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Abstract

The stable unit treatment value assumption (SUTVA) ensures that only two

potential outcomes exist and that one of them is observed for each individual.

After providing new insights on SUTVA validity, we derive sharp bounds on the

average treatment effect (ATE) of a binary treatment on a binary outcome as a

function of the share of units, α, for which SUTVA is potentially violated. Then we

show how to compute the maximum value of α such that the sign of the ATE is still

identified. After decomposing SUTVA into two separate assumptions, we provide

weaker conditions that might help sharpening our bounds. Furthermore, we show

how some of our results can be extended to continuous outcomes. Finally, we

estimate our bounds in two well known experiments, the U.S. Job Corps training

program and the Colombian PACES vouchers for private schooling.
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1 Introduction and literature review

The stable unit treatment value assumption (SUTVA) first appeared in Rubin (1980),

but it had already been discussed in earlier studies. For example, Cox (1958) assumes

no interference between units. SUTVA plays a central role in the identification of

causal effects, as i) it ensures that there exist as many potential outcomes as the num-

ber of the value the treatment can take on (two for the binary case considered in this

paper) and ii) only under SUTVA we can observe one of the potential outcomes for

each unit. Although SUTVA is essential for the identification of causal effects, there

is still some confusion about its implications. Moreover, many studies only implicitly

assume SUTVA and rarely discuss the implications of possible violations.

However, SUTVA is not always plausibly satisfied. For example, it is violated in

the presence of general equilibrium effects (Heckman et al. 1999) or peer-effects, or in

the presence of externalities and spillover effects. Most of the literature has focused on

either modeling general equilibrium effects (Heckman et al. 1999) or has dealt with

other types of interaction effects (see, e.g., Horowitz and Manski 1995, Miguel and

Kremer 2004, Huber and Steinmayr 2019, Forastiere et al. 2016). However, SUTVA

is also violated if some unit has access to different versions of the treatment, which

may result in a different value of the potential outcome (Imbens and Rubin 2015).

For this reason, the recent literature on causal inference decomposes SUTVA into two

components that are somehow equivalent to those two reasons that induce SUTVA

violations (Cole and Frangakis 2009a, VanderWeele 2009a, Pearl 2010, Petersen 2011).

This paper contributes to the literature in several ways. First, we discuss another

potential violation of SUTVA, namely the presence of measurement error in either the

observed outcome or the treatment indicator. Then we start by providing identifica-

tion results for the binary outcome case. In particular, we derive sharp bounds on the

ATE, which are functions of the share of units for which SUTVA could potentially be

violated (i.e., the observed outcome differs from the potential outcome). This allows

us to perform a sensitivity analysis of the point identified ATE (under SUTVA). In

particular, we show how to estimate the maximum share of units for which SUTVA

can be violated without changing the conclusion about the sign of the ATE. In addi-

tion, we show how the bounds can be sharpened and the sensitivity analysis can be

improved by using observable covariates.

2



We use our sensitivity analysis to evaluate the sensitivity of the ATE estimated in

two well known experiments: the U.S. Job Corps training program, which was already

studied in Lee (2009), and the Colombia vouchers for private school, which was first

evaluated in Angrist et al. (2006). We find that the ATE of the random assignment

(intention-to-treat) is very sensitive to SUTVA violations and that the maximum share

of units for which SUTVA can be violated is very small but statistically different from

zero in both experiments.

Finally, we decompose SUTVA in two separate assumptions and provide weaker

alternative assumptions, which can help to narrow the bounds and generalize some

of our results for continuous outcomes. The paper is organized as follows: in Section

2 we introduce some necessary notation and discuss potential reasons for SUTVA

violations, in Section 3 we derive our bounds and provide the sensitivity analysis, in

Section 4 we show the results of the empirical application, in Section 5 we show how

we can norrow the bounds by decomposing SUTVA into two separate assumptions

and Section 6 concludes. All proofs as well as potential extensions to continuous

outcomes are provided in the appendix.

2 Setup and notation

For each individual, i, in the population, I , we define:

• the observed binary outcome as Yi ∈ Y = {0, 1},

• the observed binary treatment as Di ∈ D = {0, 1}, and

• the two potential outcomes, that which only exist when SUTVA is satisfied, as

(Yi(0), Yi(1)) ∈ Y × Y .

We can observe the probability distribution of (Y, D) while the joint distribution of

the potential outcomes (Y(0), Y(1)) is not observable, as we can only observe at most

one potential outcome for each individual. We are interested in the average treat-

ment effect, ATE = E[Y(1)− Y(0)], which is a functional of the joint distribution of

(Y(0), Y(1), Y, D), and represent the ATE in the hypothetical scenario where SUTVA

is satisfied.

The literature contains several definitions of SUTVA, which is often only implicitly

assumed. We define SUTVA as
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Assumption 1: (SUTVA)

∀d ∈ D, ∀i ∈ I : If Di = d then Yi(d) = Yi.

This definition of SUTVA is equivalent to the one included in Rubin (1980) and allows

us to relate observed and potential outcomes through the well known observational

rule,

Yi = DiYi(1) + (1− Di)Yi(0).

As already discussed in the introduction, SUTVA requires that:

(i) There are no interaction effects.

(ii) The treatment is exhaustive, so that there are no hidden versions of the treatment

that may affect the potential outcomes.

(iii) Neither the treatment nor the observed outcomes are measured with error.

