(N, v) to any

(N, v) ∈ ΓU . The restriction of a solution σ to a set Γ ⊆ ΓU is again denoted by σ.

Moreover, a solution on Γ ⊆ ΓU is the restriction to Γ of some solution. Notice that, we

do not consider multi-valued solution.

The following well-known lemma (the proof of which is included below for the benefit

of the reader) allows to recall the formula that determines the egalitarian solution of

Dutta and Ray (1989).

Lemma 1. Let (N, v) ∈ ΓU and denote µ = max∅6=S⊆N
v(S)
|S| . If ∅ 6= S, T ⊆ N are such

that v(S) = µ|S| and v(T ) = µ|T |, then v(S ∪ T ) = µ|S ∪ T |.

Proof. Note that, by convexity of (N, v), v(S∪T )+v(S∩T ) ≥ v(S)+v(T ) = µ(|S|+ |T |)
and, by definition of µ, v(S∩T ) ≤ µ|S∩T |. Therefore, v(S∪T )+µ|S∩T | ≥ µ(|S|+|T |) =

µ(|S ∪ T |+ |S ∩ T |) and, hence, v(S ∪ T ) ≥ µ|S ∪ T | so that v(S ∪ T ) = µ|S ∪ T | by the

definition of µ.

Let (N, v) ∈ ΓU and denote

µ(v) = max
∅6=S⊆N

v(S)

|S|
and S(v) =

⋃
{S ∈ 2N \ {∅} | v(S) = µ(v)|S|}.

By Lemma 1, µ(v)|S(v)| = v(S(v)). Now, we are able to introduce the egalitarian

solution of (N, v), denoted by L(N, v). Namely, let (S1, . . . , Sm) be the ordered partition

of N that is recursively determined by the requirement that Sk = S(vk), where S0 = ∅
and for all k = 1, . . . ,m, Nk = N \

⋃k−1
j=0 Sj and (Nk, vk) is defined by vk(T ) = v(T ∪

(N \Nk))− v(N \Nk) for all T ⊆ Nk. Note that N1 = N , v1 = v, and (Nk, vk) ∈ ΓU so

that Sk is well defined. The egalitarian solution L(N, v) = {x∗} is given by

x∗i = µ(vk) =
vk(Sk)

|Sk|
for all i ∈ Nk and all k = 1, . . . ,m. (1)

Remark 1. Let (N, v) ∈ ΓU and x∗ = L(N, v). The allocation x∗ satisfies the following

properties: ∑k
t=1 x

∗(St) = v
(⋃k

t=1 St

)
for all k = 1, . . .m;

x∗i = x∗j for all i, j ∈ Sk and all k = 1, . . . ,m;

x∗i > x∗j for all i ∈ St, j ∈ Sk and all 1 ≤ t < k ≤ m.
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Moreover, according to Theorem 3 of Dutta and Ray (1989), the egalitarian solution

L selects the unique core element that Lorenz dominates every other core element. That

is, x∗ ∈ C(N, v) and x∗ �L y for all y ∈ C(N, v) \ {x∗}.

3. Properties of solutions

In the following, we introduce a number of properties on the domain of convex games.

Let Γ ⊆ ΓU . A solution σ on Γ satisfies

• Efficiency (EF) if for all (N, v) ∈ Γ,
∑
i∈N σi(N, v) = v(N);

• Individual rationality (IR) if for all (N, v) ∈ Γ and all i ∈ N , σi(N, v) ≥ v({i});

• Core selection (CS) if for all (N, v) ∈ Γ, σ(N, v) ∈ C(N, v);

• Constrained egalitarianism (CE) if for all (N, v) ∈ Γ with N = {i, j}, i 6= j,

such that v({i}) ≤ v({j}), σj(N, v) = max
{
v(N)
2 , v({j})

}
and σi(N, v) = v(N) −

σj(N, v);

• Equal division stability (EDS) if for all (N, v) ∈ Γ and all ∅ 6= S ⊆ N , there exists

i ∈ S with σi(N, v) ≥ v(S)
|S| ;