While (i) and (ii) have been extensively discussed as potential sources of SUTVA vio-

lations, (iii) is rarely considered in relation to SUTVA. However, if either the treatment

status or the observed outcome are measured with error, Assumption 1 is likely vio-

lated. This is important, as measurement error issues are arguably more prevalent in

empirical applications than the other two potential sources of SUTVA violation.

Note that we do not define the potential outcomes as an explicit function of the

treatment status of other individuals nor of a hidden version of a treatment. One can

consider the the way the potential outcomes are defined as a modeling choice. Im-

posing less structure does not enable us to distinguish between the different reasons

for SUTVA violations but, in return, our results can be applied in general for all three

different sources of violation. In Section 5 we impose more structure when model-

ing the potential outcomes, and this allows us to gain some further insights into the

impacts of different sources of SUTVA violations on the identification of the ATE.

We will denote the joint probability distribution of (Y(0), Y(1), Y, D) by π, for-

mally,

πij = Pr ((Y(0), Y(1)) = m(j), (Y, D) = m(i)) , ∀i, j ∈ {1, 2, 3, 4},

m(1) = (0, 0), m(2) = (0, 1), m(3) = (1, 0), m(4) = (1, 1)
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and by Si = I{Di = d =⇒ Yi(d) = Yi} an indicator function equal to 1 if for

individual i Assumption 1 holds.

As illustrated in Figure 1 (in appendix B) under SUTVA it must hold that

π13 = π14 = π22 = π24 = π31 = π32 = π41 = π43 = 0. (1)

3 Results

3.1 Illustration: Identification when SUTVA is satisfied

Under SUTVA, the observed joint probabilities of the outcome and the treatment can

be rewritten in terms of the unobserved joint probability distribution, π, in the fol-

lowing way:

p00 ≡ Pr(Y = 0, D = 0) = π11 + π12, E[Y(0)|D = 0] =
π33 + π34

Pr(D = 0)
,

p01 ≡ Pr(Y = 0, D = 1) = π21 + π23, E[Y(0)|D = 1] =
π23 + π44

Pr(D = 1)

p10 ≡ Pr(Y = 1, D = 0) = π33 + π34, E[Y(1)|D = 0] =
π12 + π34

Pr(D = 0)

p11 ≡ Pr(Y = 1, D = 1) = π42 + π44, E[Y(1)|D = 1] =
π42 + π44

Pr(D = 1)
.

Similarly, conditional on the treatment status, the observed mean outcome is equal to

the mean potential outcome

E[Y|D = 0] =
π33 + π34

Pr(D = 0)
= E[Y(0)|D = 0],

E[Y|D = 1] =
π42 + π44

Pr(D = 1)
= E[Y(1)|D = 0].

We can rewrite the mean potential outcomes as

E[Y(0)] = E[Y(0)|D = 1] · Pr(D = 1) + E[Y(0)|D = 0] · Pr(D = 0)

= π23 + π44 + π33 + π34,

E[Y(1)] = E[Y(1)|D = 1] · Pr(D = 1) + E[Y(1)|D = 0] · Pr(D = 0)

= π42 + π44 + π12 + π34.

(2)
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This implies that the ATE can be written as

E[Y(1)−Y(0)] = π42 + π12 − π23 − π33. (3)

If we assume that the treatment is exogenous, it is well known that the ATE is a

function of only observable quantities and is therefore identified. We summarize this

result in Lemma 1 after having formally defined exogeneity.

Assumption 2: (Exogenous Treatment Selection)

∀d ∈ D : E[Y(d)|D = 1] = E[Y(d)|D = 0].

Lemma 1. Under Assumptions 1 and 2, the ATE is identified.

Proof of Lemma 1. Under Assumption 1, E[Y(d)|D = d] = E[Y|D = d], and under

Assumption 2, E[Y(d)|D = 1] = E[Y(d)|D = 0], and hence ATE = E[Y(1)− Y(0)] =

E[Y|D = 1]− E[Y|D = 0] is identified from the data.

3.2 (Point) identification when SUTVA is violated

When SUTVA does not hold, the observed probabilities become

p00 = π11 + π12+π13 + π14, E[Y(0)|D = 0] =
π33 + π34+π13 + π14

Pr(D = 0)
,

p01 = π21 + π23+π22 + π24, E[Y(0)|D = 1] =
π23 + π44+π24 + π43

Pr(D = 1)
,

p10 = π33 + π34+π31 + π32, E[Y(1)|D = 0] =
π12 + π34+π14 + π32

Pr(D = 0)
,

p11 = π42 + π44+π41 + π43, E[Y(1)|D = 1] =
π42 + π44+π22 + π24

Pr(D = 1)
.

(4)

The fundamental difference is that now the potential outcomes for a given ob-

served treatment value are not identified from the data, so the observed E[Y|D = d]

does not need be equal to E[Y(d)|D = d], i.e.,

E[Y|D = 0] =
π33 + π34+π31 + π32

Pr(D = 0)
6= π33 + π34+π13 + π14

Pr(D = 0)
= E[Y(0)|D = 0],

E[Y|D = 1] =
π42 + π44+π41 + π43

Pr(D = 1)
6= π42 + π44+π22 + π24

Pr(D = 1)
= E[Y(1)|D = 1].
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The mean potential outcomes are now given by

E[Y(0)] = E[Y(0)|D = 1] · Pr(D = 1) + E[Y(0)|D = 0] · Pr(D = 0)

= π23 + π44+π24 + π43 + π33 + π34+π13 + π14,

E[Y(1)] = E[Y(1)|D = 1] · Pr(D = 1) + E[Y(1)|D = 0] · Pr(D = 0)

= π42 + π44+π22 + π24 + π12 + π34+π14 + π32.

Therefore,

E[Y(1)−Y(0)] = π42 + π12+π22 + π32 − π23 − π33−π13 − π43.

The ATE can still be identified but at the price of imposing strong additional as-

sumptions. For illustration, we propose an example of a sufficient condition that

guarantees identification.

Assumption 3: (Balanced bias)

Pr(Y = 1, S = 0|D = 1)− Pr(Y = 0, S = 0|D = 1)

= Pr(Y = 1, S = 0|D = 0)− Pr(Y = 0, S = 0|D = 0).
(5)

Assumption 3 states that the bias induced by the violation of SUTVA is the same

in the treated and non-treated populations. The following lemma shows that this

assumption guarantees that the naive ATE estimator E[Y|D = 1]− E[Y|D = 0] still

identifies the true ATE.

Lemma 2. Under Assumptions 2 and 3, the ATE is identified.

Proof. See Appendix A.

3.3 Relaxing SUTVA

In this section we first derive sharp bounds on the ATE as a function of the share

of units, α, for which SUTVA can potentially be violated. The sensitivity parameter

0 ≤ α ≤ 1 can be directly interpreted as the maximum probability that SUTVA does

not hold. First we assume that α is known, and then we show how to estimate the

maximum value of α such that our bounds are able to identify the sign of the ATE.

For a given α we assume that
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Assumption 1α: (Known maximum SUTVA violation share)

Pr(∀d ∈ D : Di = d =⇒ Yi(d) = Yi) ≥ 1− α.

This assumption, previously used to model measurement error in the observed

outcomes or in the treatment by Lafférs (2019), implies that

π13 + π14 + π22 + π24 + π31 + π32 + π41 + π43 ≤ α.

Under Assumption 1α, the ATE is no longer point identified. We first provide its

sharp bounds without imposing any further assumptions in the following lemma.

Lemma 3. Under Assumption 1α, the sharp bounds on the ATE are as follows:1

ATE ∈ [ATELB, ATEUB]

ATELB = max{−p10 − p01 − α,−1},

ATEUB = min{p00 + p11 + α, 1}.

(6)

Proof. See Appendix A.

The width of these bounds is 1 + 2α, and they are therefore not useful in practice.

We extend this result to continuous outcomes in Appendix C. In order to obtain mean-

ingful bounds we also need to assume that the treatment is exogenous (Assumption

2). The resulting bounds are presented in the following lemma.

1The dependence of ATELB and ATEUB on α is suppressed for brevity.
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Lemma 4. Under Assumptions 1α and 2, the sharp bounds on the ATE are as follows:

ATE ∈ [ATELB, ATEUB]

if p11 + p01 > p00 + p10 :

ATELB =
p11 −min{max{α− p00, 0}, p11}

p11 + p01
− p10 + min{p00, α}

p00 + p10
,

ATEUB =
p11 + min{max{α− p10, 0}, p01}

p11 + p01
− p10 −min{p10, α}

p00 + p10
,

if p11 + p01 < p00 + p10 :

ATELB =
p11 −min{p11, α}

p11 + p01
− p10 + min{max{α− p11, 0}, p00}

p00 + p10
,

ATEUB =
p11 + min{p01, α}

p11 + p01
− p10 −min{max{α− p01, 0}, p01}

p00 + p10
.

(7)

Proof. See Appendix A.

The relationship between our bounds and α is visualized in Figure 2. In particular,

it is important to notice that as α increases the width of our bounds becomes larger.

This is not surprising as, intuitively, the larger the share of units for which SUTVA is

violated the less we can learn about the ATE from the observed data.

In most applications it is very likely that α is unknown. If this is the case, we can

use the results of Lemma 4 to detect the maximum share of units for which SUTVA

can be violated that allows our bounds to identify the sign of the ATE. This is shown

in the following lemma.

Lemma 5. Under Assumptions 1α and 2, ATELB ≥ 0 if and only if

0 ≤ α ≤ α+ ≡ min{Pr(D = 1), Pr(D = 0)} · [E(Y|D = 1)− E(Y|D = 0)]

and ATEUB ≤ 0 if and only if

0 ≤ α ≤ α− ≡ −min{Pr(D = 1), Pr(D = 0)} · [E(Y|D = 1)− E(Y|D = 0)] .

Proof. See Appendix A.

Lemma 5 shows that knowing whether either α+ or α− is bigger than zero is

useful. For example, an α+ bigger than zero implies a positive ATE if the fraction of
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individuals affected by SUTVA violations is smaller than α+. Thus, it is interesting to

test H0 : α− = 0 and H0 : α+ = 0. For example, if the latter is rejected it means that as

soon as less than α+ are subject to SUTVA violations the ATE is positive. Notice that

under the Assumptions 1α and 2 α = 0 implies ATE = E[Y|D = 1]− E[Y|D = 0] >

α+. Thus, it is possible that the naive ATE estimator can be significantly different

from 0, while α+ is not.

3.4 Narrowing the bounds using covariates

Suppose that a set of covariates, Xi ∈ X, is also available and that all our assumptions

also hold conditional on X, such that ATE =
∫
X ATEx Pr(X = x)dx, where ATEx =

E[Y(1)−Y(0)|X = x]. Further assume that the treament is exogenous conditional on

these covariates.

Assumption 2X: (Conditional Exogenous Treatment Selection)

∀d ∈ D, ∀x ∈ X : E[Y(d)|D = 1, X = x] = E[Y(d)|D = 0, X = x].