• Rich are strong (RS) if for all (N, v) ∈ Γ, xi < xj implies sij(x, v) ≥ (sji(x, v))+

where x = σ(N, v) and, for all k, ` ∈ N , sk`(x, v) = max{v(S) − x(S) | k ∈ S ⊆
N and ` 6∈ S} is called the maximum surplus of k over ` at x;

• Aggregate monotonicity (AM) if for all (N, v) ∈ Γ and all t > 0 such that (N, vt) ∈
Γ, σ(N, vt) ≥ σ(N, v);

• Constrained welfare egalitarianism (CWE) if for all (N, v) ∈ Γ, all t > 0 such that

(N, vt) ∈ Γ, and all i ∈ N , σi(N, v
t) = σi(N, v) + (λ − σi(N, v))+, where λ is

determined by
∑
k∈N (λ− σk(N, v))+ = t.

EF requires to distribute the entire worth of the grand coalition. IR imposes that

no single player can improve the payoff proposed by the solution without cooperating,

while CS is a sort of secession-proofness property that extends this requirement to any

coalition, i.e., no coalition worth is higher than the payoff to that coalition proposed

by the solution. CE forces to select the egalitarian solution L for two player games,

which divides the worth of the grand coalition as equal as possible preserving IR. Under

EF, EDS is equivalent to imposing the solution to select a payoff vector from the equal
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division core (Selten, 1972),3 which implies that the proposed payoff vector cannot be

blocked by any coalition using its equal division allocation. Note that since for convex

games the core is non-empty and, moreover, it is a subsset of the equal division core, on

Γ ⊆ ΓU CS implies EDS and EDS implies IR. RS applies to any pair of agents i, j ∈ N ,

and it requires that the solution may only assign a larger payoff to player j compared

to player i if j is stronger than i, i.e., if the maximum surplus of j over i, sji(x, v), is

positive and larger than j’s maximum surplus over i. AM requires that no player is worse

off if only the worth of the grand coalition is increased. CWE implies to distribute an

additional amount to the poorer players so that their final payoffs become equal but not

larger than the remaining players’ original payoffs.

The next three properties can be interpreted as solidarity requirements in the sense

that they fix a maximum threshold for the payoff of some particular coalitions. Let

Γ ⊆ ΓU . A solution σ on Γ satisfies

• Bounded maximum payoff (BMP) if for all (N, v) ∈ Γ,
∑
i∈Smax σi(N, v) ≤ v(Smax)

where Smax = arg maxj∈N σj(N, v);

• Bounded richness (BR) if for all (N, v) ∈ Γ,
∑
i∈N\Smin σi(N, v) ≤ v(N \ Smin),

where Smin = arg minj∈N σj(N, v);

• Strong bounded richness (SBR) if for all (N, v) ∈ Γ,
∑
i∈N\S σi(N, v) ≤ v(N \ S)

for all α ∈ R, where S = {i ∈ N |σi(N, v) < α}.

BMP imposes that the payoff to the coalition of players with the highest payoff does

not exceed the worth of this coalition, while BR imposes this upper bound for the payoff

to the coalition of all non-poorest players. SBR strengthens BR (and also implies BMP)

by replacing poorest players by players who are poorer than any wealth level α ∈ R.

All the aforementioned properties, except CWE, BR, and SBR, have been used before

in the literature to characterize the egalitarian solution of Dutta-Ray (1989) and other

solution concepts. However, these new properties are intuitive modifications of two well-

known properties. Indeed, CWE is stronger than AM, but may be regarded as even more

appealing form an egalitarian point of view. Moreover, the remaining new properties BR

and SBR arise by modifying BMP in two natural ways.

3For any game (N, v), the equal division core is defined by

EDC(N, v) =

{
x ∈ RN |x(N) = v(N) and ∀ ∅ 6= S ⊆ N there is i ∈ S such that xi ≥

v(S)

|S|

}
.
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Now, we recall consistency properties that refer to suitable notions of reduced games.