Lemma 6. Under Assumptions 1α and 2X, the sharp bounds on the ATE are as follows:

ATE ∈
[

ATELB
, ATEUB

]
,

ATELB
=

∫
X

ATELB
x Pr(X = x)dx,

ATEUB
=

∫
X

ATEUB
x Pr(X = x)dx.

(8)

If p11|x + p01|x > p00|x + p10|x :

ATELB
x =

p11|x −min{max{α− p00|x, 0}, p11|x}
p11|x + p01|x

−
p10|x + min{p00|x, α}

p00|x + p10|x
,

ATEUB
x =

p11|x + min{max{α− p10|x, 0}, p01|x}
p11|x + p01|x

−
p10 −min{p10|x, α}

p00|x + p10|x
,

(9)

and if p11|x + p01|x < p00|x + p10|x :

ATELB
x =

p11|x −min{p11|x, α}
p11|x + p01|x

−
p10|x + min{max{α− p11|x, 0}, p00|x}

p00 + p10
,

ATEUB
x =

p11|x + min{p01|x, α}
p11|x + p01|x

−
p10|x −min{max{α− p10|x, 0}, p01|x}

p00|x + p10|x
.

(10)
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Furthermore, ATELB ≥ ATELB and ATEUB ≤ ATEUB.

Proof. See Appendix A.

In practice, including covariates might require dividing the sample into a finite

number of groups depending on the predicted value of the outcome variable.2 The

choice of the number of groups depends on the problem at hand. The larger the

number of groups the sharper are the resulting bounds, but at the same time the

statistical uncertainty within each group increases.

When information about X is available, the maximum possible violation of SUTVA,

α+(α−) that guarantees positive (negative) ATE are given in the following lemma

Lemma 7. Under the Assumptions 1α and 2X, ATELB ≥ 0 if and only if

0 ≤ α ≤ α+ ≡
∫

X
min{α+x , 0}Pr(X = x)dx

and ATEUB ≤ 0 if and only if

0 ≤ α ≤ α− ≡
∫

X
min{α−x , 0}Pr(X = x)dx,

where

α+x ≡ min{Pr(D = 1, X = x), Pr(D = 0, X = x)} · [E(Y|D = 1, X = x)− E(Y|D = 0, X = x)]

α−x ≡ −α+x .

Proof. See Appendix A.

We note that α+ ≤ α+ (and similarly α− ≥ α+), because for some x the quantity

E(Y|D = 1, X = x) − E(Y|D = 0, X = x) may be negative even though E(Y|D =

1)− E(Y|D = 0) ≥ 0.

3.5 Estimation and inference

The fact that the expressions for bounds α+ and α− involve minimum and maxi-

mum operators gives rise to a non-standard inferential procedure, as no regular
√

n-

consistent estimator exists (Hirano and Porter 2012) and analog estimators may be
2For example, Lee (2009) uses all available covariates to construct a single index that defines five

groups depending on the predicted values of the outcome.
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severely biased in small samples. For this reason, we suggest using the intersection

bounds approach of Chernozhukov et al. (2013), which creates half-median unbiased

point estimates and confidence intervals.3 This method corrects for the small sample

bias before the max/min operator is applied.

4 Empirical illustrations

We consider two empirical applications to illustrate the scope and usefulness of our

results. In the first one we are interested in the effect of the random assignment to the

U.S. Job Corps training program on the probability of employment four years after the

assignment. As not everyone in the sample complied with the random assignment, we

will focus on the intention-to-treat effect as in Lee (2009). Evaluations of this program

have aroused considerable interest among policymakers and researchers during recent

decades, which is hardly surprising given the high costs associated with the program.

We use the same data from National Job Corps Study as Lee (2009). We refer the

reader to Lee (2009) for an extensive data description.

Our second application looks at a school voucher experiment implemented in

Colombia, namely the “programa de ampliacion de cobertura de la educacion secun-

daria” (PACES). We focus on the impact of being randomly assigned to the voucher

covering approximately half of the cost of private secondary schooling, on the proba-

bility that low income pupils had to repeat a grade. We use data previously analyzed

in Angrist et al. (2006).

4.1 The effect of Job Corps on employment

Table 1 provides the summary statistics.

The ATE bounds as a function of α are presented in Table 2 and visualized in

Figure 2.

Under SUTVA and the exogenous treatment selection assumptions the impact of

the assignment on the employment probability is 1.6%, which is significant at the

3Half-median unbiased means that the estimate of the upper(lower) bound exceeds (lies below) its
true value with probability at least one half asymptotically.
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Y \ D offered training not offered training
(D = 1) (D = 0)

working (Y = 1) p11 = 49.26% p10 = 31.63%
not working (Y = 0) p01 = 11.16% p00 = 7.94%

n = 11146 Pr(D = 1) = 60.43% Pr(D = 0) = 39.57%

Table 1: Probability distribution of the working after 202 weeks indicator (Y) and the random-
ized assignment to Job corps indicator (D). Based on a data set from Lee (2009). Missing
values were removed.

α [ATELB, ATEUB]
(CBLB, CBUB)

0 [0.016, 0.016]
(0.001, 0.031)

0.01 [-0.009, 0.041]
(-0.023, 0.055)

0.05 [-0.111, 0.142]
(-0.124, 0.155)

0.1 [-0.219, 0.269]
(-0.230, 0.282)

0.2 [-0.384, 0.521]
(-0.394, 0.537)

0.5 [-0.881, 1]
(-0.893, 1)

α+ 0.954%
(CBl, CBu) (0.076%, 1.213%)

Table 2: Bounds on the ATE for different choices of α. The left table presents estimates
of bounds on ATE together with 95% confidence bounds. On the right-hand side, α+ is the
estimated maximum value of α that still gives a positive ATE. All estimates are half-median
unbiased and based on Chernozhukov et al. (2013) using 9999 bootstrap samples and 200000
replications.

95% confidence level. The minimum share of individuals for which SUTVA has to be

satisfied to have a positive ATE, α+, is 0.954%. Although statistically different from

zero, α+ is very small. This implies that we can only conclude that the effect is positive

if we are willing assume that less than 1% of the individuals is affected by SUTVA

violations.
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4.2 The effect of school vouchers on never repeating a grade

Some relevant descriptive statistics are reported in Table 3. We refer to Angrist et al.

(2006) for an extensive data description.

Y \ D offered voucher not offered voucher
(D = 1) (D = 0)

never repeated a grade (Y = 1) p11 = 43.71% p10 = 37.30%
repeated a grade (Y = 0) p01 = 8.41% p00 = 10.57%

n = 1201 Pr(D = 1) = 52.12% Pr(D = 0) = 47.88%

Table 3: Probability distribution of the outcome never repeating a grade (Y) and of the random-
ized treatment (school vouchers offered). Based on a dataset from Angrist et al. (2006). Missing
values were removed.

Under Assumptions 1 and 2, the point identified ATE of the voucher offer on the

probability of never repeating a grade is 6% and it is statistically significant at the 95%

confidence level. The sign of the effect is confirmed if SUTVA is violated for no more

than 3.03% of the population. This effect is more robust to SUTVA violations than in

the previous example; however, the estimated α+ is still very low.

Our results are summarized in Table 4 and visualized in Figure 3.

α [ATELB, ATEUB]
(CBLB, CBUB)
[0.060, 0.060]
(0.009, 0.110)

0.01 [0.033, 0.092]
(-0.014, 0.136)

0.05 [-0.050, 0.174]
(-0.094, 0.215)

0.1 [-0.154, 0.278]
(-0.192, 0.318)

0.2 [-0.348, 0.485]
(-0.384, 0.528)

0.5 [-0.932, 1]
(-0.969, 1)

α+ 3.03%
(CBl, CBu) (0.69%, 5.08%)

Table 4: Bounds on the ATE for different choices of α. The left table presents estimates
of bounds on ATE together with 95% confidence bounds. On the right-hand side, α+ is the
estimated maximum value of α that still gives a positive ATE. All estimates are half-median
unbiased and based on Chernozhukov et al. (2013) using 9999 bootstrap samples and 200000
replications.
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5 Extension: Decomposing SUTVA assumption

So far we have been completely agnostic about the mechanisms that can lead to

SUTVA violation. However, in some applications it could be useful to consider them

separately. In the epidemiology literature, the version of SUTVA we consider in this

paper (Assumption 1) is known as the consistency assumption (Cole and Frangakis

2009b).

VanderWeele (2009b) propose a decomposition of this assumption into two com-

ponents. They refer to the first component as treatment-variation irrelevance and to the

second component as consistency. We will now consider their separation and propose

alternative weaker assumptions, which can be used to derive bounds on the ATE that

are sharper than the one we derived in Section 3.3.

To this end, we allow the potential outcomes of individual i to be a function of

not only the treatment indicator, but also of a variable, Hi ∈ H, which can represent

different things. It can capture different dose or length of exposure to the treatment,

it can be a function of the treatment indicator of other individuals or it can be a

binary indicator that represents whether either the observed outcome or the treatment

indicator is measured with error. In the latter case, the potential outcome itself is not

affected by H, but H selects individuals affected by measurement error. Hereafter, for

the sake of easy exposition, we will refer to H as “hidden treatment”. Now we can

define the potential outcomes as functions of both the observed and hidden treatments

Y(d, h). Depending on the application, the average treatment effect of interest can

be defined in different ways since the potential outcomes also depend on H. For

example, if there exists different version of the treatment, the quantity of interest

could be the mean of the ATEs for different values of H:

ATE =
∫
H

ATE(h)Pr(H = h)dh,

where ATE(h) = E[Y(1, h)−Y(0, h)].

VanderWeele (2009b) introduce the following assumptions that together are equiv-

alent to Assumption 1 (SUTVA) above.

Assumption 1A: (Treatment-variation irrelevance assumption)
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∀d ∈ D, ∀h, h′ ∈ H, ∀i ∈ I : Di = d =⇒ Yi(d, h) = Yi(d, h′). (11)

Assumption 1A implies that there are neither multiple versions of the treatment

(e.g., different treatment intensities) nor interference between units; i. e.,

Yi(di, d−i) = Yi(di, d′−i), ∀d−i, d′−i,

where d−i stands for the vector of treatments of individuals other than i. Under

Assumption 1A the notation Yi(d) is appropriate and the quantity ATE = E(Y(1)−

Y(0)) is well defined.

Assumption 1B: (Consistency Assumption)

∀d ∈ D, ∀h ∈ H, ∀i ∈ I : Di = d, Hi = h =⇒ Yi(d, h) = Yi. (12)

This assumption states that the observed value of outcome Yi is consistent with the

potential outcome model formulation. A possible violation of this assumption is

mismeasurement of the observed outcome or the treatment.

We note that Assumptions 1A and 1B imply the following condition:

∀d ∈ D, ∀h, h′ ∈ H, ∀i ∈ I : Di = d, Hi = h =⇒ Yi(d, h) = Yi(d, h′) = Yi(d) = Yi,

which it is equivalent to imposing SUTVA.