Let Γ ⊆ ΓU . A solution σ on Γ satisfies

• DM-consistency (DMC) if for all (N, v) ∈ Γ and all ∅ 6= S ⊂ N , (S, vS,x) ∈ Γ and

σ(S, vS,x) = xS where x = σ(N, v) and (S, vS,x) is the game defined by

v(T ) = max
Q⊆N\S

{v(T ∪Q)− x(Q)} for all ∅ 6= T ⊂ S

and

vS,x(S) = v(N)− x(N \ S).4

• HM-consistency (HMC) if for all (N, v) ∈ Γ and all ∅ 6= S ⊂ N , (S, vS,σ) ∈ Γ and

σ(S, vS,σ) = xS where x = σ(N, v) and (S, vS,σ) is the game defined by

vS,σ(T ) = v(T ∪ (N \ S))−
∑
i∈N\S

σi(T ∪ (N \ S), v) for all ∅ 6= T ⊆ S.5

The bilateral DM-consistency (2-DMC) and bilateral HM-consistency (2-HMC)

only require DMC and HMC when |S| = 2, respectively.

Note that if the solution is consistent and assigns x to a game (N, v), then, for every

coalition S ⊆ N , the payoff allocation xS solves the corresponding reduced game w.r.t.

S and, therefore, it is consistent with the expectation of the members of S as reflected by

this reduced game. The above definitions are due to Sobolev (1975) and Hart and Mas-

Colell (1989), respectively. The egalitarian solution L satisfies DMC on ΓU . However, as

was shown by Hokari (2002), it satisfies 2-HMC but violates HMC on ΓU .
6

4. Characterization results

This section is divided into two parts. First, we characterize the egalitarian solution

by means of AM and for a fixed society of agents. In the second part, we use consistency

properties. Remarkably, we show that 2-DMC implies CS and 2-HMC together with IR

imply EF. These logical consequences allow us to obtain new and compacted axiomatic

approaches.

4The game (S, vS,x) is called DM-reduced game of (N, v) w.r.t. S at x and was introduced by Davis

and Maschler (1965).
5The game (S, vS,σ) is called the HM-reduced game of (N, v) w.r.t. S at σ and was introduced by

Hart and Mas-Colell (1989). Note that the set of convex games ΓU is closed under taking subgames.
6Indeed, Hokari’s (2002) Example 1 shows that the HM-reduced game of a convex game may not be

convex.
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4.1. Characterizations of the egalitarian solution without consistency

Our first characterization result makes use of CS, AM, and BR.

Theorem 1. Let N ∈ N . The egalitarian solution L on ΓN is the unique solution that

satisfies CS, AM, and BR.

Proof. It is well known that the egalitarian solution L satisfies CS and AM. Note that

CS implies EF. By Remark 1 it also satisfies BR. To show uniqueness, let σ be a solution

satisfying these properties. Let (N, v) ∈ ΓN . Denote x = σ(N, v). By CS, x ∈ C(N, v).

Let x∗ = L(N, v), m,S0, Sk, Nk and (Nk, vk) for k = 1, . . . ,m be defined in equation (1)

and the preceding paragraph. It remains to show that x = x∗. Let α = min{xi | i ∈ N}
and S = {i ∈ N |xi = α}. We proceed by induction on m.

If m = 1 then, by EF of x and x∗, α ≤ v(N)
|N | = x∗j for all j ∈ N . Hence, by BR and

CS, v(N \S) = x(N \S) = v(N)−x(S) ≥ v(N)−x∗(S) = x∗(N \S). We conclude that

x(S) = x∗(S), S = N and x = x∗.

Induction hypothesis: σ(N, v) = L(N, v) whenever m < ` for some ` ∈ N, ` > 1.