Figure 4 depicts the individual average treatment effects on and the support of

the joint probability distribution of (Y00, Y01, Y10, Y11, Y, D, H) for a binary hidden

treatment, H. In most figures we use the notation Ydh = Y(d, h).

Both Assumptions 1A and 1B are support restrictions, and thus we can relax them

separately. For example, this is important in applications where one is only concerned

about measurement error and can safely impose Assumption 1B.

Assumption 1Aβ: (Relaxed Treatment-variation Irrelevance Assumption)

Pr(∀d ∈ D, ∀h, h′ ∈ H : Yi(d, h) = Yi(d, h′)) ≥ 1− β. (13)
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Assumption 1Bγ: (Relaxed Consistency Assumption)

Pr(∀d ∈ D, ∀h ∈ H : Di = d, Hi = h =⇒ Yi(d, h) = Yi) ≥ 1− γ. (14)

In addition, we impose the following assumption, which is satisfied under random

treatment allocation:

Assumption 2H: (Exogenous Treatment Selection with Hidden Treatment)

∀d ∈ D, ∀h ∈ H : E[Y(d, h)|D = 1] = E[Y(d, h)|D = 0].

The effects on the ATE of different relaxations are visualized using a simulated

example in Figure 5. Figures 6 and 7 show joint probability distributions that maxi-

mize the ATE under different relaxations of SUTVA. All the identifying assumptions

impose linear restrictions on the space of admissible joint probability distributions

(Y00, Y01, Y10, Y11, Y, D, H). On top of that, these distributions have to be compatible

with the distribution of (Y, D), which is also a linear restriction. The bounds on the

ATE are calculated using a linear programming procedure described in Lafférs (2019).

We note that there are recent advances in statistical inference of partially identified

parameters that deal with random linear programs of such form (Kaido et al. 20194

or Hsieh et al. 2018). Subsampling approaches may be used on the lower and upper

bounds separately, as described in Lafférs (2019) or Demuynck (2015).

6 Conclusion

This paper discusses the Stable Unit Treatment Value Assumption (SUTVA) assump-

tions and the implications of its violations for the identification of the average treat-

ment effect. We derive bounds on the ATE under the assumption that only at most a

known fraction of individuals is affected by SUTVA. Moreover, we show how to esti-

mate the maximum share of individuals that can be affected by SUTVA violation that

still allows us to identify the sign of the ATE and illustrate our theoretical results with

two empirical examples. Finally, following the epidemiology literature, we show how

4Which was implemented in Kaido et al. (2017).
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decomposing SUTVA into two separate assumptions allows to distinguish between

the different sources of SUTVA violation and potentially narrow our bounds.

Appendix

A Proofs

Proof of Lemma 2. The Assumption 2 together with (4) implies

ATE = E[Y(1)]− E[Y(0)] = E[Y(1)|D = 1]− E[Y(0)|D = 0]

=
π42 + π44+π22 + π24,

Pr(D = 1)
− π33 + π34+π13 + π14,

Pr(D = 0)
.

(A.1)

From (5) we can see that

E[Y|D = 1]− E[Y|D = 0] =
π42 + π44+π41 + π43,

Pr(D = 1)
− π33 + π34+π31 + π32

Pr(D = 0)
. (A.2)

We note that under Assumption 3,

π41 + π43

Pr(D = 1)
− π22 + π24

Pr(D = 1)
=

π31 + π32

Pr(D = 0)
− π13 + π14

Pr(D = 0)
,

so that the equations (A.1) and (A.2) are equal.

Proof of Lemma 3. We show the proof for the upper bound as the proof for the lower bound follows in

an analogous way.

Let us further denote ATEs
yd = E[Y(1)−Y(0)|Y = y, D = d, S = s].
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(i) Validity

ATE =
[

ATE1
00 · Pr(S = 1|Y = 0, D = 0) + ATE0

00 · Pr(S = 0|Y = 0, D = 0)
]
· p00

+
[

ATE1
01 · Pr(S = 1|Y = 0, D = 1) + ATE0

01 · Pr(S = 0|Y = 0, D = 1)
]
· p01

+
[

ATE1
10 · Pr(S = 1|Y = 1, D = 0) + ATE0

10 · Pr(S = 0|Y = 1, D = 0)
]
· p10

+
[

ATE1
11 · Pr(S = 1|Y = 1, D = 1) + ATE0

11 · Pr(S = 0|Y = 1, D = 1)
]
· p11

≤[1 · Pr(S = 1|Y = 0, D = 0)] + 0 · Pr(S = 0|Y = 0, D = 0)] · p00

+ [0 · Pr(S = 1|Y = 0, D = 1)] + 1 · Pr(S = 0|Y = 0, D = 1)] · p01

+ [0 · Pr(S = 1|Y = 1, D = 0)] + 1 · Pr(S = 0|Y = 1, D = 0)] · p10

+ [1 · Pr(S = 1|Y = 1, D = 1)] + 0 · Pr(S = 0|Y = 1, D = 1)] · p11

=Pr(S = 1|Y = 0, D = 0) · p00 + Pr(S = 1|Y = 1, D = 1) · p11

+ Pr(S = 0|Y = 0, D = 1) · p01 + Pr(S = 0|Y = 1, D = 0) · p10

≤p00 + p11 + min{p01 + p10, α} = min{p00 + p11 + α, 1},

Where the last inequality follows from the fact that Pr(S = 0) ≤ α.