We now assume that m = `. Put

t = |Sm|
(
vm−1(Sm−1)

|Sm−1|
− vm(Sm)

|Sm|

)
> 0

and observe that y∗ ∈ RN defined by y∗i = max{x∗i , vm−1(Sm−1)/|Sm−1|} for all i ∈ N
is the egalitarian solution of (N, vt). Hence, by induction hypothesis, σ(N, vt) = y∗. By

AM, x ≤ y∗. By CS, Remark 1 implies xi = x∗i for all i ∈ N \Sm. By EF, α ≤ x∗i for all

i ∈ N . Hence, by BR and CS, v(N \ S) = x(N \ S) = v(N) − x(S) ≥ v(N) − x∗(S) =

x∗(N \ S) = v(N \ S). We conclude that α = min{x∗i | i ∈ N} and, hence, S = Sm and

x = x∗.

Remark 2. The following examples show that each of the properties employed in The-

orem 1 is logically independent of the remaining properties, provided |N | ≥ 3. Clearly,

if |N | ≤ 2, BR and CS imply CE and, consequently, AM.

(i) The equal split solution ED, defined by EDi(N, v) = v(N)/|N | for all i ∈ N and

all games (N, v), satisfies AM and BR but not CS.

(ii) Let i, j be two distinct elements of N and define the game (N, u) by u(S∪{i, j}) = 1

and u(S) = u(S ∪ {i}) = u(S ∪ {j}) = 0 for all S ∈ N \ {i, j}. Now define the

solution σ as follows: σ(N, v) = L(N, v) for all (N, v) ∈ ΓN with v 6= u and

σi(N, u) = 2/3, σj(N, u) = 1/3, σk(N, u) = 0 for all k ∈ N \{i, j}. Then, σ satisfies

CS and BR (because |N | > 2), but not AM.
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(iii) Let ≺ be a strict total order on N and � its reflexive cover. For all (N, v) ∈ ΓN

and all i ∈ N define the marginal contribution solution relative to ≺ as follows:

mc≺i (N, v) = v({j ∈ N | j � i})− v({j ∈ N | j ≺ i}). Then, mc≺ satisfies CS and

AM but not BR.

We now show that CS and SBR imply AM. Hence, these two properties alone char-

acterize the egalitarian solution L.

Theorem 2. Let N ∈ N . The egalitarian solution L on ΓN is the unique solution that

satisfies CS and SBR.

Proof. Indeed, L satisfies CS and SBR by Remark 1. To show uniqueness, let σ be a

solution satisfying CS and SBR. Let (N, v) ∈ ΓN . Denote x = σ(N, v) and let x∗ =

L(N, v), m,S0, Sk, Nk, (Nk, vk) for k = 1, . . . ,m be defined in equation (1) and the

preceding paragraph. It remains to show that x = x∗. Assume, on the contrary, x 6= x∗.

Let m be minimal such that there exists i ∈ Sm with xi < x∗i =: α. Let S = {j ∈
N |xj < α} and T = N \ S. Hence T ⊇

⋃m−1
k=1 Sk and xj ≥ x∗j for all j ∈ T . By

SBR and CS, x(T ) = v(T ) = x∗(T ), hence xj = x∗j ≥ α for all j ∈ T . As i ∈ Sm \ T ,

T ⊂
⋃m
k=1 Sk, hence x (

⋃m
k=1 Sk) < x∗ (

⋃m
k=1 Sk) = v (

⋃m
k=1 Sk), and a contradiction to

CS is obtained.

Remark 3. The following examples show that each of the properties employed in The-

orem 2 is logically independent of the remaining properties, provided |N | ≥ 2.

(i) The equal split solution ED satisfies SBR but not CS.

(ii) The marginal contribution solution mc≺ satisfies CS but not SBR.

4.2. Characterizations of the egalitarian solution with consistency

For our axiomatizations of the egalitarian solution based on Davis-Maschler consis-

tency we need two lemmas. The first lemma shows that 2-DMC implies CS on the domain

of convex games with at least two players.

Lemma 2. If the solution σ on Γ≥2U satisfies 2-DMC, then it satisfies CS as well.

Proof. Let (N, v) ∈ Γ≥2U . We consider two cases:

(i) |N | = 2. By the assumption |U | ≥ 3 there exists k ∈ U \N . Let M = N ∪{k} and

(M,w) be the game that arises from (N, v) by adding the null player k, i.e., w is

given by w(S) = v(S ∩N) for al S ⊆M . Note that (M,w) is still convex.
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Claim: If (N, v) is inessential, then σ(N, v) is the unique element of C(N, v).

In order to show the claim, note that (M,w) is inessential. Let y ∈ RM be defined

by yi = w({i}) for all i ∈ M , hence y(S) = w(S) for all S ⊆ M . Moreover, let

x = σ(M,w). For any i ∈ M , by the definition of the Davis-Maschler reduced

game, wM\{i},x({j}) ≥ w({i, j}) − xi = y({i, j}) − xi for both j ∈ M \ {i} and

wM\{i},x(M \ {i}) = w(M) − xi = y(M) − xi. By 2-DMC, (M \ {i}, wM\{i},x) is

convex so that
∑
j∈M\{i} wM\{i},x({j}) ≤ wM\{i},x(M \ {i}). We conclude that∑

j∈M\{i}

[y({i, j})− xi] = y(M) + yi − 2xi ≤ y(M)− xi,

hence xi ≥ yi for all i ∈ M . Now, as x(M) 6 w(M) = y(M), we have x = y.

Finally, since (N,wN,y) = (N, v), by 2-DMC, xN = yN = σ(N, v) with C(N, v) =

{xN}.

Now let x = σ(M,w), i ∈ N , and N = {i, j}. By 2-DMC, (M \ {i}, wM\{i},x)

is convex and xM\{i} = σ(M \ {i}, wM\{i},x). By definition of the Davis-Maschler

reduced game,

wM\{i},x({j}) = max{w({j}), w({i, j})− xi)} = max{v({j}), v(N)− xi},

wM\{i},x({k}) = max{w({k}), w({i, k})− xi} = max{0, v({i})− xi},

and

wM\{i},x(M \ {i}) = w(M)− xi = v(N)− xi

so that 2-DMC implies v(N)−xi ≥ max{v({j}), v(N)−xi}+ max{0, v({i})−xi}.
Hence, xi ≥ v({i}) and v(N)− xi ≥ v({j}). We conclude that (M \ {i}, wN\{i},x)

is inessential and thus, by 2-DMC and our claim, xj = v(N) − xi and xk = 0.

Therefore, xN ∈ C(N, v) and the proof is finished by 2-DMC.

(ii) |N | ≥ 3. Let x = σ(N, v) and assume that x /∈ C(N, v). If x(N) < v(N) select

any S ⊆ N with |S| = 2. By 2-DMC, (S, vS,x) ∈ Γ≥2U and xS = σ(S, vS,x). Now

vS,x(S) = v(N) − x(N \ S) > x(S) so that xS /∈ C(S, vS,x) which contradicts

case (i). Therefore, we may assume that x(N) = v(N) and x(T ) < v(T ) for some

∅ 6= T $ N so that there exist i ∈ T and j ∈ N \T . Let S = {i, j} and observe that

vS,x({i}) ≥ v(T )−x(T \{i}) > xi by definition of the Davis-Maschler reduced game.

Therefore xS is not individually rational for (S, vS,x) and the desired contradiction

is obtained by 2-DMC and case (i).
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Remark 4. Lemma 2 does not hold on the domain of all convex games, including all

1-person games. Indeed, let (N, v) ∈ ΓU and ε > 0. Define the single-valued solution

ρ as follows: ρ(N, v) = L(N, v) if |N | ≥ 2, and ρ(N, v) = v(N) − ε otherwise. Then, ρ

satisfies 2-DMC but not CS.

Since, on Γ≥2U , CS implies EF, EDS, and IR, an immediate consequence of Lemma 2

is the following corollary.