(ii) Sharpness

Suppose that α < p01 + p10. Then there must exist constants 0 ≤ α01 ≤ p01 and 0 ≤ α10 ≤ p10, so

that α = α01 + α10. The following specification for Pr(Y(0), Y(1), Y, D) is compatible with Assumption

1α and and with the distribution of (Y, D).

π12 = p00, π22 = α01, π32 = α10, π42 = p11, π21 = p01 − α01, π34 = p10 − α10,

π11 = π13 = π14 = π23 = π24 = π31 = π33 = π41 = π43 = π44 = 0.

Suppose now that α ≥ p01 + p10.

π12 = p00, π22 = p01, π32 = p10, π42 = p11,

π11 = π13 = π14 = π21 = π23 = π24 = π31 = π33 = π34 = π41 = π43 = π44 = 0.

Figure 8 illustrates the sharpness part of the proof of Lemma 3, it depicts the compatible joint

probability distributions that attains the lower and upper bound on ATE respectively.

Proof of Lemma 4. We show the proof for the upper bound and for π11 + π01 > π00 + π10 as the proof

for the lower bound and for π11 + π01 < π00 + π10 follows in an analogous way.

(i) Validity
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ATE = E[Y(1)−Y(0)] = E[Y(1)|D = 1]− E[Y(0)|D = 0]

=
π42 + π44+π22 + π24

Pr(D = 1)
− π33 + π34+π13 + π14

Pr(D = 0)

=
p11−π41 − π43 + π22 + π24

p11 + p01
− p10−π31 − π32 + π13 + π14

p00 + p10

≤ p11+π22 + π24

p11 + p01
− π10−π31 − π32

p00 + p10

≤ p11 + min{max{α− p10, 0}, p01}
p11 + p01

− p10 −min{p10, α}
p00 + p10

= ATEUB.

where the last inequality follows from inequalities π31 + π32 ≤ p10, π22 + π24 ≤ p01 and π11 + π01 >

π00 + π10.

(ii) Sharpness

Given that π11 + π01 > π00 + π10, the following specification for Pr(Y(0), Y(1), Y, D) is compatible

with Assumptions 1α, 2, with the distribution of (Y, D) and achieves the ATEUB.

c1 = min{p10, α},

c2 = min{max{α− p10, 0}, p01},

π11 = p00 − p00
p11 + c2

p11 + p01
, π21 = p01 − c2 − p01

p10 − c1

p00 + p10
,

π12 = p00
p11 + c2

p11 + p01
, π22 = c2,

π13 = 0, π23 = p01
p10 − c1

p00 + p10
,

π14 = 0, π24 = 0,

π31 = c1 − c1
p11 + c2

p11 + p01
, π41 = 0,

π32 = c1
p11 + c2

p11 + p01
, π42 = p11 − p11

p10 − c1

p00 + p10
,

π33 = p10 − c1 − (p10 − c1)
p11 + c2

p11 + p01
, π43 = 0,

π34 = (p10 − c1)
p11 + c2

p11 + p01
, π44 = p11

p10 − c1

p00 + p10
.

Straightforward manipulations show that the proposed specification is a proper probability distribution

function.

Proof of Lemma 5. We only present the proof for ATELB ≥ 0, as the the proof for ATEUB ≤ 0 is similar.

Consider the case π11 + π01 > π00 + π10. If p00 + p11 ≥ α ≥ p00, then

ATELB =
p11 − (α− p00)

p11 + p01
− 1,
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so that ATELB ≥ 0 would imply p00 − p01 ≥ α which contradicts α ≥ p00, so we have to have α ≤ p00

and thus

ATELB =
p11

p11 + p01
− p10 + α

p00 + p10
≥ 0 ⇐⇒ α ≤ p11

p00 + p10

p11 + p01
− p10 = Pr(D = 0) [E(Y|D = 1)− E(Y|D = 0)] .

Similarly, for π11 + π01 > π00 + π10 we get that for ATEUB ≤ 0 we have to have α ≤ p11 and

therefore

ATEUB =
p11 − α

p11 + p01
− p10

p00 + p10
≤ 0 ⇐⇒ α ≤ p11− p10

p11 + p01

p00 + p10
= Pr(D = 1) [E(Y|D = 1)− E(Y|D = 0)] ,

which leads to the desired result.

Proof of Lemma 6. The proof is similar to the one or Proposition 1b in Lee (2009). The validity and

sharpness of the bounds results from the application of Lemma 4 conditional on X = x. The second

part follows from the fact that any ATE that is consistent with (Y, D, X) has to be consistent with

(Y, D), that is ignoring the information about X cannot lead to a more informative result (sharpen the

bounds).

Proof of Lemma 7. Analoguous to the proof of Lemma 5 and hence ommited.
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Figure 1: Support of the joint probability distribution of (Y(0), Y(1), Y, D). Under SUTVA,
the red points must have zero probability mass.
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Figure 2: Sensitivity analysis to SUTVA assumption of the bounds on ATE of the assignment
to job training on the probability of employment (Intention-to-Treat). All estimates are half-
median unbiased and based on Chernozhukov et al. (2013).
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Figure 3: Sensitivity analysis to SUTVA assumption of the bounds on ATE of the school
vouchers on the probability of never repeating a grade (Intention-to-Treat). All estimates are
half-median unbiased and based on Chernozhukov et al. (2013).
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Figure 4: Individual Average Treatment Effect depicted on the support of the joint prob-
ability distribution of (Y00, Y01, Y10, Y11, Y, D, H) for binary hidden treatment H. Note that
only the proportions Pr(Y = y, D = d) are observed. Both Assumptions 1A (highlighted
with green rectangles) and 1B (depicted by black dots) are restrictions on the support of
(Y00, Y01, Y10, Y11, Y, D, H).
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Figure 5: Lower and upper bounds on the ATE (viewed from different angles) under different
relaxations of Assumptions 1A and 1B.
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(0 , 1 , 0) (0 , 1 , 1)︸ ︷︷ ︸
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00 00 00 00 00 0 .20970 0 .19340 00

Assumption 1A (TVIA) holds β = 0 .01

Assumption 1B (Consi stency) holds γ = 0 .01

Figure 7: Joint probability distributions of (Y00, Y01, Y10, Y11, Y, D, H) that maximize ATE
under different relaxations of SUTVA.
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Figure 8: Visualization of the sharpness part of Lemma 3.
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C Continuous outcome
Notation: ∀d ∈ D : πd = πd(y0, y1, y) = f (y0, y1, y|d), pd = Pr(D = d)

∀y ∈ Y :
∫∫

π1(y0, y1, y) dy0 dy1 = fY(y|D = 1)∫∫
π0(y0, y1, y) dy0 dy1 = fY(y|D = 0)

(C.1)

∀y0, y1, y ∈ Y : π1(y0, y1, y)I{y1 6= y} = 0

∀y0, y1, y ∈ Y : π0(y0, y1, y)I{y0 6= y} = 0
(C.2)

∫∫∫
y1π1 dy0 dy1 dy =

∫∫∫
y1π0 dy0 dy1 dy∫∫∫

y0π1 dy0 dy1 dy =
∫∫∫

y0π0 dy0 dy1 dy
(C.3)

These restrictions state that πd is compatible with the data (C.1), satisfy SUTVA assumption (C.2)
and the Exogenous Treatment Selection assumption (C.3).

Given that πd ≥ 0 and t, conditions (C.2) can be rewritten as:

∫∫∫
π1(y0, y1, y)I{y1 6= y}+ π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy = 0

and we can rewrite relaxed SUTVA (Assumption 1α) as∫∫∫
π1(y0, y1, y)I{y1 6= y}+ π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy ≤ α. (C.4)

The ATE = E[Y1 −Y0] can be rewritten in terms of πd in the following way:

ATE =
∫∫∫

(y1 − y0)(π
1 p1 + π0 p0) dy0 dy1 dy. (C.5)

In order to to find meaningful bounds without the ETS assumption, we will need bounded support
of the outcome, suppose now that y ∈ Y ⊂ [ymin, ymax].

Lemma 8. Under Assumption 1α, the sharp bounds on the ATE are the following:

ATE ∈ [ATELB, ATEUB]

ATELB = max
{

p1 (E[Y|D = 1]− ymax) + p0 (ymin − E[Y|D = 0])− α(ymax − ymin), −(ymax − ymin)
}

ATEUB = min
{

p1 (E[Y|D = 1]− ymin) + p0 (ymax − E[Y|D = 0]) + α(ymax − ymin), ymax − ymin

}
.
(C.6)

Proof of Lemma 8. We show the proof for the upper bound as the proof for the lower bound follows in
an analogous way.
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(i) Validity

ATE =
∫∫∫

(y1 − y0)(π
1 p1 + π0 p0) dy0 dy1 dy

= p1
∫∫∫

(y1 − y0)π
1 dy0 dy1 dy

+ p0
∫∫∫

(y1 − y0)π
0 dy0 dy1 dy

= p1
∫∫∫

y1π1 dy0 dy1 dy− p1
∫∫∫

y0π1 dy0 dy1 dy

+ p0
∫∫∫

y1π0 dy0 dy1 dy− p0
∫∫∫

y0π0 dy0 dy1 dy

= p1
∫∫∫

(y1 − y0)
[
π1 I{y1 = y}+ π1 I{y1 6= y}

]
dy0 dy1 dy

+ p0
∫∫∫

(y1 − y0)
[
π0 I{y0 = y}+ π0 I{y0 6= y}

]
dy0 dy1 dy

≤ p1 (E[Y|D = 1]− ymin)

+ p1(ymax − ymin)
∫∫∫

π1(y0, y1, y)I{y1 6= y} dy0 dy1 dy

+ p0 (ymax − E[Y|D = 0])

+ p0(ymax − ymin)
∫∫∫

π0(y0, y1, y)I{y0 6= y} dy0 dy1 dy

= p1 (E[Y|D = 1]− ymin) + p0 (ymax − E[Y|D = 0]) + α(ymax − ymin)

(C.7)

(ii) Sharpness
The following specification for πd is compatible with Assumption 1α, with the distribution of

(Y, D) and achieves the ATEUB. Note that for α ≤ p1E[Y|D = 1] + p0E[Y|D = 0] there exists α0, α1 such
that α0 ≤ p0E[Y|D = 0], α1 ≤ p1E[Y|D = 1] and α = α0 + α1. For α ≤ p1E[Y|D = 1] + p0E[Y|D = 0] :

π0(y0, y1, y) = ((1− α0)I{y0 = y}+ α0 I{y0 = ymin}) · I{y1 = ymax} · fY(y|D = 0),

π1(y0, y1, y) = I{y0 = ymin} · ((1− α1)I{y1 = y}+ α1 I{y1 = ymax}) · fY(y|D = 1),
(C.8)

and for α > p1E[Y|D = 1] + p0E[Y|D = 0] we set α0 = p0E[Y|D = 0] and α1 = p1E[Y|D = 1].
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