Corollary 1. If the solution σ on Γ≥2U satisfies 2-DMC, then it satisfies EF, EDS, and

IR as well.

The second lemma shows that IR and CWE imply CE.

Lemma 3. If the solution σ on ΓU satisfies IR and CWE, then it satisfies CE as well.

Proof. Let (N, v) be a two person convex game with N = {i, j}, i 6= j and v({i}) ≤
v({j}). Let t = v(N)− v({i})− v({j}) ≥ 0. By IR and CWE, for all k ∈ N , σk(N, v) =

max{λ, v({k})}, where λ ∈ R is determined by
∑
k∈N (λ− v({k}))+ = t. If t > v({j})−

v({i}), then λ = v(N)
2 > v({j}) ≥ v({i}) and hence σj(N, v) = σi(N, v) = v(N)

2 . If

t ≤ v({j}) − v({i}), then λ = v(N) − v({j}) < v({j}) and thus σj(N, v) = v({j}) and

σi(N, v) = v(N)− v({j}). In both cases, σ(N, v) = CE(N, v).

Lemma 3.2 of Klijn et al. (2000) shows that EF, EDS, and BMP imply CE. It is

straightforward and left to the reader to check that EF, IR, and RS together also imply

CE. Theorem 5.3 of Dutta (1990) characterizes the egalitarian solution L by means of

CE and DMC. In fact, in the uniqueness part of his proof, Dutta only used 2-DMC

rather than DMC. Moreover, Calleja et al. (2020) showed that the egalitarian solution

L satisfies CWE. Combining these results with Corollary 1 and Lemma 3 we obtain the

following new characterizations.

Corollary 2. On the domain Γ≥2U ,

(i) the egalitarian solution L is the unique solution that satisfies 2-DMC and BMP.

(ii) the egalitarian solution L is the unique solution that satisfies 2-DMC and RS.

(iii) the egalitarian solution L is the unique solution that satisfies 2-DMC and CWE.

Remark 5. Each of the properties in Corollary 2 is logically independent of the remain-

ing properties, even for two-person games (i.e., for |U | = 2).

(i) The equal split solution ED satisfies BMP, RS, and CWE but not 2-DMC.
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(ii) Let (N, v) ∈ Γ≥2U . Schmeidler’s (1969) (pre-)nucleolus, ν(N, v),7 satisfies 2-DMC

but neither BMP nor RS nor CWE.

Note that, in view of Remark 4, none of the characterizations of L presented in Corol-

lary 2 hold when expanding the domain of convex games with at least 2 players to the

domain of all convex games, including all 1-person games. However, imposing 2-HMC in-

stead of 2-DMC and employing IR as an additional property would yield axiomatizations

on the domain of all convex games.

The rest of this section is devoted to the question to what extent the characterizations

in Corollary 2 still hold if we replace 2-DMC by 2-HMC. We do not know if, on the

domain of convex games with at least two players, 2-HMC implies CS. However, on the

full domain of convex games, if we additionally impose IR, then we can show that EF is

also satisfied. We finally deduce that we can replace 2-DMC by 2-HMC in the modified

version of Corollary 2 that works on the domain of all convex games when employing IR

in addition.

Lemma 4. If the solution σ on ΓU satisfies IR and 2-HMC, then it satisfies EF as well.

Proof. Let (N, v) ∈ ΓU . If |N | = 1, the proof is finished by IR (and feasibility).

If |N | = 2, by the assumption |U | ≥ 3 there exists k ∈ U \ N . Let M = N ∪ {k}
and (M,w) be the game that arises from (N, v) by adding the null player k, i.e., w is

given by w(S) = v(S ∩N) for al S ⊆M . Note that (M,w) is still convex. Recall that, if

(N, v) is inessential, then σ(N, v) is the unique element of C(N, v) by IR (and feasibility).

Let x = σ(M,w), i ∈ N , and N = {i, j}. Then wM\{i},σ({j}) = v(N) − σi(N, v) and

wM\{i},σ({k}) = v({i}) − σi({i, k}, w) = 0, where the last equation follows because

({i, k}, w) is inessential. By IR and 2-HMC, xj ≥ v(N) − σi(N, v) and xk ≥ 0. Let

y = σ(N, v). As y(N) ≤ v(N), xj ≥ v(N)−yi and, analogously, xi ≥ v(N)−yj , we have

v(N) ≥ x(M) ≥ 2v(N)− y(N) +xk ≥ v(N) +xk ≥ v(N) so that all inequalities must be

equations, i.e., xi+xj = v(N) and xk = 0. Since ({i, k}, w) and ({j, k}, w) are inessential,

by IR (and feasibility) σk({i, k}, w) = σk({j, k}, w) = 0 and thus (N,wN,σ) = (N, v).

Finally, by 2-HMC we conclude that xN = σ(N,wN,σ) = σ(N, v) is efficient.

If |N | ≥ 3, assume that x = σ(N, v) satisfies x(N) < v(N). Then, for any S ⊆ N

with |S| = 2, x(S) < vS,σ(S) = v(N)− x(N \ S), a contradiction.

As we have seen before, EF, IR, and either BMP or RS or CWE imply CE. Theorem

5.4 of Dutta (1990) stating that CE and HMC characterize the egalitarian solution L is

7That is, the unique feasible payoff vector that lexicographically minimizes the non-increasingly

ordered vector of excesses (v(S)− x(S))S⊆N over the set of feasible payoff vectors.
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not entirely correct as shown by Hokari (2002). In fact, L does not satisfy HMC because

a HM-reduced game of a convex game is not necessarily convex. However, the following

mild modification of the foregoing theorem holds. A careful inspection of Dutta’s proof

shows that HM-reduced games of convex games have a non-empty core. Hence, two-

person HM-reduced games are convex. Therefore, L satisfies 2-HMC on the domain of

convex games. Also, as in the case of Dutta’s characterization of L with DMC, the

uniqueness proof only uses 2-HMC rather than HMC. Hence, L is characterized by CE

and 2-HMC.

These observations, together with Lemma 4, lead to the following characterizations.

Corollary 3. On the domain ΓU ,

(i) the egalitarian solution L is the unique solution that satisfies 2-HMC, IR, and

BMP.

(ii) the egalitarian solution L is the unique solution that satisfies 2-HMC, IR, and RS.

(iii) the egalitarian solution L is the unique solution that satisfies 2-HMC, IR, and

CWE.

Remark 6. Each of the properties in Corollary 3 is logically independent of the remain-

ing properties.

(i) The single-valued solution ρ as defined in Remark 4 satisfies 2-HMC, BMP, RS,

and CWE but not IR.

(ii) Let (N, v) ∈ ΓU . The convex root game of (N, v), denoted by (N, vr), is the convex

game with the smallest worth of the grand coalition such that vr(S) = v(S) for all

S ⊂ N . That is, (N, vr) = (N, vτ ) where τ ∈ R is such that (N, vt) 6∈ ΓU for all

t < τ . Note that (N, vr) is well defined since vr(N) = max{v(S) + v(T ) − v(S ∩
T ) | S, T ⊆ N, S ∪ T = N}.

– For all (N, v) ∈ ΓU define the solution σ as follows: σ(N, v) = L(N, vr). Then,

σ satisfies IR, BMP, and RS, but not 2-HMC.

– For all (N, v) ∈ ΓU define the solution β as follows: β(N, v) = ν(N, v) if

(N, v) = (N, vr), and σi(N, v) = νi(N, vr) + (λ− νi(N, vr))+ otherwise, where

λ ∈ R is determined by
∑
i∈N (λ − νi(N, vr))+ = v(N) − vr(N). Then, β

satisfies CWE but not 2-HMC.

(iii) Let ≺ be a strict total order on U . The marginal contribution solution mc≺ satisfies

2-HMC and IR, but neither BMP nor RS nor CWE.
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